[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 360, 115 ]. See Glossary for some
detail.
UG(ATD[360, 183]) = UG(ATD[360, 184]) = UG(ATD[360, 185])
= DG(F120B) = MG(Rmap(360, 49) { 6, 10| 10}_ 30) = DG(Rmap(360, 49) { 6, 10|
10}_ 30)
= DG(Rmap(360, 51) { 10, 6| 10}_ 30) = DG(Rmap(360, 79) { 6, 30| 30}_ 10) =
DG(Rmap(180, 6) { 10, 3| 10}_ 30)
= DG(Rmap(180, 26) { 6, 15| 30}_ 10) = DG(Rmap(180, 37) { 6, 30| 15}_ 10) =
DG(Rmap(180,139) { 10, 6| 10}_ 30)
= BGCG(UG(ATD[60,20]), C_ 3, 2) = B(UG(ATD[180,51])) = BGCG(UG(ATD[180,51]);
K1;3)
= B(UG(ATD[180,53])) = BGCG(UG(ATD[180,55]); K1;3) = AT[360, 39]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 29 | 0 | - | - | - | - | 0 | - | - | - | - | - |
2 | 0 | - | 0 | - | - | - | - | - | - | 0 | 0 | - |
3 | - | 0 | - | - | 14 20 | - | - | - | 20 | - | - | - |
4 | - | - | - | 11 19 | - | 0 | - | - | 27 | - | - | - |
5 | - | - | 10 16 | - | - | 22 | 15 | - | - | - | - | - |
6 | - | - | - | 0 | 8 | - | - | 0 | - | - | - | 0 |
7 | 0 | - | - | - | 15 | - | - | 13 | - | - | 2 | - |
8 | - | - | - | - | - | 0 | 17 | - | - | 18 24 | - | - |
9 | - | - | 10 | 3 | - | - | - | - | - | 16 | - | 11 |
10 | - | 0 | - | - | - | - | - | 6 12 | 14 | - | - | - |
11 | - | 0 | - | - | - | - | 28 | - | - | - | 1 29 | - |
12 | - | - | - | - | - | 0 | - | - | 19 | - | - | 11 19 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 | - | - | 0 16 | - | - | - | - | - | 0 | - |
2 | 0 | - | 0 | - | 1 | 0 | - | - | - | - | - | - |
3 | - | 0 | - | - | - | 15 27 | 20 | - | - | - | - | - |
4 | - | - | - | - | - | - | 11 | 0 | - | 0 26 | - | - |
5 | 0 14 | 29 | - | - | - | - | - | - | - | - | 15 | - |
6 | - | 0 | 3 15 | - | - | - | 8 | - | - | - | - | - |
7 | - | - | 10 | 19 | - | 22 | - | - | - | 4 | - | - |
8 | - | - | - | 0 | - | - | - | - | 10 | 11 | - | 10 |
9 | - | - | - | - | - | - | - | 20 | - | - | 29 | 15 27 |
10 | - | - | - | 0 4 | - | - | 26 | 19 | - | - | - | - |
11 | 0 | - | - | - | 15 | - | - | - | 1 | - | - | 13 |
12 | - | - | - | - | - | - | - | 20 | 3 15 | - | 17 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | 0 | - | - | 0 | - | - | - | - | - |
2 | 0 29 | - | - | - | - | - | - | - | 0 28 | - | - | - |
3 | - | - | - | - | 0 | 0 | - | 0 19 | - | - | - | - |
4 | 0 | - | - | - | - | 3 27 | - | - | - | - | 0 | - |
5 | - | - | 0 | - | - | - | 3 27 | - | - | 0 | - | - |
6 | - | - | 0 | 3 27 | - | - | - | - | - | 6 | - | - |
7 | 0 | - | - | - | 3 27 | - | - | - | - | - | 24 | - |
8 | - | - | 0 11 | - | - | - | - | - | - | - | - | 13 21 |
9 | - | 0 2 | - | - | - | - | - | - | - | 3 4 | - | - |
10 | - | - | - | - | 0 | 24 | - | - | 26 27 | - | - | - |
11 | - | - | - | 0 | - | - | 6 | - | - | - | - | 5 24 |
12 | - | - | - | - | - | - | - | 9 17 | - | - | 6 25 | - |