C4graphGraph forms for C4 [ 360, 50 ] = PL(MC3(6,30,1,16,19,25,1),[4^45,36^5])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 50 ] = PL(MC3(6,30,1,16,19,25,1),[4^45,36^5]).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {164, 183}, {170, 189}, {164, 191}, {170, 182}, {164, 186}, {158, 187}, {158, 184}, {130, 189}, {131, 188}, {131, 195}, {176, 240}, {175, 239}, {173, 237}, {146, 211}, {154, 219}, {151, 212}, {169, 234}, {131, 198}, {144, 214}, {159, 216}, {165, 226}, {157, 213}, {132, 205}, {130, 200}, {174, 228}, {153, 210}, {172, 224}, {152, 214}, {131, 204}, {178, 253}, {177, 254}, {156, 211}, {162, 242}, {160, 242}, {177, 227}, {163, 247}, {158, 203}, {137, 223}, {161, 246}, {178, 229}, {174, 249}, {139, 211}, {167, 255}, {148, 206}, {179, 233}, {158, 197}, {167, 251}, {168, 245}, {172, 241}, {171, 246}, {166, 248}, {133, 218}, {180, 235}, {165, 250}, {175, 207}, {132, 230}, {176, 210}, {170, 200}, {164, 199}, {179, 208}, {173, 206}, {149, 241}, {139, 238}, {180, 209}, {155, 252}, {150, 254}, {153, 240}, {154, 243}, {159, 245}, {170, 193}, {141, 225}, {143, 226}, {133, 234}, {147, 252}, {168, 216}, {147, 225}, {169, 218}, {137, 253}, {141, 249}, {143, 250}, {171, 222}, {157, 232}, {150, 227}, {149, 224}, {146, 231}, {152, 238}, {144, 231}, {148, 237}, {155, 225}, {166, 220}, {151, 236}, {156, 231}, {163, 223}, {160, 221}, {167, 217}, {161, 222}, {162, 221}, {58, 186}, {61, 188}, {75, 201}, {89, 219}, {101, 231}, {108, 238}, {87, 212}, {98, 225}, {127, 251}, {62, 184}, {75, 205}, {48, 183}, {109, 229}, {124, 244}, {122, 243}, {125, 244}, {110, 228}, {115, 249}, {75, 192}, {76, 199}, {103, 236}, {117, 248}, {107, 229}, {121, 233}, {45, 188}, {110, 252}, {65, 212}, {46, 184}, {80, 198}, {107, 253}, {115, 228}, {120, 239}, {116, 236}, {70, 223}, {91, 194}, {100, 253}, {36, 190}, {109, 247}, {98, 249}, {37, 185}, {66, 222}, {82, 207}, {118, 235}, {74, 213}, {113, 238}, {116, 212}, {96, 193}, {122, 219}, {29, 191}, {74, 232}, {94, 252}, {25, 186}, {18, 182}, {27, 189}, {127, 217}, {113, 214}, {118, 209}, {103, 206}, {117, 220}, {121, 208}, {28, 182}, {93, 247}, {111, 197}, {125, 215}, {18, 185}, {84, 255}, {64, 235}, {124, 215}, {17, 189}, {65, 237}, {75, 230}, {17, 190}, {26, 181}, {89, 246}, {10, 187}, {70, 247}, {66, 243}, {101, 214}, {126, 203}, {120, 207}, {93, 229}, {123, 194}, {82, 232}, {87, 237}, {94, 228}, {100, 223}, {6, 187}, {116, 202}, {108, 211}, {123, 196}, {8, 200}, {55, 246}, {8, 202}, {23, 213}, {123, 185}, {19, 208}, {42, 233}, {12, 200}, {2, 199}, {31, 218}, {126, 187}, {1, 199}, {61, 251}, {53, 243}, {46, 232}, {44, 234}, {30, 216}, {15, 201}, {6, 192}, {14, 201}, {3, 203}, {9, 193}, {5, 204}, {11, 194}, {3, 201}, {116, 190}, {13, 193}, {1, 204}, {29, 208}, {9, 196}, {14, 192}, {59, 245}, {58, 244}, {123, 181}, {4, 203}, {22, 217}, {21, 218}, {22, 198}, {23, 197}, {30, 205}, {56, 236}, {2, 215}, {1, 215}, {60, 234}, {45, 251}, {96, 182}, {11, 220}, {111, 184}, {9, 209}, {48, 233}, {25, 195}, {7, 220}, {59, 230}, {49, 239}, {104, 183}, {35, 195}, {3, 226}, {46, 207}, {37, 196}, {19, 242}, {26, 248}, {47, 205}, {40, 202}, {33, 197}, {49, 213}, {21, 240}, {27, 254}, {4, 226}, {38, 192}, {32, 198}, {16, 248}, {8, 227}, {53, 222}, {55, 219}, {80, 188}, {24, 245}, {88, 181}, {48, 221}, {41, 196}, {25, 244}, {36, 202}, {60, 210}, {91, 181}, {12, 227}, {31, 240}, {29, 242}, {17, 254}, {10, 250}, {78, 190}, {51, 195}, {16, 224}, {77, 191}, {7, 241}, {76, 186}, {56, 206}, {42, 221}, {47, 216}, {23, 239}, {41, 209}, {18, 235}, {64, 185}, {32, 217}, {5, 255}, {77, 183}, {26, 224}, {11, 241}, {57, 194}, {6, 250}, {67, 191}, {1, 255}, {44, 210}, {24, 230}, {51, 204}, {16, 272}, {39, 295}, {88, 345}, {23, 277}, {11, 264}, {43, 296}, {7, 258}, {98, 359}, {99, 358}, {69, 323}, {5, 258}, {78, 329}, {81, 345}, {70, 335}, {73, 320}, {94, 343}, {51, 313}, {79, 325}, {71, 333}, {92, 342}, {104, 354}, {6, 269}, {34, 297}, {105, 354}, {87, 346}, {22, 280}, {86, 344}, {50, 316}, {15, 256}, {51, 316}, {46, 289}, {36, 308}, {84, 324}, {42, 314}, {31, 270}, {67, 338}, {95, 334}, {30, 268}, {19, 256}, {59, 296}, {54, 293}, {68, 336}, {5, 272}, {32, 309}, {22, 259}, {8, 285}, {15, 281}, {48, 295}, {83, 324}, {112, 359}, {113, 358}, {15, 279}, {70, 350}, {43, 307}, {20, 268}, {13, 276}, {69, 348}, {3, 281}, {29, 262}, {68, 351}, {35, 312}, {120, 355}, {38, 314}, {67, 351}, {60, 288}, {92, 320}, {9, 276}, {80, 333}, {72, 341}, {52, 297}, {45, 304}, {32, 317}, {25, 260}, {74, 340}, {81, 335}, {121, 359}, {62, 289}, {87, 328}, {84, 331}, {88, 327}, {119, 360}, {127, 352}, {43, 267}, {63, 287}, {102, 326}, {39, 262}, {119, 342}, {106, 328}, {112, 339}, {39, 258}, {52, 273}, {35, 260}, {71, 352}, {40, 271}, {37, 258}, {117, 338}, {118, 337}, {16, 312}, {34, 266}, {40, 257}, {97, 328}, {50, 280}, {117, 351}, {20, 319}, {38, 269}, {28, 311}, {107, 327}, {72, 357}, {60, 274}, {63, 273}, {115, 349}, {121, 343}, {101, 330}, {114, 349}, {4, 308}, {85, 357}, {59, 267}, {49, 257}, {20, 292}, {106, 346}, {2, 307}, {57, 264}, {50, 259}, {28, 301}, {14, 319}, {98, 339}, {107, 345}, {13, 318}, {54, 261}, {45, 286}, {33, 277}, {31, 298}, {40, 285}, {37, 272}, {115, 326}, {86, 353}, {101, 349}, {104, 336}, {114, 330}, {26, 291}, {124, 325}, {12, 310}, {30, 292}, {94, 356}, {102, 349}, {105, 338}, {2, 319}, {42, 279}, {14, 307}, {97, 348}, {17, 303}, {18, 301}, {110, 302}, {112, 305}, {34, 353}, {68, 263}, {99, 288}, {113, 309}, {4, 321}, {67, 262}, {33, 359}, {106, 300}, {124, 314}, {66, 261}, {108, 299}, {119, 304}, {71, 269}, {85, 287}, {73, 259}, {92, 278}, {43, 352}, {105, 290}, {12, 320}, {76, 256}, {21, 345}, {127, 307}, {27, 342}, {83, 286}, {118, 312}, {79, 256}, {97, 302}, {104, 295}, {120, 311}, {65, 273}, {84, 260}, {89, 265}, {95, 270}, {122, 297}, {24, 332}, {81, 261}, {72, 285}, {100, 305}, {111, 314}, {7, 337}, {69, 275}, {19, 325}, {90, 268}, {99, 309}, {53, 354}, {73, 286}, {102, 305}, {114, 298}, {13, 340}, {20, 333}, {21, 335}, {79, 277}, {62, 356}, {58, 352}, {125, 295}, {61, 358}, {76, 279}, {96, 315}, {77, 272}, {82, 271}, {71, 281}, {10, 341}, {86, 265}, {85, 266}, {109, 306}, {114, 274}, {52, 341}, {85, 308}, {78, 303}, {41, 331}, {95, 317}, {38, 325}, {83, 304}, {93, 318}, {56, 348}, {36, 321}, {91, 318}, {53, 338}, {72, 303}, {66, 293}, {63, 344}, {57, 350}, {55, 336}, {90, 317}, {55, 351}, {65, 297}, {82, 315}, {68, 302}, {83, 313}, {93, 311}, {44, 327}, {112, 283}, {91, 311}, {41, 324}, {62, 339}, {47, 322}, {103, 266}, {34, 332}, {79, 289}, {69, 299}, {10, 357}, {80, 319}, {90, 309}, {96, 271}, {119, 280}, {86, 294}, {122, 266}, {99, 274}, {126, 271}, {35, 337}, {44, 350}, {90, 296}, {27, 360}, {61, 334}, {105, 282}, {54, 322}, {74, 318}, {110, 282}, {52, 321}, {78, 315}, {77, 312}, {95, 298}, {33, 343}, {57, 335}, {39, 337}, {109, 283}, {47, 344}, {81, 294}, {58, 333}, {92, 299}, {49, 329}, {100, 284}, {103, 287}, {111, 279}, {24, 353}, {64, 313}, {50, 331}, {54, 332}, {102, 284}, {108, 278}, {56, 323}, {88, 291}, {97, 282}, {125, 262}, {64, 316}, {106, 278}, {63, 322}, {28, 355}, {73, 310}, {89, 294}, {126, 257}, {129, 257}, {166, 294}, {152, 280}, {142, 270}, {157, 284}, {169, 296}, {156, 286}, {174, 300}, {144, 275}, {163, 288}, {165, 289}, {159, 281}, {155, 275}, {128, 265}, {172, 293}, {148, 285}, {141, 263}, {162, 302}, {134, 267}, {138, 263}, {145, 284}, {135, 264}, {179, 290}, {159, 269}, {176, 292}, {129, 276}, {140, 283}, {180, 291}, {178, 298}, {136, 275}, {173, 310}, {168, 308}, {177, 301}, {175, 305}, {156, 259}, {178, 274}, {134, 292}, {145, 306}, {167, 260}, {166, 261}, {135, 291}, {136, 300}, {128, 293}, {177, 276}, {172, 265}, {169, 268}, {162, 263}, {138, 290}, {152, 304}, {179, 282}, {129, 301}, {163, 270}, {142, 288}, {141, 290}, {157, 306}, {150, 313}, {146, 317}, {155, 299}, {165, 277}, {161, 273}, {143, 315}, {175, 283}, {174, 278}, {148, 303}, {176, 267}, {144, 300}, {180, 264}, {130, 316}, {161, 287}, {136, 310}, {140, 306}, {154, 346}, {151, 342}, {153, 344}, {160, 356}, {132, 321}, {173, 360}, {149, 336}, {140, 330}, {143, 329}, {145, 343}, {128, 327}, {133, 322}, {129, 329}, {147, 347}, {134, 334}, {142, 326}, {130, 331}, {133, 332}, {138, 323}, {139, 326}, {168, 357}, {138, 346}, {139, 347}, {132, 341}, {150, 324}, {135, 340}, {142, 347}, {140, 347}, {151, 320}, {147, 330}, {154, 323}, {146, 334}, {137, 340}, {128, 350}, {134, 358}, {136, 360}, {171, 328}, {135, 355}, {137, 355}, {160, 339}, {145, 356}, {149, 354}, {171, 348}, {153, 353} }>;

(II) A more general form is to represent the graph as the orbit of {164, 183} under the group generated by the following permutations:

a: (9, 18)(13, 28)(20, 43)(24, 47)(30, 59)(34, 63)(41, 64)(51, 84)(74, 120)(80, 127)(94, 98)(97, 138)(110, 141)(112, 145)(122, 161)(131, 167)(154, 171)(157, 175)(182, 193)(185, 196)(188, 251)(195, 260)(198, 217)(204, 255)(205, 230)(207, 232)(209, 235)(213, 239)(216, 245)(219, 246)(222, 243)(225, 252)(228, 249)(263, 302)(266, 287)(267, 292)(268, 296)(273, 297)(276, 301)(282, 290)(283, 306)(284, 305)(307, 319)(311, 318)(313, 324)(316, 331)(322, 332)(323, 348)(328, 346)(333, 352)(339, 356)(340, 355)(343, 359)(344, 353)
b: (3, 6)(4, 10)(7, 16)(11, 26)(15, 38)(36, 72)(39, 77)(57, 88)(70, 107)(76, 124)(92, 136)(101, 139)(108, 144)(114, 142)(116, 148)(125, 164)(151, 173)(163, 178)(181, 194)(183, 295)(186, 244)(187, 203)(190, 303)(191, 262)(192, 201)(199, 215)(202, 285)(206, 236)(211, 231)(212, 237)(214, 238)(220, 248)(223, 253)(224, 241)(226, 250)(229, 247)(256, 325)(258, 272)(264, 291)(269, 281)(270, 298)(274, 288)(275, 299)(278, 300)(279, 314)(308, 357)(310, 320)(312, 337)(321, 341)(326, 349)(327, 350)(330, 347)(335, 345)(342, 360)
c: (1, 3, 8, 22, 59, 65, 108, 31, 66, 141, 100, 11, 29, 23, 18, 25, 6, 17, 45, 30, 103, 144, 60, 89, 110, 109, 26, 48, 46, 9)(2, 4, 12, 32, 24, 87, 139, 21, 53, 98, 137, 7, 19, 49, 64, 58, 10, 27, 61, 47, 56, 101, 44, 55, 94, 93, 16, 42, 82, 41)(5, 15, 40, 50, 43, 52, 92, 95, 54, 138, 102, 57, 67, 33, 28, 35, 38, 78, 83, 20, 85, 136, 99, 86, 97, 140, 88, 104, 62, 13)(14, 36, 73, 90, 34, 106, 142, 81, 105, 112, 135, 39, 79, 129, 51, 71, 72, 119, 134, 63, 69, 114, 128, 68, 145, 91, 77, 111, 96, 84)(37, 76, 126, 130, 127, 132, 151, 146, 133, 154, 115, 70, 117, 121, 120, 118, 124, 143, 150, 80, 168, 173, 113, 153, 171, 147, 107, 149, 160, 74)(75, 116, 156, 169, 122, 174, 163, 166, 179, 175, 180, 125, 165, 177, 131, 159, 148, 152, 176, 161, 155, 178, 172, 162, 157, 123, 164, 158, 170, 167)(181, 183, 184, 193, 255, 201, 202, 259, 296, 297, 278, 270, 261, 290, 305, 264, 262, 277, 301, 195, 269, 303, 304, 292, 287, 275, 274, 265, 302, 306)(182, 260, 192, 190, 286, 268, 266, 300, 288, 294, 282, 283, 291, 295, 289, 276, 204, 281, 285, 280, 267, 273, 299, 298, 293, 263, 284, 194, 191, 197)(185, 186, 187, 189, 251, 205, 236, 231, 234, 219, 228, 247, 248, 233, 207, 209, 215, 226, 227, 198, 245, 237, 238, 240, 222, 225, 253, 241, 242, 213)(188, 216, 206, 214, 210, 246, 252, 229, 224, 221, 232, 196, 199, 203, 200, 217, 230, 212, 211, 218, 243, 249, 223, 220, 208, 239, 235, 244, 250, 254)(256, 257, 316, 352, 341, 342, 334, 322, 323, 349, 350, 351, 343, 311, 312, 314, 315, 324, 319, 308, 310, 309, 353, 328, 347, 345, 354, 339, 340, 258)(271, 331, 307, 321, 320, 317, 332, 346, 326, 335, 338, 359, 355, 337, 325, 329, 313, 333, 357, 360, 358, 344, 348, 330, 327, 336, 356, 318, 272, 279)
d: (22, 45)(23, 46)(32, 61)(33, 62)(49, 82)(50, 83)(53, 55)(54, 86)(66, 89)(68, 105)(90, 134)(96, 129)(121, 160)(130, 150)(133, 153)(162, 179)(169, 176)(170, 177)(182, 301)(184, 197)(188, 198)(189, 254)(193, 276)(200, 227)(207, 239)(208, 242)(210, 234)(213, 232)(217, 251)(218, 240)(219, 243)(221, 233)(222, 246)(257, 271)(259, 286)(261, 294)(263, 290)(265, 293)(267, 296)(268, 292)(277, 289)(280, 304)(282, 302)(309, 358)(313, 316)(315, 329)(317, 334)(322, 344)(324, 331)(332, 353)(336, 354)(338, 351)(339, 359)(343, 356)
e: (2, 5)(3, 18)(4, 28)(6, 9)(7, 43)(8, 46)(10, 13)(11, 59)(12, 62)(14, 37)(15, 64)(16, 20)(17, 23)(19, 83)(21, 86)(22, 48)(24, 57)(26, 30)(27, 33)(29, 45)(31, 89)(32, 104)(34, 70)(35, 58)(36, 120)(38, 41)(39, 127)(40, 82)(42, 50)(44, 54)(47, 88)(49, 78)(51, 76)(52, 93)(53, 99)(55, 95)(56, 102)(60, 66)(61, 67)(63, 107)(65, 109)(68, 146)(69, 115)(71, 118)(72, 74)(73, 160)(75, 123)(77, 80)(79, 150)(81, 153)(84, 124)(85, 137)(87, 140)(90, 149)(91, 132)(92, 98)(94, 136)(96, 126)(97, 101)(100, 103)(105, 113)(106, 147)(108, 141)(110, 144)(111, 130)(112, 151)(114, 171)(116, 175)(117, 134)(119, 121)(122, 163)(125, 167)(128, 133)(129, 143)(131, 164)(135, 168)(138, 139)(142, 154)(145, 173)(148, 157)(152, 179)(155, 174)(156, 162)(158, 170)(159, 180)(161, 178)(165, 177)(166, 176)(169, 172)(181, 205)(182, 203)(183, 198)(184, 200)(185, 201)(186, 195)(187, 193)(188, 191)(189, 197)(190, 239)(192, 196)(194, 230)(199, 204)(202, 207)(206, 284)(208, 304)(209, 269)(210, 261)(211, 263)(212, 283)(213, 303)(214, 282)(215, 255)(216, 291)(217, 295)(218, 265)(219, 270)(220, 267)(221, 259)(222, 274)(223, 266)(224, 268)(225, 278)(226, 301)(227, 289)(228, 275)(229, 273)(231, 302)(232, 285)(233, 280)(234, 293)(235, 281)(236, 305)(237, 306)(238, 290)(240, 294)(241, 296)(242, 286)(243, 288)(244, 260)(245, 264)(246, 298)(247, 297)(248, 292)(249, 299)(250, 276)(251, 262)(252, 300)(253, 287)(254, 277)(256, 313)(257, 315)(258, 307)(272, 319)(279, 316)(308, 355)(309, 354)(310, 356)(311, 321)(312, 333)(314, 331)(317, 336)(318, 341)(320, 339)(322, 327)(323, 326)(324, 325)(328, 330)(332, 350)(334, 351)(335, 353)(337, 352)(338, 358)(340, 357)(342, 359)(343, 360)(344, 345)(346, 347)(348, 349)
f: (1, 2)(3, 16)(4, 26)(5, 14)(6, 7)(8, 21)(9, 24)(10, 11)(12, 31)(13, 34)(15, 77)(17, 44)(18, 47)(19, 48)(20, 51)(22, 32)(23, 55)(25, 58)(27, 60)(28, 63)(29, 42)(30, 64)(33, 68)(35, 71)(36, 88)(37, 75)(38, 39)(40, 81)(41, 59)(43, 84)(45, 61)(46, 53)(49, 89)(50, 90)(52, 91)(54, 96)(56, 100)(57, 72)(62, 105)(65, 93)(66, 82)(67, 111)(69, 102)(70, 148)(73, 95)(74, 122)(76, 164)(78, 128)(79, 104)(80, 131)(83, 134)(85, 135)(86, 129)(87, 109)(92, 114)(94, 141)(97, 112)(98, 110)(99, 119)(101, 108)(103, 137)(106, 140)(107, 116)(113, 152)(115, 155)(117, 158)(118, 159)(120, 161)(121, 162)(123, 132)(124, 125)(126, 166)(127, 167)(130, 169)(133, 170)(136, 142)(138, 145)(139, 144)(143, 172)(146, 156)(147, 174)(149, 165)(150, 176)(151, 178)(153, 177)(154, 157)(160, 179)(163, 173)(168, 180)(171, 175)(181, 321)(182, 322)(183, 256)(184, 338)(185, 205)(187, 220)(189, 234)(190, 327)(191, 279)(192, 258)(193, 332)(194, 341)(195, 333)(196, 230)(197, 351)(200, 218)(201, 272)(202, 345)(203, 248)(204, 319)(206, 223)(207, 222)(208, 221)(209, 245)(210, 254)(211, 231)(212, 229)(213, 219)(214, 238)(216, 235)(224, 226)(225, 228)(227, 240)(232, 243)(233, 242)(236, 253)(237, 247)(239, 246)(241, 250)(249, 252)(255, 307)(257, 294)(259, 317)(260, 352)(261, 271)(262, 314)(263, 343)(264, 357)(265, 329)(266, 340)(267, 324)(268, 316)(269, 337)(270, 310)(273, 311)(274, 342)(275, 326)(276, 353)(277, 336)(278, 330)(280, 309)(281, 312)(282, 339)(283, 328)(284, 323)(285, 335)(286, 334)(287, 355)(288, 360)(289, 354)(290, 356)(291, 308)(292, 313)(293, 315)(295, 325)(296, 331)(297, 318)(298, 320)(299, 349)(300, 347)(301, 344)(302, 359)(303, 350)(304, 358)(305, 348)(306, 346)
g: (8, 17)(12, 27)(19, 42)(21, 44)(29, 48)(31, 60)(40, 78)(67, 104)(73, 119)(79, 111)(81, 128)(95, 99)(113, 146)(117, 149)(126, 143)(152, 156)(158, 165)(166, 172)(183, 191)(184, 289)(187, 250)(189, 200)(190, 202)(197, 277)(203, 226)(208, 233)(210, 240)(211, 238)(214, 231)(218, 234)(220, 241)(221, 242)(224, 248)(227, 254)(256, 279)(257, 329)(259, 280)(261, 293)(262, 295)(265, 294)(270, 288)(271, 315)(274, 298)(285, 303)(286, 304)(309, 317)(310, 360)(314, 325)(320, 342)(327, 345)(334, 358)(335, 350)(336, 351)(338, 354)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 50 ]
360
-1 199 255 204 215
-2 319 199 215 307
-3 201 203 226 281
-4 308 321 203 226
-5 255 258 204 272
-6 187 192 269 250
-7 220 258 337 241
-8 200 202 227 285
-9 209 276 193 196
-10 187 341 357 250
-11 220 264 194 241
-12 320 200 310 227
-13 276 193 318 340
-14 319 201 192 307
-15 201 256 279 281
-16 224 312 248 272
-17 254 189 190 303
-18 235 301 182 185
-19 242 256 325 208
-20 319 333 268 292
-21 345 335 218 240
-22 198 280 259 217
-23 277 213 239 197
-24 353 332 245 230
-25 244 260 195 186
-26 224 181 291 248
-27 254 342 189 360
-28 311 355 301 182
-29 242 191 262 208
-30 268 292 205 216
-31 298 270 218 240
-32 198 309 217 317
-33 277 343 359 197
-34 297 353 266 332
-35 312 260 337 195
-36 308 321 190 202
-37 258 272 185 196
-38 192 269 314 325
-39 258 337 262 295
-40 202 257 271 285
-41 209 331 324 196
-42 221 233 279 314
-43 352 267 296 307
-44 210 234 327 350
-45 286 188 304 251
-46 232 289 184 207
-47 322 344 205 216
-48 221 233 183 295
-49 213 257 239 329
-50 331 280 259 316
-51 313 204 195 316
-52 297 341 321 273
-53 243 222 354 338
-54 332 322 293 261
-55 246 336 219 351
-56 323 236 348 206
-57 264 335 194 350
-58 352 244 333 186
-59 245 267 230 296
-60 210 288 234 274
-61 188 334 358 251
-62 289 356 184 339
-63 287 322 344 273
-64 235 313 316 185
-65 297 212 237 273
-66 243 222 293 261
-67 191 338 262 351
-68 302 336 263 351
-69 275 299 323 348
-70 223 247 335 350
-71 352 333 269 281
-72 341 357 303 285
-73 286 320 310 259
-74 232 213 318 340
-75 201 192 205 230
-76 199 256 279 186
-77 191 312 183 272
-78 190 303 315 329
-79 277 256 289 325
-80 198 319 188 333
-81 345 335 261 294
-82 232 271 315 207
-83 286 313 324 304
-84 331 255 324 260
-85 308 287 266 357
-86 265 353 344 294
-87 212 346 237 328
-88 345 181 291 327
-89 265 246 294 219
-90 309 268 317 296
-91 311 181 194 318
-92 320 342 299 278
-93 311 247 229 318
-94 343 356 228 252
-95 298 334 270 317
-96 182 193 271 315
-97 302 282 348 328
-98 225 249 359 339
-99 309 288 358 274
-100 253 223 305 284
-101 231 330 214 349
-102 326 305 349 284
-103 287 266 236 206
-104 354 336 183 295
-105 354 290 282 338
-106 278 300 346 328
-107 253 345 327 229
-108 211 299 278 238
-109 247 283 229 306
-110 302 282 228 252
-111 279 314 184 197
-112 359 283 305 339
-113 309 214 358 238
-114 330 298 349 274
-115 249 326 228 349
-116 190 212 202 236
-117 220 248 338 351
-118 209 235 312 337
-119 342 280 304 360
-120 311 355 239 207
-121 233 343 359 208
-122 297 243 266 219
-123 181 194 185 196
-124 244 215 314 325
-125 244 215 262 295
-126 187 257 203 271
-127 352 217 251 307
-128 265 293 327 350
-129 276 257 301 329
-130 331 189 200 316
-131 198 188 204 195
-132 341 321 205 230
-133 332 234 322 218
-134 267 334 292 358
-135 264 355 291 340
-136 275 310 300 360
-137 253 223 355 340
-138 290 323 346 263
-139 211 347 238 326
-140 330 347 283 306
-141 290 225 249 263
-142 288 270 347 326
-143 226 315 250 329
-144 231 275 300 214
-145 343 356 284 306
-146 231 211 334 317
-147 330 225 347 252
-148 237 303 206 285
-149 354 224 336 241
-150 254 313 324 227
-151 320 342 212 236
-152 214 280 238 304
-153 210 353 344 240
-154 243 323 346 219
-155 275 299 225 252
-156 231 286 211 259
-157 232 213 284 306
-158 187 203 184 197
-159 245 269 281 216
-160 242 221 356 339
-161 287 222 246 273
-162 242 221 302 263
-163 288 223 247 270
-164 199 191 183 186
-165 277 289 226 250
-166 220 248 261 294
-167 255 260 217 251
-168 308 245 357 216
-169 234 268 218 296
-170 189 200 182 193
-171 222 246 348 328
-172 265 224 293 241
-173 310 237 206 360
-174 278 300 249 228
-175 239 283 305 207
-176 210 267 292 240
-177 254 276 301 227
-178 253 298 229 274
-179 233 290 282 208
-180 209 264 235 291
-181 88 123 91 26
-182 170 28 18 96
-183 77 48 104 164
-184 111 46 158 62
-185 123 37 18 64
-186 25 58 76 164
-187 158 126 6 10
-188 45 80 61 131
-189 27 170 17 130
-190 78 36 17 116
-191 77 67 29 164
-192 14 38 6 75
-193 13 170 96 9
-194 11 57 123 91
-195 35 25 51 131
-196 123 37 41 9
-197 33 23 111 158
-198 22 80 32 131
-199 1 2 76 164
-200 12 170 8 130
-201 3 14 15 75
-202 36 116 40 8
-203 3 4 158 126
-204 1 5 51 131
-205 132 47 30 75
-206 56 103 148 173
-207 46 82 120 175
-208 121 179 29 19
-209 180 41 118 9
-210 44 176 60 153
-211 156 146 139 108
-212 116 151 65 87
-213 23 157 49 74
-214 144 101 113 152
-215 1 2 124 125
-216 47 168 159 30
-217 22 167 127 32
-218 133 169 31 21
-219 55 154 89 122
-220 11 166 7 117
-221 48 160 162 42
-222 66 171 161 53
-223 100 70 137 163
-224 26 16 149 172
-225 155 147 141 98
-226 143 165 3 4
-227 12 177 150 8
-228 110 115 94 174
-229 178 93 107 109
-230 132 24 59 75
-231 144 101 156 146
-232 46 157 82 74
-233 121 179 48 42
-234 44 133 169 60
-235 180 18 118 64
-236 56 103 116 151
-237 148 173 65 87
-238 113 139 108 152
-239 23 49 120 175
-240 176 31 21 153
-241 11 149 7 172
-242 160 29 19 162
-243 66 154 122 53
-244 25 58 124 125
-245 24 168 59 159
-246 55 89 171 161
-247 70 93 163 109
-248 166 26 16 117
-249 115 141 174 98
-250 143 165 6 10
-251 45 167 61 127
-252 110 155 147 94
-253 100 178 137 107
-254 177 27 17 150
-255 1 167 5 84
-256 79 15 19 76
-257 49 126 40 129
-258 37 5 39 7
-259 22 156 50 73
-260 35 167 25 84
-261 66 166 81 54
-262 67 125 39 29
-263 68 138 162 141
-264 11 57 135 180
-265 89 128 172 86
-266 34 122 103 85
-267 176 134 59 43
-268 90 169 30 20
-269 38 71 159 6
-270 95 31 163 142
-271 82 126 40 96
-272 77 37 5 16
-273 161 52 63 65
-274 99 178 114 60
-275 144 155 69 136
-276 177 13 129 9
-277 33 165 23 79
-278 92 106 108 174
-279 111 15 42 76
-280 22 50 119 152
-281 3 15 71 159
-282 110 179 105 97
-283 112 140 109 175
-284 100 145 102 157
-285 148 72 40 8
-286 45 156 83 73
-287 103 161 63 85
-288 99 60 163 142
-289 165 46 79 62
-290 179 105 138 141
-291 88 135 26 180
-292 176 134 30 20
-293 66 128 172 54
-294 89 166 81 86
-295 48 125 104 39
-296 90 59 169 43
-297 34 122 52 65
-298 178 114 95 31
-299 155 69 92 108
-300 144 136 106 174
-301 177 28 18 129
-302 110 68 162 97
-303 78 148 17 72
-304 45 83 119 152
-305 100 112 102 175
-306 145 157 140 109
-307 2 14 127 43
-308 36 168 4 85
-309 99 90 113 32
-310 12 136 73 173
-311 91 93 28 120
-312 77 35 16 118
-313 83 51 150 64
-314 111 124 38 42
-315 143 78 82 96
-316 50 51 64 130
-317 90 146 95 32
-318 13 91 93 74
-319 2 14 80 20
-320 12 92 73 151
-321 132 36 4 52
-322 133 47 63 54
-323 154 56 69 138
-324 83 84 150 41
-325 79 124 38 19
-326 102 115 139 142
-327 44 88 128 107
-328 171 106 97 87
-329 143 78 49 129
-330 101 114 147 140
-331 50 84 41 130
-332 34 133 24 54
-333 58 80 71 20
-334 134 146 61 95
-335 57 70 81 21
-336 55 68 104 149
-337 35 39 7 118
-338 67 105 117 53
-339 112 160 62 98
-340 13 135 137 74
-341 132 72 52 10
-342 92 27 151 119
-343 33 121 145 94
-344 47 63 86 153
-345 88 81 107 21
-346 154 138 106 87
-347 147 139 140 142
-348 56 69 171 97
-349 101 102 114 115
-350 44 57 70 128
-351 55 67 68 117
-352 58 71 127 43
-353 34 24 86 153
-354 104 105 149 53
-355 135 137 28 120
-356 145 94 160 62
-357 168 72 85 10
-358 99 134 113 61
-359 33 121 112 98
-360 136 27 173 119
0

**************