[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 360, 130 ]. See Glossary for some
detail.
PL(ATD[ 18, 2]#DCyc[ 5]) = PL(ATD[ 18, 2]#DCyc[ 10]) = XI(Rmap(180, 13)
{ 4, 20| 6}_ 30)
= XI(Rmap(180, 35) { 6, 20| 6}_ 20) = PL(CSI(DW( 6, 3)[ 6^ 6], 5)) =
PL(CSI(DW( 6, 3)[ 6^ 6], 10))
= BGCG(DW( 6, 3), C_ 10, {1', 2'}) = BGCG(C_ 30(1, 11), C_ 6, 3) = BGCG(PS(
6, 15; 4); K2;3)
= BGCG(PS( 6, 60; 19); K1;{5, 6}) = BGCG(UG(ATD[180,9]); K1;7)
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | 0 | 0 | 0 | - |
2 | - | - | - | - | - | - | 0 | - | 0 | 24 | 24 | - |
3 | - | - | - | - | - | - | - | 0 27 | - | - | - | 0 27 |
4 | - | - | - | - | - | - | 24 27 | - | - | 1 4 | - | - |
5 | - | - | - | - | - | - | - | 20 | 4 | - | 24 | 7 |
6 | - | - | - | - | - | - | - | 20 | 10 | - | 24 | 13 |
7 | 0 | 0 | - | 3 6 | - | - | - | - | - | - | - | - |
8 | - | - | 0 3 | - | 10 | 10 | - | - | - | - | - | - |
9 | 0 | 0 | - | - | 26 | 20 | - | - | - | - | - | - |
10 | 0 | 6 | - | 26 29 | - | - | - | - | - | - | - | - |
11 | 0 | 6 | - | - | 6 | 6 | - | - | - | - | - | - |
12 | - | - | 0 3 | - | 23 | 17 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | - | 0 | 0 | - | - | 0 25 |
2 | - | - | - | - | - | - | - | 0 | 0 | - | - | 1 6 |
3 | - | - | - | - | - | - | 0 | - | 21 | 0 25 | - | - |
4 | - | - | - | - | - | - | 0 | - | 21 | 1 6 | - | - |
5 | - | - | - | - | - | - | 15 | 21 | - | - | 0 25 | - |
6 | - | - | - | - | - | - | 15 | 21 | - | - | 1 6 | - |
7 | - | - | 0 | 0 | 15 | 15 | - | - | - | - | - | - |
8 | 0 | 0 | - | - | 9 | 9 | - | - | - | - | - | - |
9 | 0 | 0 | 9 | 9 | - | - | - | - | - | - | - | - |
10 | - | - | 0 5 | 24 29 | - | - | - | - | - | - | - | - |
11 | - | - | - | - | 0 5 | 24 29 | - | - | - | - | - | - |
12 | 0 5 | 24 29 | - | - | - | - | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 1 | - | 0 | - | - | 0 |
2 | - | - | - | - | - | - | 0 19 | - | 0 | - | - | 18 |
3 | - | - | - | - | - | - | - | 0 11 | - | 0 | 0 | - |
4 | - | - | - | - | - | - | - | - | 28 | 20 | 10 | 18 |
5 | - | - | - | - | - | - | - | 0 29 | - | 18 | 0 | - |
6 | - | - | - | - | - | - | - | - | 10 | 20 | 22 | 18 |
7 | 0 29 | 0 11 | - | - | - | - | - | - | - | - | - | - |
8 | - | - | 0 19 | - | 0 1 | - | - | - | - | - | - | - |
9 | 0 | 0 | - | 2 | - | 20 | - | - | - | - | - | - |
10 | - | - | 0 | 10 | 12 | 10 | - | - | - | - | - | - |
11 | - | - | 0 | 20 | 0 | 8 | - | - | - | - | - | - |
12 | 0 | 12 | - | 12 | - | 12 | - | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | - | 0 | - | - | 0 | 0 | 0 |
2 | - | - | - | - | - | - | 0 | - | - | 6 | 0 | 6 |
3 | - | - | - | - | - | - | - | 0 | 0 | - | 21 | 1 |
4 | - | - | - | - | - | - | - | 0 | 6 | - | 21 | 7 |
5 | - | - | - | - | - | - | 21 | 15 | 25 | 11 | - | - |
6 | - | - | - | - | - | - | 4 | 28 | 14 | 0 | - | - |
7 | 0 | 0 | - | - | 9 | 26 | - | - | - | - | - | - |
8 | - | - | 0 | 0 | 15 | 2 | - | - | - | - | - | - |
9 | - | - | 0 | 24 | 5 | 16 | - | - | - | - | - | - |
10 | 0 | 24 | - | - | 19 | 0 | - | - | - | - | - | - |
11 | 0 | 0 | 9 | 9 | - | - | - | - | - | - | - | - |
12 | 0 | 24 | 29 | 23 | - | - | - | - | - | - | - | - |