C4graphGraph forms for C4 [ 360, 71 ] = UG(ATD[360,30])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 71 ] = UG(ATD[360,30]).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {92, 93}, {98, 99}, {214, 215}, {64, 66}, {1, 2}, {225, 226}, {2, 7}, {168, 173}, {264, 270}, {1, 6}, {43, 44}, {169, 174}, {119, 127}, {289, 297}, {257, 265}, {67, 74}, {277, 284}, {147, 154}, {145, 155}, {323, 329}, {3, 8}, {256, 267}, {4, 9}, {324, 329}, {278, 283}, {70, 72}, {343, 345}, {342, 344}, {243, 253}, {5, 10}, {133, 138}, {132, 148}, {291, 307}, {141, 156}, {238, 255}, {239, 254}, {36, 54}, {8, 27}, {110, 125}, {12, 31}, {136, 155}, {2, 22}, {3, 23}, {9, 28}, {79, 90}, {66, 87}, {11, 30}, {237, 248}, {5, 19}, {269, 283}, {10, 29}, {45, 58}, {160, 183}, {235, 252}, {76, 84}, {134, 158}, {4, 24}, {329, 341}, {270, 274}, {133, 153}, {7, 26}, {290, 319}, {46, 51}, {12, 17}, {135, 153}, {5, 26}, {6, 25}, {204, 236}, {258, 291}, {280, 313}, {257, 290}, {143, 169}, {157, 187}, {282, 317}, {149, 189}, {280, 304}, {20, 62}, {21, 63}, {213, 255}, {15, 36}, {74, 102}, {13, 32}, {15, 34}, {19, 61}, {14, 33}, {72, 121}, {337, 352}, {77, 124}, {214, 231}, {16, 35}, {20, 39}, {19, 38}, {92, 105}, {80, 101}, {66, 119}, {64, 117}, {134, 179}, {71, 113}, {18, 37}, {264, 319}, {65, 118}, {268, 308}, {348, 356}, {94, 103}, {159, 166}, {90, 97}, {269, 310}, {349, 353}, {21, 40}, {212, 234}, {351, 353}, {75, 116}, {265, 310}, {21, 84}, {160, 225}, {271, 333}, {7, 68}, {11, 72}, {180, 240}, {181, 241}, {6, 67}, {14, 75}, {12, 73}, {170, 239}, {294, 352}, {13, 74}, {23, 80}, {20, 83}, {27, 83}, {31, 87}, {30, 86}, {29, 85}, {28, 84}, {172, 228}, {24, 81}, {41, 96}, {46, 100}, {47, 101}, {25, 82}, {63, 116}, {59, 112}, {42, 97}, {141, 198}, {144, 219}, {131, 207}, {275, 351}, {186, 246}, {8, 69}, {272, 349}, {62, 115}, {60, 113}, {10, 71}, {44, 98}, {45, 99}, {9, 70}, {303, 352}, {273, 350}, {61, 114}, {149, 218}, {51, 99}, {306, 354}, {267, 347}, {266, 346}, {270, 348}, {275, 321}, {264, 347}, {304, 355}, {1, 85}, {180, 224}, {155, 206}, {56, 110}, {260, 338}, {57, 111}, {5, 82}, {48, 103}, {45, 122}, {129, 214}, {177, 230}, {139, 211}, {162, 250}, {22, 79}, {268, 341}, {49, 104}, {32, 121}, {54, 108}, {259, 345}, {55, 109}, {173, 247}, {50, 105}, {285, 326}, {271, 340}, {16, 76}, {18, 78}, {17, 77}, {145, 205}, {261, 344}, {52, 106}, {274, 332}, {53, 107}, {172, 243}, {262, 345}, {263, 359}, {301, 333}, {131, 226}, {133, 228}, {135, 230}, {136, 233}, {295, 325}, {300, 334}, {134, 229}, {299, 328}, {297, 330}, {59, 95}, {140, 232}, {141, 233}, {52, 81}, {143, 234}, {132, 227}, {138, 226}, {187, 211}, {155, 242}, {157, 244}, {154, 240}, {296, 322}, {264, 357}, {137, 231}, {163, 205}, {156, 243}, {183, 198}, {140, 254}, {173, 222}, {301, 350}, {175, 220}, {182, 197}, {292, 336}, {149, 224}, {148, 226}, {305, 327}, {276, 354}, {40, 95}, {296, 351}, {152, 239}, {30, 102}, {283, 355}, {35, 91}, {34, 90}, {33, 89}, {32, 88}, {37, 92}, {39, 94}, {151, 238}, {186, 195}, {130, 248}, {309, 335}, {145, 235}, {157, 231}, {38, 93}, {316, 327}, {150, 237}, {152, 227}, {288, 349}, {314, 327}, {18, 108}, {132, 250}, {185, 199}, {146, 237}, {167, 216}, {56, 184}, {58, 186}, {57, 185}, {54, 183}, {44, 175}, {53, 182}, {48, 179}, {40, 172}, {42, 174}, {41, 173}, {43, 174}, {49, 180}, {33, 167}, {51, 181}, {50, 181}, {107, 236}, {94, 217}, {65, 198}, {22, 158}, {83, 219}, {23, 159}, {112, 250}, {35, 168}, {124, 240}, {36, 169}, {39, 170}, {38, 171}, {37, 170}, {80, 192}, {81, 193}, {102, 247}, {106, 248}, {122, 232}, {86, 194}, {109, 249}, {38, 179}, {95, 202}, {93, 200}, {1, 150}, {94, 201}, {124, 228}, {88, 195}, {92, 199}, {45, 176}, {91, 198}, {89, 196}, {47, 178}, {127, 225}, {46, 177}, {90, 197}, {127, 224}, {126, 223}, {89, 251}, {124, 222}, {96, 194}, {86, 245}, {120, 219}, {22, 178}, {60, 153}, {121, 220}, {114, 215}, {112, 214}, {123, 221}, {62, 151}, {123, 210}, {71, 238}, {63, 149}, {101, 207}, {100, 206}, {61, 150}, {115, 216}, {96, 203}, {19, 191}, {118, 218}, {117, 217}, {104, 196}, {35, 142}, {97, 204}, {99, 205}, {59, 139}, {48, 131}, {120, 204}, {52, 129}, {74, 255}, {55, 130}, {103, 208}, {24, 160}, {29, 165}, {28, 164}, {27, 163}, {26, 162}, {25, 161}, {31, 166}, {106, 211}, {104, 209}, {88, 225}, {54, 140}, {111, 213}, {105, 210}, {34, 159}, {110, 211}, {78, 241}, {107, 212}, {75, 139}, {117, 181}, {115, 179}, {28, 222}, {25, 223}, {119, 177}, {15, 199}, {86, 158}, {72, 129}, {2, 200}, {3, 201}, {60, 247}, {14, 194}, {126, 178}, {75, 135}, {4, 202}, {11, 196}, {59, 234}, {116, 165}, {78, 156}, {57, 234}, {20, 192}, {108, 184}, {21, 193}, {87, 130}, {126, 171}, {113, 167}, {18, 197}, {127, 168}, {64, 152}, {114, 170}, {88, 128}, {102, 188}, {65, 154}, {119, 172}, {68, 159}, {91, 134}, {4, 218}, {81, 143}, {50, 236}, {67, 163}, {77, 175}, {24, 253}, {43, 206}, {67, 164}, {73, 174}, {70, 161}, {23, 254}, {77, 160}, {80, 190}, {109, 131}, {56, 215}, {79, 191}, {96, 144}, {17, 227}, {89, 171}, {69, 178}, {73, 190}, {29, 229}, {69, 188}, {107, 146}, {71, 189}, {60, 195}, {68, 187}, {98, 353}, {34, 294}, {63, 314}, {62, 313}, {100, 355}, {47, 295}, {13, 263}, {13, 262}, {7, 266}, {42, 292}, {43, 293}, {49, 318}, {46, 318}, {91, 330}, {3, 272}, {118, 355}, {125, 360}, {31, 260}, {15, 273}, {33, 319}, {51, 279}, {39, 258}, {48, 277}, {11, 301}, {14, 297}, {40, 257}, {122, 339}, {26, 305}, {76, 353}, {37, 276}, {10, 312}, {61, 267}, {101, 339}, {120, 324}, {6, 315}, {120, 325}, {47, 274}, {93, 287}, {16, 340}, {100, 288}, {123, 316}, {12, 324}, {125, 309}, {85, 285}, {84, 284}, {83, 283}, {82, 282}, {87, 286}, {8, 322}, {9, 323}, {111, 292}, {95, 275}, {108, 289}, {110, 291}, {41, 359}, {109, 290}, {68, 276}, {121, 297}, {117, 293}, {103, 311}, {70, 278}, {69, 277}, {53, 359}, {76, 280}, {116, 288}, {115, 295}, {114, 294}, {16, 325}, {112, 293}, {79, 281}, {17, 326}, {125, 298}, {49, 358}, {65, 284}, {73, 279}, {118, 296}, {57, 358}, {58, 345}, {111, 268}, {50, 342}, {104, 269}, {56, 350}, {85, 306}, {123, 284}, {122, 285}, {41, 320}, {58, 337}, {44, 320}, {32, 334}, {105, 281}, {113, 256}, {126, 271}, {53, 321}, {98, 278}, {52, 321}, {30, 356}, {27, 352}, {55, 332}, {36, 351}, {55, 331}, {64, 316}, {42, 343}, {106, 279}, {82, 303}, {78, 304}, {97, 287}, {66, 317}, {158, 286}, {190, 316}, {133, 262}, {188, 319}, {188, 313}, {189, 315}, {151, 272}, {176, 311}, {208, 343}, {176, 312}, {147, 282}, {190, 311}, {147, 281}, {148, 286}, {217, 339}, {156, 273}, {212, 346}, {213, 347}, {222, 336}, {141, 258}, {164, 308}, {165, 309}, {166, 310}, {142, 287}, {249, 360}, {247, 358}, {152, 265}, {209, 320}, {136, 282}, {161, 307}, {175, 317}, {201, 347}, {142, 285}, {184, 299}, {182, 290}, {191, 299}, {213, 321}, {220, 328}, {221, 329}, {154, 271}, {223, 330}, {196, 338}, {207, 342}, {148, 270}, {176, 298}, {192, 346}, {216, 322}, {161, 314}, {195, 344}, {164, 312}, {219, 327}, {139, 278}, {249, 356}, {217, 324}, {206, 337}, {218, 325}, {167, 263}, {199, 359}, {129, 288}, {253, 348}, {142, 303}, {147, 306}, {201, 360}, {242, 339}, {186, 280}, {202, 360}, {146, 305}, {249, 346}, {163, 256}, {197, 358}, {138, 302}, {166, 258}, {193, 357}, {192, 357}, {230, 320}, {233, 335}, {241, 343}, {137, 302}, {243, 340}, {132, 300}, {246, 350}, {227, 331}, {228, 332}, {229, 333}, {230, 334}, {231, 335}, {130, 299}, {128, 298}, {135, 301}, {162, 268}, {251, 341}, {205, 354}, {233, 326}, {185, 265}, {187, 267}, {168, 281}, {254, 335}, {252, 333}, {138, 312}, {250, 328}, {182, 260}, {180, 263}, {246, 322}, {162, 279}, {183, 257}, {248, 334}, {245, 323}, {137, 307}, {191, 261}, {128, 315}, {184, 259}, {157, 289}, {216, 356}, {246, 330}, {239, 338}, {245, 331}, {136, 311}, {143, 304}, {238, 337}, {251, 314}, {144, 338}, {146, 336}, {208, 274}, {150, 341}, {235, 296}, {245, 305}, {252, 313}, {237, 293}, {145, 344}, {242, 315}, {200, 259}, {232, 291}, {128, 332}, {207, 259}, {144, 349}, {221, 272}, {221, 269}, {153, 328}, {212, 256}, {224, 308}, {208, 261}, {232, 317}, {229, 307}, {140, 340}, {236, 308}, {244, 300}, {204, 277}, {242, 302}, {215, 266}, {252, 289}, {203, 276}, {171, 331}, {220, 318}, {241, 275}, {209, 306}, {200, 300}, {202, 302}, {203, 303}, {185, 348}, {251, 286}, {244, 273}, {165, 323}, {223, 309}, {193, 298}, {137, 357}, {189, 336}, {235, 262}, {240, 287}, {244, 261}, {194, 310}, {151, 354}, {255, 266}, {203, 318}, {210, 295}, {210, 292}, {177, 326}, {209, 294}, {253, 260}, {169, 342} }>;

(II) A more general form is to represent the graph as the orbit of {92, 93} under the group generated by the following permutations:

a: (2, 6)(3, 11)(4, 15)(7, 25)(8, 30)(9, 34)(10, 19)(12, 44)(13, 47)(14, 20)(16, 53)(17, 43)(18, 21)(22, 67)(23, 72)(24, 36)(26, 82)(27, 86)(28, 90)(29, 61)(31, 98)(32, 101)(33, 62)(35, 107)(37, 63)(38, 71)(39, 75)(40, 78)(41, 120)(42, 124)(45, 130)(46, 64)(48, 60)(49, 123)(50, 127)(51, 66)(52, 140)(54, 81)(55, 58)(56, 125)(57, 65)(59, 141)(68, 161)(69, 102)(70, 159)(73, 175)(74, 178)(76, 182)(77, 174)(79, 164)(80, 121)(83, 194)(84, 197)(85, 150)(87, 99)(88, 207)(89, 151)(91, 212)(92, 149)(93, 189)(94, 135)(95, 156)(96, 219)(97, 222)(100, 152)(103, 153)(104, 221)(105, 224)(106, 232)(108, 193)(109, 186)(111, 154)(112, 233)(113, 179)(114, 165)(115, 167)(116, 170)(117, 177)(118, 185)(119, 181)(122, 248)(126, 255)(128, 259)(129, 254)(131, 195)(132, 155)(133, 208)(134, 256)(136, 250)(137, 157)(138, 261)(139, 258)(142, 146)(143, 183)(145, 148)(147, 268)(158, 163)(160, 169)(162, 282)(166, 278)(168, 236)(171, 238)(172, 241)(173, 204)(176, 299)(180, 210)(184, 298)(187, 307)(190, 220)(191, 312)(192, 297)(196, 272)(198, 234)(199, 218)(200, 315)(201, 301)(202, 273)(203, 327)(205, 286)(206, 227)(209, 329)(211, 291)(213, 271)(214, 335)(215, 309)(217, 230)(223, 266)(225, 342)(226, 344)(228, 343)(229, 267)(235, 270)(237, 285)(239, 288)(240, 292)(242, 300)(243, 275)(244, 302)(245, 352)(246, 249)(247, 277)(251, 354)(252, 264)(253, 351)(257, 304)(260, 353)(262, 274)(263, 295)(265, 355)(276, 314)(279, 317)(280, 290)(281, 308)(283, 310)(284, 358)(287, 336)(289, 357)(293, 326)(294, 323)(296, 348)(303, 305)(306, 341)(311, 328)(313, 319)(316, 318)(320, 324)(321, 340)(322, 356)(325, 359)(330, 346)(331, 337)(332, 345)(333, 347)(334, 339)(338, 349)(350, 360)
b: (2, 150)(4, 340)(6, 85)(7, 61)(8, 272)(9, 271)(10, 82)(12, 274)(13, 320)(15, 321)(16, 218)(17, 332)(18, 234)(19, 26)(21, 198)(22, 341)(23, 201)(24, 243)(25, 29)(27, 151)(28, 154)(30, 196)(31, 270)(32, 230)(33, 194)(34, 213)(35, 149)(36, 275)(37, 212)(38, 305)(39, 192)(40, 183)(41, 263)(43, 345)(44, 262)(45, 155)(46, 195)(47, 324)(48, 316)(49, 247)(51, 344)(52, 273)(53, 199)(54, 95)(55, 227)(56, 214)(57, 197)(58, 206)(59, 108)(60, 318)(62, 83)(63, 91)(64, 131)(65, 84)(66, 226)(67, 306)(68, 267)(69, 221)(70, 333)(71, 303)(72, 301)(73, 208)(74, 209)(75, 297)(76, 118)(77, 228)(78, 143)(79, 268)(80, 94)(81, 156)(86, 89)(87, 148)(88, 177)(90, 111)(92, 107)(93, 146)(96, 167)(97, 292)(98, 235)(99, 145)(100, 186)(101, 217)(102, 104)(103, 190)(105, 236)(106, 244)(109, 152)(110, 231)(112, 184)(113, 203)(114, 266)(115, 219)(116, 330)(117, 207)(119, 225)(120, 295)(121, 135)(122, 242)(123, 277)(125, 335)(126, 323)(128, 326)(129, 350)(130, 132)(133, 175)(134, 314)(136, 176)(137, 291)(138, 317)(139, 289)(140, 202)(141, 193)(142, 189)(144, 216)(147, 164)(153, 220)(157, 211)(158, 251)(159, 347)(160, 172)(161, 229)(162, 191)(163, 354)(165, 223)(166, 264)(168, 224)(169, 241)(170, 346)(171, 245)(173, 180)(174, 343)(178, 329)(179, 327)(181, 342)(182, 185)(188, 269)(200, 237)(204, 210)(222, 240)(232, 302)(233, 298)(238, 352)(239, 249)(246, 288)(248, 300)(250, 299)(252, 278)(254, 360)(255, 294)(256, 276)(258, 357)(259, 293)(260, 348)(261, 279)(265, 290)(280, 355)(281, 308)(282, 312)(283, 313)(285, 315)(287, 336)(296, 353)(310, 319)(322, 349)(338, 356)
c: (1, 2, 7, 26, 5, 19, 61, 150)(3, 12, 45, 131, 20, 64, 155, 274)(4, 16, 54, 143, 21, 65, 156, 275)(6, 22, 68, 162, 10, 38, 114, 237)(8, 31, 99, 226, 62, 152, 206, 332)(9, 35, 108, 234, 63, 154, 273, 321)(11, 41, 121, 247, 14, 49, 135, 263)(13, 30, 96, 220, 60, 33, 104, 230)(15, 52, 28, 91, 18, 59, 149, 271)(17, 58, 109, 83, 66, 145, 270, 272)(23, 73, 176, 48, 39, 117, 242, 47)(24, 76, 183, 304, 40, 118, 243, 351)(25, 79, 187, 268, 29, 93, 215, 146)(27, 87, 205, 148, 151, 227, 337, 55)(32, 102, 194, 318, 153, 167, 196, 320)(34, 106, 164, 134, 37, 112, 189, 126)(36, 81, 84, 198, 78, 95, 218, 340)(42, 125, 204, 291, 50, 137, 210, 335)(43, 128, 69, 166, 51, 138, 115, 239)(44, 88, 188, 310, 46, 133, 216, 338)(53, 70, 168, 289, 57, 116, 240, 350)(56, 107, 161, 281, 157, 111, 165, 287)(67, 158, 276, 250, 71, 171, 294, 248)(72, 173, 297, 358, 75, 180, 301, 359)(74, 86, 203, 328, 113, 89, 209, 334)(77, 186, 290, 283, 119, 235, 348, 349)(80, 190, 311, 103, 94, 217, 339, 101)(82, 191, 267, 341, 85, 200, 266, 305)(90, 211, 308, 229, 92, 214, 336, 223)(97, 110, 236, 307, 105, 231, 292, 309)(98, 225, 313, 265, 100, 228, 322, 260)(120, 232, 342, 357, 123, 233, 343, 360)(122, 207, 192, 316, 136, 208, 201, 324)(124, 246, 182, 278, 127, 252, 185, 288)(129, 222, 330, 197, 139, 224, 333, 199)(130, 163, 286, 354, 132, 238, 331, 352)(140, 169, 193, 284, 141, 241, 202, 325)(142, 184, 212, 314, 147, 244, 213, 323)(144, 175, 195, 319, 269, 177, 262, 356)(159, 279, 312, 179, 170, 293, 315, 178)(160, 280, 257, 355, 172, 296, 253, 353)(174, 298, 277, 258, 181, 302, 295, 254)(219, 317, 344, 264, 221, 326, 345, 249)(245, 303, 299, 256, 251, 306, 300, 255)(259, 346, 327, 282, 261, 347, 329, 285)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 71 ]
360
-1 2 6 150 85
-2 22 1 200 7
-3 23 201 8 272
-4 24 202 9 218
-5 26 82 19 10
-6 1 67 25 315
-7 2 68 266 26
-8 3 69 322 27
-9 4 70 323 28
-10 312 5 71 29
-11 301 72 30 196
-12 324 17 73 31
-13 74 262 32 263
-14 33 297 194 75
-15 34 199 36 273
-16 35 325 76 340
-17 77 12 227 326
-18 78 37 108 197
-19 191 5 38 61
-20 192 39 83 62
-21 193 40 84 63
-22 2 79 178 158
-23 254 3 80 159
-24 253 4 81 160
-25 223 82 6 161
-26 5 7 162 305
-27 352 83 8 163
-28 222 84 9 164
-29 165 85 229 10
-30 11 102 356 86
-31 12 166 260 87
-32 88 121 13 334
-33 319 89 167 14
-34 90 15 159 294
-35 91 168 16 142
-36 15 169 54 351
-37 276 92 170 18
-38 179 93 171 19
-39 170 258 94 20
-40 257 95 172 21
-41 320 359 96 173
-42 343 292 97 174
-43 44 293 206 174
-44 320 43 98 175
-45 99 176 122 58
-46 100 177 51 318
-47 101 178 295 274
-48 277 179 103 131
-49 180 104 358 318
-50 342 181 236 105
-51 99 46 279 181
-52 321 81 106 129
-53 321 182 359 107
-54 36 183 140 108
-55 331 332 130 109
-56 110 215 184 350
-57 111 234 358 185
-58 45 345 337 186
-59 112 234 95 139
-60 113 247 195 153
-61 267 114 150 19
-62 115 313 151 20
-63 116 149 314 21
-64 66 117 316 152
-65 154 198 118 284
-66 64 119 317 87
-67 6 74 163 164
-68 187 276 159 7
-69 188 178 277 8
-70 278 72 161 9
-71 189 113 238 10
-72 11 121 70 129
-73 12 190 279 174
-74 67 13 255 102
-75 14 135 116 139
-76 353 16 280 84
-77 124 17 160 175
-78 156 18 304 241
-79 22 90 191 281
-80 23 101 190 192
-81 143 24 193 52
-82 25 5 303 282
-83 27 283 20 219
-84 28 284 21 76
-85 1 29 306 285
-86 245 158 194 30
-87 66 286 31 130
-88 225 128 195 32
-89 33 171 196 251
-90 34 79 97 197
-91 198 330 35 134
-92 199 37 93 105
-93 287 200 92 38
-94 201 103 39 217
-95 275 59 202 40
-96 144 203 194 41
-97 287 90 204 42
-98 44 99 353 278
-99 45 51 205 98
-100 46 288 355 206
-101 47 80 207 339
-102 188 247 30 74
-103 311 48 94 208
-104 209 49 269 196
-105 210 92 50 281
-106 211 279 248 52
-107 146 212 236 53
-108 289 18 184 54
-109 55 290 249 131
-110 56 211 125 291
-111 57 213 268 292
-112 59 214 293 250
-113 167 256 60 71
-114 170 61 215 294
-115 179 62 216 295
-116 165 288 63 75
-117 181 293 217 64
-118 355 218 65 296
-119 66 177 127 172
-120 324 204 325 219
-121 220 297 72 32
-122 45 232 339 285
-123 210 221 316 284
-124 77 222 228 240
-125 110 298 309 360
-126 178 223 171 271
-127 168 224 225 119
-128 88 298 332 315
-129 288 214 72 52
-130 55 299 248 87
-131 48 226 207 109
-132 300 148 227 250
-133 138 228 262 153
-134 91 179 158 229
-135 301 75 153 230
-136 155 233 311 282
-137 231 302 357 307
-138 133 312 302 226
-139 211 278 59 75
-140 232 254 54 340
-141 198 156 233 258
-142 287 35 303 285
-143 234 81 169 304
-144 96 338 349 219
-145 155 344 235 205
-146 237 336 107 305
-147 154 281 282 306
-148 132 286 226 270
-149 189 224 63 218
-150 341 1 61 237
-151 354 62 238 272
-152 265 227 239 64
-153 133 135 60 328
-154 147 271 240 65
-155 242 145 136 206
-156 78 243 141 273
-157 187 231 244 289
-158 22 286 134 86
-159 23 34 166 68
-160 77 24 225 183
-161 25 70 314 307
-162 26 268 279 250
-163 67 256 27 205
-164 308 67 312 28
-165 309 323 116 29
-166 310 159 258 31
-167 33 113 216 263
-168 35 127 281 173
-169 143 342 36 174
-170 37 114 39 239
-171 89 331 38 126
-172 243 40 228 119
-173 222 168 247 41
-174 169 73 42 43
-175 44 77 220 317
-176 45 298 311 312
-177 46 326 119 230
-178 22 47 69 126
-179 134 48 38 115
-180 224 49 240 263
-181 50 51 117 241
-182 290 260 53 197
-183 198 257 160 54
-184 56 299 259 108
-185 199 265 57 348
-186 58 246 280 195
-187 68 211 157 267
-188 319 69 102 313
-189 71 149 336 315
-190 80 311 73 316
-191 79 299 19 261
-192 80 346 357 20
-193 298 81 357 21
-194 310 14 96 86
-195 88 344 60 186
-196 11 89 104 338
-197 90 182 358 18
-198 91 183 141 65
-199 15 92 359 185
-200 2 300 93 259
-201 3 94 347 360
-202 4 302 95 360
-203 276 303 96 318
-204 277 236 97 120
-205 99 145 354 163
-206 100 155 337 43
-207 342 101 259 131
-208 343 103 261 274
-209 320 104 294 306
-210 123 105 292 295
-211 110 187 106 139
-212 234 256 346 107
-213 111 255 321 347
-214 231 112 215 129
-215 56 266 114 214
-216 167 322 356 115
-217 324 94 117 339
-218 4 149 325 118
-219 144 83 327 120
-220 121 328 175 318
-221 123 269 272 329
-222 124 28 336 173
-223 330 309 25 126
-224 308 180 127 149
-225 88 127 160 226
-226 148 225 138 131
-227 132 331 17 152
-228 133 332 124 172
-229 134 333 29 307
-230 177 320 135 334
-231 157 137 214 335
-232 122 291 140 317
-233 136 335 326 141
-234 143 57 212 59
-235 145 262 252 296
-236 308 50 204 107
-237 146 248 150 293
-238 255 71 337 151
-239 254 170 338 152
-240 154 287 124 180
-241 275 78 343 181
-242 155 302 315 339
-243 253 156 172 340
-244 157 300 261 273
-245 331 323 305 86
-246 330 322 350 186
-247 102 60 358 173
-248 334 237 106 130
-249 356 346 360 109
-250 132 112 162 328
-251 286 341 89 314
-252 289 333 235 313
-253 243 24 260 348
-254 23 335 140 239
-255 266 213 238 74
-256 113 212 267 163
-257 265 290 40 183
-258 166 291 39 141
-259 200 345 184 207
-260 253 182 338 31
-261 244 344 191 208
-262 133 13 235 345
-263 13 167 180 359
-264 319 357 270 347
-265 310 257 152 185
-266 255 346 215 7
-267 187 256 61 347
-268 308 341 111 162
-269 221 310 104 283
-270 264 148 348 274
-271 154 333 126 340
-272 221 3 151 349
-273 156 244 15 350
-274 332 47 270 208
-275 321 95 241 351
-276 68 354 37 203
-277 69 48 204 284
-278 70 139 283 98
-279 51 73 106 162
-280 313 304 76 186
-281 79 168 147 105
-282 136 147 82 317
-283 278 355 269 83
-284 123 277 84 65
-285 122 326 85 142
-286 158 148 251 87
-287 93 97 240 142
-288 100 116 129 349
-289 297 157 108 252
-290 319 257 182 109
-291 110 232 258 307
-292 111 210 336 42
-293 112 237 117 43
-294 209 352 34 114
-295 210 47 115 325
-296 322 235 118 351
-297 121 330 14 289
-298 176 125 193 128
-299 191 184 130 328
-300 132 200 244 334
-301 11 135 333 350
-302 242 202 137 138
-303 352 82 203 142
-304 143 78 355 280
-305 146 245 26 327
-306 209 354 147 85
-307 137 291 161 229
-308 224 268 236 164
-309 165 223 125 335
-310 166 265 269 194
-311 176 190 103 136
-312 176 138 10 164
-313 188 280 62 252
-314 161 63 327 251
-315 242 189 6 128
-316 123 190 327 64
-317 66 232 282 175
-318 220 46 49 203
-319 33 264 188 290
-320 44 209 41 230
-321 275 213 52 53
-322 246 216 8 296
-323 165 245 9 329
-324 12 217 120 329
-325 16 218 295 120
-326 177 233 17 285
-327 314 305 316 219
-328 220 299 250 153
-329 341 221 323 324
-330 297 91 223 246
-331 55 245 171 227
-332 55 128 228 274
-333 301 271 229 252
-334 300 248 32 230
-335 231 254 309 233
-336 189 222 146 292
-337 352 58 238 206
-338 144 260 239 196
-339 242 122 101 217
-340 243 16 271 140
-341 268 150 251 329
-342 344 169 50 207
-343 345 42 208 241
-344 342 145 195 261
-345 343 58 259 262
-346 266 212 192 249
-347 264 201 267 213
-348 253 356 270 185
-349 144 353 288 272
-350 56 246 301 273
-351 275 353 36 296
-352 27 303 337 294
-353 349 76 98 351
-354 276 205 151 306
-355 100 304 118 283
-356 216 249 348 30
-357 264 137 192 193
-358 57 49 247 197
-359 199 41 53 263
-360 201 125 202 249
0

**************