[Home] [Table] [Glossary]
[Families]
On this page are all graphs related to C4[ 360, 106 ].
Graphs which this one covers
72-fold cover of
C4[ 5, 1 ]
= K5
36-fold cover of
C4[ 10, 2 ]
= C_ 10(1, 3)
12-fold cover of
C4[ 30, 8 ]
= TAG(F 10)
6-fold cover of
C4[ 60, 10 ]
= UG(ATD[60,15])
6-fold cover of
C4[ 60, 12 ]
= UG(ATD[60,17])
6-fold cover of
C4[ 60, 18 ]
= MG(Rmap(60,57){4,6|6}_10)
3-fold cover of
C4[ 120, 35 ]
= UG(ATD[120,50])
2-fold cover of
C4[ 180, 30 ]
= UG(ATD[180,48])
BGCG dissections of this graph
Base Graph:
C4[ 36, 5 ]
= Pr_ 12( 1, 1, 5, 5)
connection graph: [K_5]
Base Graph:
C4[ 180, 29 ]
= UG(ATD[180,46])
connection graph: [K_1]
Aut-Orbital graphs of this one:
C4[ 9, 1 ] = DW( 3, 3)
C4[ 12, 1 ] = W( 6, 2)
C4[ 12, 2 ] = R_ 6( 5, 4)
C4[ 18, 2 ] = DW( 6, 3)
C4[ 24, 4 ] = R_ 12( 8, 7)
C4[ 36, 5 ] = Pr_ 12( 1, 1, 5, 5)
C4[ 60, 12 ] = UG(ATD[60,17])
C4[ 60, 18 ] = MG(Rmap(60,57){4,6|6}_10)
C4[ 72, 21 ] = UG(ATD[72,13])
C4[ 120, 35 ] = UG(ATD[120,50])
C4[ 180, 29 ] = UG(ATD[180,46])
C4[ 180, 30 ] = UG(ATD[180,48])
C4[ 360, 105 ] = UG(ATD[360,164])
C4[ 360, 106 ] = UG(ATD[360,167])