[Home] [Table] [Glossary]
[Families]
On this page are all graphs related to C4[ 360, 113 ].
Graphs which this one covers
72-fold cover of
C4[ 5, 1 ]
= K5
12-fold cover of
C4[ 30, 8 ]
= TAG(F 10)
6-fold cover of
C4[ 60, 12 ]
= UG(ATD[60,17])
3-fold cover of
C4[ 120, 40 ]
= UG(ATD[120,58])
2-fold cover of
C4[ 180, 30 ]
= UG(ATD[180,48])
Aut-Orbital graphs of this one:
C4[ 8, 1 ] = K_4,4
C4[ 9, 1 ] = DW( 3, 3)
C4[ 12, 1 ] = W( 6, 2)
C4[ 18, 2 ] = DW( 6, 3)
C4[ 24, 2 ] = C_ 24(1, 5)
C4[ 24, 5 ] = R_ 12( 11, 4)
C4[ 24, 6 ] = R_ 12( 5, 10)
C4[ 36, 3 ] = {4, 4}_ 6, 0
C4[ 72, 13 ] = Pr_ 24( 1, 1, 5, 5)
C4[ 72, 14 ] = Pr_ 24( 1, 13, 17, 5)
C4[ 120, 40 ] = UG(ATD[120,58])
C4[ 120, 41 ] = UG(ATD[120,60])
C4[ 360, 111 ] = UG(ATD[360,175])
C4[ 360, 112 ] = UG(ATD[360,177])
C4[ 360, 113 ] = UG(ATD[360,179])
C4[ 360, 114 ] = UG(ATD[360,181])