C4graphGraph forms for C4 [ 360, 117 ] = UG(ATD[360,187])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 117 ] = UG(ATD[360,187]).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {24, 25}, {320, 321}, {142, 143}, {108, 109}, {104, 105}, {172, 173}, {233, 235}, {236, 238}, {1, 2}, {257, 258}, {73, 77}, {75, 79}, {74, 78}, {243, 247}, {2, 7}, {312, 317}, {137, 140}, {136, 141}, {106, 111}, {41, 47}, {105, 111}, {185, 191}, {1, 6}, {105, 110}, {81, 86}, {168, 175}, {241, 249}, {167, 174}, {322, 331}, {310, 319}, {242, 251}, {259, 266}, {261, 268}, {132, 142}, {214, 220}, {3, 8}, {199, 204}, {214, 221}, {262, 269}, {131, 143}, {321, 333}, {306, 318}, {183, 187}, {4, 9}, {225, 236}, {38, 40}, {5, 10}, {112, 127}, {165, 170}, {209, 222}, {260, 267}, {37, 53}, {39, 55}, {39, 54}, {264, 281}, {4, 22}, {36, 54}, {13, 31}, {12, 30}, {9, 27}, {8, 26}, {5, 23}, {263, 277}, {38, 53}, {303, 316}, {265, 282}, {173, 184}, {193, 212}, {2, 20}, {11, 29}, {10, 28}, {3, 21}, {199, 209}, {297, 318}, {106, 114}, {291, 315}, {199, 223}, {170, 179}, {99, 121}, {11, 16}, {106, 113}, {71, 92}, {169, 178}, {172, 183}, {205, 214}, {76, 80}, {297, 309}, {108, 113}, {171, 182}, {6, 24}, {41, 55}, {40, 54}, {7, 25}, {293, 314}, {18, 50}, {268, 301}, {12, 46}, {26, 56}, {20, 55}, {135, 164}, {269, 302}, {82, 118}, {197, 224}, {65, 103}, {277, 307}, {89, 126}, {283, 316}, {92, 123}, {267, 300}, {10, 34}, {147, 185}, {66, 105}, {65, 108}, {95, 114}, {14, 32}, {128, 174}, {91, 117}, {15, 33}, {68, 107}, {158, 177}, {208, 255}, {146, 163}, {196, 245}, {201, 248}, {16, 34}, {17, 35}, {150, 162}, {15, 58}, {18, 36}, {19, 37}, {93, 106}, {6, 62}, {90, 98}, {7, 63}, {201, 240}, {153, 162}, {202, 246}, {286, 290}, {192, 253}, {208, 237}, {152, 166}, {154, 164}, {197, 251}, {36, 100}, {296, 360}, {295, 359}, {56, 120}, {157, 223}, {270, 332}, {271, 333}, {290, 353}, {57, 125}, {280, 348}, {276, 336}, {145, 213}, {158, 218}, {138, 207}, {279, 338}, {147, 214}, {147, 213}, {264, 335}, {284, 347}, {283, 348}, {278, 337}, {8, 64}, {287, 343}, {9, 65}, {49, 120}, {157, 212}, {14, 68}, {167, 237}, {280, 339}, {299, 352}, {285, 342}, {28, 80}, {31, 83}, {30, 82}, {29, 81}, {51, 126}, {168, 229}, {12, 66}, {272, 350}, {13, 67}, {274, 349}, {42, 122}, {49, 96}, {53, 100}, {51, 98}, {130, 208}, {278, 324}, {50, 97}, {308, 359}, {54, 101}, {25, 77}, {133, 209}, {60, 104}, {27, 79}, {26, 78}, {16, 69}, {287, 330}, {284, 329}, {18, 71}, {155, 205}, {310, 352}, {259, 341}, {261, 339}, {262, 336}, {17, 70}, {52, 99}, {146, 202}, {129, 216}, {145, 200}, {145, 203}, {270, 340}, {19, 72}, {143, 212}, {24, 67}, {23, 76}, {159, 196}, {140, 208}, {308, 360}, {274, 334}, {20, 73}, {271, 338}, {29, 64}, {23, 74}, {22, 75}, {21, 75}, {272, 334}, {57, 103}, {56, 102}, {21, 74}, {148, 203}, {22, 119}, {312, 345}, {303, 334}, {130, 227}, {159, 254}, {263, 358}, {61, 95}, {43, 72}, {144, 243}, {164, 192}, {256, 357}, {298, 335}, {260, 353}, {134, 224}, {302, 328}, {293, 323}, {154, 252}, {131, 228}, {257, 358}, {288, 328}, {59, 81}, {301, 327}, {300, 326}, {265, 354}, {131, 239}, {43, 70}, {289, 332}, {142, 227}, {305, 351}, {48, 95}, {305, 350}, {141, 226}, {29, 109}, {144, 224}, {143, 255}, {45, 93}, {44, 92}, {43, 91}, {42, 90}, {189, 205}, {47, 94}, {151, 229}, {36, 87}, {294, 341}, {292, 343}, {32, 84}, {299, 351}, {149, 225}, {34, 86}, {33, 85}, {279, 354}, {311, 322}, {298, 351}, {292, 337}, {291, 342}, {35, 85}, {296, 350}, {276, 355}, {27, 99}, {290, 346}, {289, 345}, {288, 344}, {18, 107}, {304, 329}, {174, 215}, {31, 101}, {295, 349}, {139, 241}, {62, 68}, {30, 98}, {307, 335}, {306, 334}, {166, 218}, {37, 88}, {304, 333}, {294, 347}, {16, 110}, {285, 355}, {32, 94}, {38, 89}, {58, 69}, {25, 152}, {27, 154}, {20, 150}, {30, 156}, {26, 153}, {76, 201}, {28, 155}, {102, 238}, {88, 209}, {62, 180}, {7, 140}, {96, 235}, {43, 160}, {47, 162}, {93, 211}, {24, 151}, {99, 236}, {75, 196}, {46, 161}, {94, 206}, {115, 226}, {122, 235}, {116, 229}, {65, 211}, {55, 164}, {81, 194}, {115, 231}, {124, 233}, {125, 232}, {53, 163}, {124, 234}, {123, 237}, {84, 194}, {62, 166}, {63, 167}, {100, 253}, {124, 229}, {110, 244}, {88, 195}, {101, 254}, {57, 165}, {127, 225}, {44, 140}, {114, 210}, {90, 251}, {49, 146}, {60, 159}, {97, 197}, {126, 218}, {37, 128}, {101, 192}, {45, 136}, {103, 193}, {80, 247}, {91, 252}, {58, 146}, {67, 234}, {115, 218}, {59, 145}, {116, 222}, {82, 248}, {104, 195}, {87, 250}, {102, 203}, {86, 249}, {116, 219}, {35, 147}, {48, 129}, {127, 206}, {124, 205}, {64, 241}, {49, 128}, {121, 203}, {52, 135}, {117, 198}, {63, 139}, {115, 199}, {114, 198}, {32, 149}, {42, 159}, {127, 201}, {35, 148}, {123, 204}, {119, 207}, {60, 133}, {79, 246}, {77, 244}, {74, 243}, {57, 131}, {104, 210}, {92, 230}, {73, 242}, {78, 245}, {33, 157}, {34, 158}, {45, 144}, {119, 202}, {118, 200}, {59, 132}, {61, 130}, {22, 215}, {33, 228}, {89, 156}, {21, 217}, {63, 240}, {56, 232}, {8, 219}, {95, 138}, {103, 176}, {118, 161}, {102, 190}, {73, 144}, {84, 142}, {96, 186}, {100, 191}, {87, 138}, {83, 141}, {96, 190}, {125, 162}, {82, 178}, {91, 187}, {90, 186}, {89, 185}, {86, 182}, {85, 181}, {84, 180}, {83, 179}, {78, 175}, {93, 188}, {80, 177}, {72, 170}, {85, 183}, {59, 216}, {94, 189}, {77, 174}, {98, 134}, {60, 217}, {9, 239}, {108, 139}, {64, 168}, {68, 172}, {66, 171}, {116, 157}, {67, 170}, {12, 230}, {71, 173}, {70, 172}, {66, 169}, {97, 138}, {10, 231}, {76, 161}, {58, 215}, {69, 171}, {71, 169}, {83, 188}, {87, 184}, {69, 181}, {117, 135}, {47, 220}, {119, 129}, {123, 141}, {28, 235}, {118, 129}, {117, 130}, {88, 160}, {112, 137}, {15, 244}, {112, 139}, {38, 221}, {79, 176}, {111, 359}, {51, 314}, {50, 313}, {110, 354}, {5, 277}, {40, 313}, {41, 315}, {41, 316}, {42, 304}, {45, 306}, {121, 345}, {120, 345}, {23, 306}, {52, 273}, {121, 351}, {51, 282}, {6, 300}, {113, 349}, {2, 303}, {107, 325}, {31, 304}, {4, 309}, {61, 268}, {48, 258}, {46, 282}, {39, 273}, {122, 320}, {3, 318}, {111, 338}, {3, 317}, {112, 307}, {13, 328}, {14, 326}, {46, 358}, {19, 346}, {15, 324}, {122, 311}, {5, 331}, {113, 319}, {120, 311}, {97, 305}, {126, 300}, {125, 302}, {17, 325}, {52, 352}, {19, 327}, {17, 324}, {13, 347}, {48, 360}, {1, 344}, {50, 360}, {61, 359}, {1, 348}, {11, 340}, {107, 266}, {4, 352}, {72, 302}, {40, 323}, {70, 301}, {14, 355}, {11, 357}, {39, 329}, {109, 281}, {44, 341}, {109, 275}, {44, 339}, {168, 296}, {191, 319}, {228, 356}, {150, 279}, {193, 320}, {231, 357}, {194, 321}, {226, 353}, {173, 297}, {198, 322}, {230, 354}, {184, 317}, {187, 318}, {171, 291}, {178, 315}, {176, 314}, {182, 316}, {220, 342}, {220, 343}, {221, 337}, {137, 281}, {153, 265}, {166, 310}, {167, 311}, {169, 312}, {219, 330}, {161, 307}, {216, 332}, {217, 333}, {150, 256}, {151, 257}, {175, 313}, {242, 356}, {252, 357}, {152, 258}, {153, 259}, {156, 262}, {189, 295}, {180, 297}, {188, 289}, {154, 260}, {155, 261}, {185, 295}, {250, 356}, {177, 273}, {234, 330}, {165, 263}, {233, 331}, {151, 308}, {175, 266}, {181, 272}, {183, 274}, {190, 280}, {191, 281}, {160, 263}, {182, 273}, {160, 264}, {253, 340}, {135, 301}, {156, 310}, {188, 278}, {189, 279}, {240, 346}, {163, 264}, {184, 275}, {165, 265}, {152, 309}, {181, 283}, {186, 276}, {187, 277}, {246, 344}, {155, 308}, {227, 339}, {245, 325}, {246, 326}, {247, 327}, {248, 328}, {249, 329}, {250, 330}, {179, 257}, {234, 344}, {247, 325}, {227, 336}, {240, 323}, {245, 326}, {228, 336}, {158, 299}, {242, 324}, {226, 341}, {252, 331}, {222, 356}, {163, 280}, {176, 267}, {180, 271}, {177, 268}, {179, 270}, {190, 259}, {255, 322}, {216, 358}, {233, 343}, {255, 321}, {178, 269}, {186, 261}, {222, 353}, {248, 327}, {192, 256}, {249, 313}, {206, 271}, {128, 323}, {149, 342}, {212, 272}, {148, 337}, {134, 320}, {213, 274}, {219, 275}, {238, 294}, {224, 303}, {132, 340}, {207, 287}, {225, 305}, {239, 319}, {202, 283}, {136, 347}, {232, 315}, {200, 284}, {241, 293}, {136, 349}, {137, 348}, {215, 258}, {232, 317}, {237, 312}, {133, 338}, {134, 350}, {148, 332}, {196, 285}, {198, 287}, {149, 335}, {193, 282}, {197, 286}, {194, 284}, {195, 285}, {133, 346}, {239, 269}, {250, 286}, {243, 278}, {132, 355}, {204, 299}, {221, 314}, {200, 288}, {195, 298}, {238, 260}, {254, 276}, {206, 290}, {217, 309}, {230, 266}, {231, 267}, {204, 289}, {253, 275}, {207, 288}, {254, 270}, {210, 291}, {236, 286}, {213, 294}, {244, 256}, {223, 298}, {210, 292}, {211, 293}, {211, 292}, {223, 296}, {251, 262} }>;

(II) A more general form is to represent the graph as the orbit of {24, 25} under the group generated by the following permutations:

a: (2, 348)(3, 46)(4, 48)(6, 344)(7, 283)(8, 282)(9, 360)(10, 331)(11, 122)(12, 317)(13, 14)(15, 128)(16, 311)(17, 19)(18, 269)(20, 280)(21, 358)(22, 258)(23, 277)(24, 246)(25, 202)(26, 265)(27, 308)(28, 252)(29, 320)(30, 184)(31, 355)(32, 347)(33, 323)(34, 322)(35, 346)(36, 262)(37, 324)(38, 356)(39, 227)(40, 228)(41, 44)(42, 340)(43, 247)(45, 335)(47, 341)(49, 244)(50, 239)(51, 219)(52, 61)(53, 242)(54, 336)(55, 339)(56, 354)(57, 175)(58, 174)(59, 333)(60, 332)(62, 288)(63, 181)(64, 193)(65, 296)(66, 312)(67, 326)(68, 328)(69, 167)(70, 327)(71, 178)(72, 325)(73, 163)(74, 263)(75, 257)(76, 187)(77, 146)(78, 165)(79, 151)(80, 91)(81, 321)(82, 173)(83, 285)(84, 284)(85, 240)(86, 255)(87, 156)(88, 278)(89, 250)(90, 253)(92, 315)(93, 298)(94, 294)(95, 352)(96, 256)(97, 319)(98, 275)(99, 359)(100, 251)(101, 276)(102, 279)(103, 168)(104, 289)(105, 345)(106, 351)(107, 302)(108, 350)(109, 134)(110, 120)(111, 121)(112, 334)(113, 305)(114, 299)(115, 343)(116, 314)(117, 177)(118, 297)(119, 152)(123, 291)(124, 267)(125, 266)(126, 330)(127, 274)(129, 309)(130, 273)(131, 313)(132, 304)(133, 148)(135, 268)(136, 149)(137, 303)(138, 310)(139, 272)(140, 316)(141, 342)(142, 329)(143, 249)(144, 264)(145, 271)(147, 290)(150, 190)(154, 155)(157, 293)(158, 198)(159, 270)(160, 243)(161, 318)(162, 259)(164, 261)(166, 207)(170, 245)(171, 237)(172, 248)(176, 229)(179, 196)(180, 200)(182, 208)(183, 201)(185, 286)(186, 192)(188, 195)(189, 238)(191, 197)(199, 292)(203, 338)(204, 210)(205, 260)(206, 213)(209, 337)(211, 223)(212, 241)(214, 353)(216, 217)(218, 287)(220, 226)(221, 222)(224, 281)(225, 349)(230, 232)(231, 233)(234, 300)(235, 357)(236, 295)(306, 307)
b: (2, 344)(3, 122)(4, 128)(6, 348)(7, 246)(8, 320)(9, 323)(10, 277)(11, 46)(12, 340)(13, 41)(14, 44)(15, 48)(16, 358)(17, 61)(18, 336)(19, 52)(20, 288)(21, 311)(22, 174)(23, 331)(24, 283)(25, 202)(26, 321)(27, 240)(28, 187)(29, 282)(30, 253)(31, 315)(32, 341)(33, 360)(34, 263)(35, 359)(36, 262)(37, 352)(38, 319)(39, 302)(40, 239)(42, 317)(43, 177)(45, 343)(47, 347)(49, 309)(50, 228)(51, 109)(53, 310)(54, 269)(55, 328)(56, 333)(57, 249)(58, 258)(59, 354)(60, 345)(62, 280)(63, 79)(64, 193)(65, 293)(66, 270)(67, 316)(68, 339)(69, 257)(70, 268)(71, 276)(72, 273)(73, 207)(74, 322)(75, 167)(76, 252)(77, 119)(78, 255)(80, 91)(81, 265)(82, 192)(83, 291)(84, 259)(85, 308)(86, 165)(87, 251)(88, 299)(89, 191)(90, 184)(92, 355)(93, 292)(94, 294)(95, 324)(96, 297)(97, 356)(98, 275)(99, 346)(100, 156)(101, 178)(102, 271)(103, 241)(104, 289)(105, 332)(106, 337)(107, 227)(108, 314)(110, 216)(111, 148)(112, 267)(113, 221)(114, 278)(115, 335)(116, 350)(117, 247)(118, 256)(120, 217)(121, 133)(123, 285)(124, 334)(125, 329)(126, 281)(127, 260)(129, 244)(130, 325)(131, 313)(132, 230)(134, 219)(135, 327)(136, 220)(137, 300)(138, 242)(139, 176)(140, 326)(141, 342)(142, 266)(143, 175)(144, 287)(145, 279)(146, 152)(147, 295)(149, 226)(150, 200)(151, 181)(153, 194)(154, 201)(155, 183)(157, 296)(158, 160)(159, 312)(161, 357)(162, 284)(163, 166)(164, 248)(168, 212)(169, 254)(170, 182)(171, 179)(172, 261)(173, 186)(180, 190)(188, 210)(189, 213)(195, 204)(196, 237)(197, 250)(198, 243)(199, 298)(203, 338)(205, 274)(206, 238)(208, 245)(209, 351)(214, 349)(218, 264)(222, 305)(224, 330)(225, 353)(229, 272)(231, 307)(232, 304)(233, 306)(234, 303)(235, 318)(236, 290)
c: (1, 2, 303, 224, 134, 98, 51, 126, 300, 6)(3, 95, 120, 105, 148, 209, 132, 72, 109, 135)(4, 22, 215, 58, 15, 33, 228, 131, 239, 9)(5, 18, 233, 92, 220, 141, 149, 31, 307, 54)(7, 316, 144, 350, 90, 282, 89, 267, 62, 344)(8, 61, 56, 111, 203, 133, 59, 19, 29, 301)(10, 107, 124, 44, 47, 136, 225, 304, 161, 40)(11, 70, 219, 130, 232, 106, 121, 60, 216, 37)(12, 221, 115, 14, 67, 137, 55, 306, 97, 122)(13, 112, 39, 23, 50, 235, 230, 214, 226, 32)(16, 17, 116, 227, 125, 113, 99, 217, 129, 128)(20, 334, 197, 320, 30, 314, 218, 326, 24, 348)(21, 48, 49, 110, 35, 222, 142, 302, 108, 52)(25, 283, 73, 272, 251, 193, 156, 176, 166, 246)(26, 359, 102, 338, 145, 346, 81, 327, 64, 268)(27, 309, 119, 174, 69, 324, 157, 336, 57, 319)(28, 266, 205, 341, 94, 347, 127, 329, 76, 313)(34, 325, 229, 339, 162, 349, 236, 333, 118, 323)(36, 331, 71, 343, 123, 342, 83, 335, 101, 277)(38, 231, 68, 234, 140, 41, 45, 305, 42, 46)(43, 275, 117, 317, 114, 345, 104, 332, 88, 340)(53, 357, 172, 330, 208, 315, 93, 351, 159, 358)(63, 182, 243, 296, 186, 265, 185, 260, 180, 288)(65, 352, 75, 258, 146, 244, 85, 356, 143, 269)(66, 337, 199, 355, 170, 281, 164, 318, 138, 311)(74, 360, 96, 354, 147, 353, 84, 328, 139, 273)(77, 181, 242, 212, 262, 103, 310, 79, 152, 202)(78, 308, 190, 279, 213, 290, 194, 248, 241, 177)(80, 175, 155, 259, 189, 294, 206, 284, 201, 249)(82, 293, 158, 245, 151, 280, 150, 274, 286, 321)(86, 247, 168, 261, 153, 295, 238, 271, 200, 240)(87, 322, 169, 292, 204, 285, 179, 264, 192, 187)(91, 184, 198, 312, 210, 289, 195, 270, 160, 253)(100, 252, 173, 287, 237, 291, 188, 298, 254, 263)(154, 297, 207, 167, 171, 278, 223, 276, 165, 191)(163, 256, 183, 250, 255, 178, 211, 299, 196, 257)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 117 ]
360
-1 2 344 6 348
-2 1 303 7 20
-3 8 317 21 318
-4 22 352 309 9
-5 23 331 277 10
-6 1 24 300 62
-7 2 25 63 140
-8 3 26 64 219
-9 4 27 239 65
-10 231 34 5 28
-11 16 357 29 340
-12 66 46 30 230
-13 67 347 31 328
-14 68 355 326 32
-15 33 244 58 324
-16 11 110 34 69
-17 35 70 324 325
-18 36 71 50 107
-19 37 346 72 327
-20 55 2 73 150
-21 3 74 217 75
-22 4 215 75 119
-23 5 74 306 76
-24 67 25 6 151
-25 77 24 7 152
-26 56 78 8 153
-27 99 154 79 9
-28 155 80 235 10
-29 11 81 64 109
-30 12 156 82 98
-31 13 101 83 304
-32 14 94 149 84
-33 157 15 85 228
-34 158 16 86 10
-35 147 148 17 85
-36 100 18 54 87
-37 88 128 19 53
-38 89 221 40 53
-39 55 273 54 329
-40 323 38 313 54
-41 55 47 315 316
-42 122 90 159 304
-43 91 70 72 160
-44 341 92 140 339
-45 144 136 93 306
-46 12 358 161 282
-47 220 94 41 162
-48 258 95 129 360
-49 146 128 96 120
-50 313 18 360 97
-51 126 314 282 98
-52 99 352 135 273
-53 100 37 38 163
-54 101 36 39 40
-55 39 41 20 164
-56 232 102 26 120
-57 165 103 125 131
-58 69 146 15 215
-59 132 145 81 216
-60 133 104 159 217
-61 268 95 359 130
-62 166 68 180 6
-63 167 7 139 240
-64 168 29 8 241
-65 211 103 9 108
-66 12 169 105 171
-67 13 24 234 170
-68 14 62 172 107
-69 58 16 181 171
-70 301 17 172 43
-71 92 169 18 173
-72 170 302 19 43
-73 77 242 144 20
-74 23 78 243 21
-75 22 79 196 21
-76 23 80 201 161
-77 244 25 73 174
-78 245 26 74 175
-79 176 246 27 75
-80 177 247 28 76
-81 59 29 194 86
-82 178 248 30 118
-83 188 179 31 141
-84 180 194 32 142
-85 33 35 181 183
-86 34 81 182 249
-87 36 138 184 250
-88 209 37 160 195
-89 156 38 126 185
-90 42 251 98 186
-91 187 117 43 252
-92 44 123 71 230
-93 45 188 211 106
-94 189 47 206 32
-95 48 114 61 138
-96 190 235 49 186
-97 50 138 305 197
-98 90 134 51 30
-99 121 27 236 52
-100 253 36 191 53
-101 254 192 31 54
-102 56 190 203 238
-103 176 57 193 65
-104 210 60 105 195
-105 66 110 111 104
-106 111 113 114 93
-107 68 266 325 18
-108 113 139 65 109
-109 275 281 29 108
-110 244 354 16 105
-111 105 106 359 338
-112 137 127 139 307
-113 319 106 349 108
-114 198 210 95 106
-115 231 199 226 218
-116 222 157 229 219
-117 198 91 135 130
-118 200 82 161 129
-119 22 202 129 207
-120 56 311 345 49
-121 99 345 203 351
-122 320 311 235 42
-123 92 204 237 141
-124 233 234 205 229
-125 232 57 302 162
-126 89 300 51 218
-127 112 201 225 206
-128 37 323 49 174
-129 48 216 118 119
-130 61 117 227 208
-131 143 57 228 239
-132 355 59 142 340
-133 209 60 346 338
-134 320 224 350 98
-135 301 117 52 164
-136 45 347 349 141
-137 112 281 348 140
-138 95 97 207 87
-139 112 63 108 241
-140 44 137 7 208
-141 123 136 83 226
-142 132 143 84 227
-143 255 212 131 142
-144 45 243 224 73
-145 200 59 213 203
-146 58 202 49 163
-147 35 213 214 185
-148 35 332 203 337
-149 342 225 335 32
-150 256 279 162 20
-151 308 24 257 229
-152 166 309 25 258
-153 265 26 259 162
-154 27 260 164 252
-155 308 28 205 261
-156 89 310 30 262
-157 33 212 223 116
-158 34 177 299 218
-159 254 60 42 196
-160 88 264 43 263
-161 46 118 76 307
-162 47 125 150 153
-163 264 146 280 53
-164 55 154 135 192
-165 265 57 170 263
-166 310 62 152 218
-167 311 237 63 174
-168 64 229 175 296
-169 66 178 312 71
-170 165 67 179 72
-171 66 69 291 182
-172 68 70 183 173
-173 297 71 172 184
-174 77 167 215 128
-175 78 266 168 313
-176 79 267 103 314
-177 80 158 268 273
-178 169 82 269 315
-179 257 170 83 270
-180 297 62 84 271
-181 69 85 272 283
-182 171 316 86 273
-183 187 172 85 274
-184 275 173 317 87
-185 89 147 191 295
-186 276 90 96 261
-187 277 91 183 318
-188 278 289 93 83
-189 279 94 205 295
-190 102 280 259 96
-191 319 100 281 185
-192 253 101 256 164
-193 320 212 103 282
-194 321 81 84 284
-195 88 298 104 285
-196 245 159 75 285
-197 286 224 97 251
-198 287 322 114 117
-199 209 223 115 204
-200 145 288 118 284
-201 127 248 240 76
-202 146 246 283 119
-203 121 145 102 148
-204 199 123 299 289
-205 155 189 124 214
-206 290 94 127 271
-207 287 288 138 119
-208 255 237 140 130
-209 88 133 199 222
-210 114 104 291 292
-211 93 292 293 65
-212 143 157 193 272
-213 145 147 294 274
-214 220 221 147 205
-215 22 58 258 174
-216 332 59 358 129
-217 309 333 60 21
-218 166 158 115 126
-219 275 330 116 8
-220 342 343 47 214
-221 38 214 314 337
-222 209 353 356 116
-223 199 298 157 296
-224 144 134 303 197
-225 236 127 149 305
-226 341 353 115 141
-227 336 130 339 142
-228 33 356 336 131
-229 124 168 116 151
-230 12 266 354 92
-231 267 115 357 10
-232 56 125 315 317
-233 331 343 124 235
-234 330 67 124 344
-235 122 233 28 96
-236 99 286 225 238
-237 123 167 312 208
-238 102 236 260 294
-239 319 269 9 131
-240 201 323 346 63
-241 139 249 293 64
-242 356 324 73 251
-243 144 278 247 74
-244 77 110 256 15
-245 78 325 326 196
-246 79 344 202 326
-247 243 80 325 327
-248 201 82 327 328
-249 313 86 241 329
-250 286 330 356 87
-251 242 90 262 197
-252 154 331 91 357
-253 275 100 192 340
-254 276 101 159 270
-255 143 321 322 208
-256 244 192 357 150
-257 179 258 358 151
-258 48 257 215 152
-259 341 266 190 153
-260 154 353 267 238
-261 155 268 339 186
-262 156 269 336 251
-263 165 277 160 358
-264 335 160 281 163
-265 165 354 282 153
-266 259 107 175 230
-267 176 231 300 260
-268 177 301 61 261
-269 178 302 239 262
-270 254 332 179 340
-271 333 180 206 338
-272 212 334 181 350
-273 177 39 182 52
-274 213 334 183 349
-275 253 184 109 219
-276 254 355 336 186
-277 187 5 263 307
-278 188 243 324 337
-279 189 354 150 338
-280 190 348 163 339
-281 264 191 137 109
-282 265 46 193 51
-283 202 181 348 316
-284 200 347 194 329
-285 342 355 195 196
-286 290 236 250 197
-287 198 330 343 207
-288 200 344 207 328
-289 188 332 345 204
-290 286 353 346 206
-291 210 342 171 315
-292 210 211 343 337
-293 211 323 314 241
-294 341 213 347 238
-295 189 359 349 185
-296 168 223 360 350
-297 309 180 173 318
-298 223 335 195 351
-299 352 158 204 351
-300 267 126 6 326
-301 135 70 268 327
-302 125 269 72 328
-303 2 224 334 316
-304 333 31 42 329
-305 225 97 350 351
-306 23 45 334 318
-307 112 277 335 161
-308 155 359 151 360
-309 297 4 217 152
-310 319 352 166 156
-311 122 167 322 120
-312 169 345 237 317
-313 50 40 249 175
-314 176 221 51 293
-315 232 178 291 41
-316 182 303 41 283
-317 232 3 312 184
-318 187 297 3 306
-319 310 113 191 239
-320 122 134 321 193
-321 320 255 333 194
-322 198 331 255 311
-323 40 128 293 240
-324 242 278 15 17
-325 245 247 17 107
-326 14 245 300 246
-327 301 247 248 19
-328 13 288 302 248
-329 39 249 304 284
-330 287 234 250 219
-331 233 322 5 252
-332 289 148 270 216
-333 321 271 304 217
-334 303 272 306 274
-335 264 298 149 307
-336 276 227 228 262
-337 221 278 148 292
-338 111 133 279 271
-339 44 280 227 261
-340 11 132 253 270
-341 44 226 259 294
-342 220 291 149 285
-343 220 287 233 292
-344 1 288 234 246
-345 121 289 312 120
-346 133 290 19 240
-347 13 136 294 284
-348 1 137 280 283
-349 113 136 295 274
-350 134 272 305 296
-351 121 298 299 305
-352 299 310 4 52
-353 222 290 226 260
-354 110 265 279 230
-355 132 276 14 285
-356 242 222 228 250
-357 11 231 256 252
-358 46 257 216 263
-359 308 111 61 295
-360 308 48 50 296
0

**************