C4graphGraph forms for C4 [ 360, 134 ] = PL(L(C3SS120))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 134 ] = PL(L(C3SS120)).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {163, 190}, {139, 190}, {172, 236}, {152, 219}, {154, 217}, {156, 216}, {179, 247}, {157, 219}, {131, 203}, {142, 197}, {157, 214}, {141, 192}, {178, 255}, {179, 253}, {176, 255}, {148, 197}, {165, 244}, {130, 208}, {155, 200}, {172, 255}, {167, 244}, {132, 208}, {140, 216}, {134, 208}, {145, 199}, {147, 203}, {142, 215}, {173, 244}, {169, 240}, {161, 248}, {165, 255}, {170, 240}, {152, 195}, {174, 245}, {171, 240}, {179, 239}, {160, 253}, {178, 236}, {163, 195}, {154, 251}, {169, 200}, {142, 236}, {162, 192}, {153, 251}, {145, 245}, {153, 253}, {160, 197}, {166, 192}, {175, 200}, {176, 215}, {134, 238}, {144, 249}, {162, 200}, {179, 217}, {132, 239}, {172, 199}, {168, 195}, {129, 237}, {130, 239}, {154, 247}, {158, 240}, {147, 252}, {160, 208}, {165, 215}, {151, 228}, {180, 199}, {141, 248}, {129, 247}, {153, 239}, {143, 249}, {156, 228}, {133, 252}, {148, 238}, {134, 253}, {164, 216}, {143, 242}, {140, 242}, {168, 214}, {135, 248}, {138, 245}, {145, 238}, {105, 233}, {85, 212}, {86, 210}, {73, 204}, {89, 220}, {104, 237}, {95, 216}, {76, 196}, {92, 212}, {78, 196}, {103, 237}, {115, 249}, {48, 187}, {64, 203}, {50, 185}, {102, 237}, {120, 244}, {97, 236}, {52, 187}, {54, 185}, {93, 210}, {98, 242}, {111, 252}, {75, 222}, {67, 212}, {69, 210}, {96, 248}, {89, 192}, {33, 187}, {70, 220}, {35, 185}, {99, 249}, {115, 233}, {71, 220}, {117, 238}, {127, 228}, {66, 223}, {79, 210}, {65, 223}, {82, 204}, {101, 251}, {107, 245}, {90, 197}, {104, 247}, {65, 224}, {66, 224}, {17, 181}, {77, 233}, {122, 222}, {31, 185}, {109, 203}, {18, 181}, {102, 193}, {19, 187}, {67, 235}, {64, 232}, {29, 181}, {20, 188}, {118, 222}, {22, 188}, {88, 242}, {107, 193}, {30, 181}, {77, 225}, {107, 199}, {123, 214}, {18, 188}, {82, 252}, {6, 182}, {84, 228}, {113, 193}, {7, 182}, {12, 189}, {14, 188}, {5, 182}, {72, 251}, {12, 191}, {11, 191}, {117, 193}, {3, 182}, {8, 189}, {11, 189}, {97, 215}, {109, 219}, {10, 189}, {2, 186}, {1, 184}, {2, 184}, {1, 186}, {4, 191}, {3, 184}, {6, 186}, {96, 220}, {106, 214}, {5, 184}, {7, 186}, {1, 191}, {103, 217}, {125, 195}, {102, 217}, {14, 206}, {15, 207}, {126, 190}, {8, 201}, {59, 250}, {30, 223}, {10, 201}, {62, 250}, {22, 211}, {32, 229}, {46, 232}, {9, 206}, {36, 227}, {32, 231}, {20, 211}, {13, 202}, {1, 201}, {43, 227}, {7, 207}, {2, 202}, {19, 218}, {58, 243}, {55, 254}, {35, 234}, {45, 225}, {3, 206}, {44, 225}, {28, 209}, {24, 213}, {18, 223}, {4, 201}, {4, 202}, {37, 235}, {13, 194}, {46, 225}, {21, 218}, {3, 211}, {57, 233}, {19, 194}, {57, 232}, {43, 250}, {23, 198}, {17, 194}, {37, 246}, {42, 254}, {51, 231}, {36, 241}, {61, 232}, {25, 207}, {39, 241}, {21, 194}, {26, 205}, {2, 218}, {31, 198}, {63, 230}, {9, 211}, {60, 230}, {49, 235}, {11, 209}, {17, 202}, {18, 206}, {47, 243}, {4, 218}, {40, 246}, {36, 250}, {94, 190}, {39, 198}, {36, 198}, {6, 229}, {41, 205}, {83, 183}, {15, 234}, {61, 219}, {5, 226}, {11, 227}, {15, 229}, {59, 209}, {55, 221}, {9, 226}, {38, 205}, {13, 230}, {7, 234}, {10, 231}, {16, 254}, {51, 221}, {34, 204}, {33, 207}, {28, 243}, {62, 209}, {34, 205}, {6, 246}, {37, 213}, {17, 224}, {37, 212}, {27, 234}, {55, 196}, {68, 183}, {5, 241}, {10, 254}, {23, 226}, {32, 213}, {16, 231}, {42, 221}, {9, 241}, {79, 183}, {38, 222}, {15, 246}, {53, 204}, {29, 230}, {24, 229}, {74, 183}, {40, 213}, {32, 221}, {31, 226}, {29, 224}, {58, 196}, {12, 243}, {28, 227}, {20, 235}, {12, 268}, {44, 300}, {101, 357}, {27, 282}, {88, 345}, {30, 287}, {102, 359}, {94, 348}, {8, 267}, {47, 300}, {43, 296}, {21, 278}, {97, 354}, {42, 302}, {54, 306}, {72, 333}, {14, 264}, {73, 335}, {35, 293}, {51, 308}, {16, 280}, {69, 333}, {107, 355}, {68, 333}, {104, 353}, {45, 295}, {74, 321}, {87, 348}, {38, 298}, {80, 348}, {53, 312}, {89, 340}, {105, 356}, {29, 275}, {63, 305}, {62, 304}, {19, 284}, {39, 296}, {106, 357}, {111, 352}, {8, 280}, {28, 268}, {20, 260}, {14, 287}, {59, 298}, {57, 296}, {50, 291}, {26, 267}, {116, 357}, {46, 316}, {50, 289}, {89, 330}, {87, 324}, {54, 293}, {114, 353}, {52, 288}, {56, 300}, {93, 329}, {60, 297}, {83, 326}, {117, 352}, {30, 264}, {58, 300}, {112, 358}, {113, 359}, {117, 355}, {95, 328}, {62, 294}, {63, 295}, {91, 323}, {121, 353}, {27, 258}, {59, 290}, {50, 299}, {47, 310}, {90, 323}, {70, 348}, {16, 267}, {60, 295}, {52, 303}, {25, 258}, {22, 269}, {21, 265}, {22, 266}, {24, 261}, {86, 331}, {40, 309}, {124, 353}, {13, 275}, {69, 347}, {56, 295}, {68, 347}, {64, 351}, {44, 268}, {111, 335}, {35, 258}, {26, 312}, {61, 287}, {113, 339}, {119, 341}, {33, 258}, {53, 278}, {46, 264}, {55, 273}, {48, 278}, {124, 346}, {40, 271}, {116, 339}, {75, 355}, {101, 333}, {123, 339}, {27, 306}, {73, 352}, {61, 276}, {60, 277}, {34, 267}, {72, 354}, {56, 275}, {115, 344}, {123, 336}, {24, 308}, {75, 359}, {74, 358}, {54, 282}, {48, 284}, {42, 263}, {58, 279}, {52, 281}, {120, 341}, {121, 343}, {71, 360}, {43, 283}, {88, 360}, {98, 338}, {41, 280}, {57, 264}, {112, 321}, {99, 337}, {109, 351}, {119, 325}, {81, 354}, {34, 278}, {81, 357}, {56, 268}, {96, 340}, {103, 339}, {49, 260}, {23, 289}, {51, 261}, {25, 303}, {112, 326}, {95, 360}, {119, 320}, {33, 281}, {80, 360}, {90, 354}, {118, 334}, {125, 325}, {25, 288}, {63, 262}, {48, 265}, {114, 331}, {106, 336}, {49, 266}, {23, 299}, {49, 269}, {39, 283}, {31, 291}, {118, 330}, {126, 322}, {127, 323}, {38, 280}, {45, 275}, {96, 350}, {47, 272}, {73, 265}, {90, 282}, {74, 266}, {99, 291}, {85, 276}, {92, 285}, {98, 291}, {120, 313}, {124, 317}, {79, 269}, {91, 281}, {100, 294}, {114, 304}, {114, 310}, {120, 316}, {122, 318}, {108, 297}, {127, 314}, {99, 293}, {100, 290}, {91, 284}, {98, 293}, {84, 284}, {68, 269}, {103, 302}, {41, 355}, {87, 285}, {110, 292}, {76, 263}, {111, 292}, {119, 316}, {67, 271}, {83, 286}, {84, 281}, {26, 340}, {41, 359}, {100, 298}, {66, 274}, {101, 309}, {85, 260}, {87, 261}, {100, 304}, {118, 290}, {127, 297}, {92, 260}, {122, 290}, {78, 279}, {83, 266}, {82, 265}, {85, 270}, {94, 261}, {76, 273}, {108, 305}, {110, 307}, {78, 272}, {104, 310}, {64, 287}, {65, 286}, {113, 302}, {53, 340}, {75, 298}, {91, 314}, {76, 302}, {81, 306}, {79, 299}, {81, 309}, {80, 308}, {77, 296}, {106, 271}, {66, 292}, {93, 315}, {71, 303}, {105, 257}, {115, 283}, {94, 311}, {121, 272}, {126, 279}, {108, 262}, {125, 279}, {124, 272}, {125, 273}, {69, 299}, {112, 286}, {126, 273}, {86, 294}, {110, 286}, {77, 316}, {92, 301}, {65, 307}, {70, 308}, {105, 283}, {116, 263}, {67, 309}, {82, 292}, {86, 289}, {45, 341}, {88, 288}, {78, 310}, {44, 341}, {108, 277}, {109, 276}, {72, 306}, {97, 282}, {116, 271}, {122, 257}, {93, 289}, {110, 274}, {123, 263}, {84, 297}, {70, 312}, {71, 312}, {80, 303}, {95, 288}, {121, 262}, {147, 274}, {151, 277}, {177, 311}, {135, 256}, {138, 259}, {156, 277}, {161, 301}, {128, 270}, {137, 262}, {174, 318}, {144, 257}, {157, 270}, {128, 276}, {175, 315}, {173, 313}, {149, 256}, {139, 285}, {171, 317}, {152, 270}, {133, 274}, {170, 317}, {162, 315}, {160, 314}, {155, 256}, {128, 285}, {170, 311}, {164, 313}, {158, 256}, {161, 319}, {159, 257}, {146, 307}, {159, 318}, {146, 305}, {150, 318}, {128, 301}, {174, 259}, {136, 294}, {151, 313}, {148, 314}, {172, 259}, {129, 304}, {130, 305}, {136, 315}, {137, 317}, {132, 307}, {180, 259}, {135, 319}, {149, 301}, {133, 319}, {131, 319}, {139, 311}, {150, 342}, {136, 329}, {154, 347}, {132, 326}, {153, 347}, {136, 331}, {140, 328}, {158, 346}, {146, 343}, {147, 342}, {141, 330}, {144, 344}, {134, 335}, {150, 351}, {129, 331}, {174, 356}, {151, 349}, {142, 323}, {139, 324}, {156, 332}, {149, 324}, {159, 334}, {155, 329}, {137, 346}, {141, 350}, {146, 326}, {130, 343}, {159, 330}, {131, 342}, {138, 351}, {140, 345}, {152, 320}, {155, 321}, {157, 327}, {133, 350}, {148, 335}, {138, 342}, {131, 350}, {143, 338}, {137, 343}, {143, 337}, {158, 321}, {169, 329}, {135, 358}, {176, 337}, {163, 322}, {178, 336}, {171, 328}, {180, 336}, {161, 324}, {163, 325}, {171, 332}, {164, 332}, {176, 344}, {173, 325}, {170, 322}, {168, 320}, {166, 334}, {162, 334}, {173, 320}, {168, 327}, {145, 352}, {150, 356}, {149, 358}, {180, 327}, {177, 322}, {169, 346}, {144, 356}, {166, 338}, {178, 327}, {167, 337}, {175, 345}, {165, 349}, {164, 349}, {177, 328}, {167, 349}, {175, 338}, {177, 332}, {166, 345}, {167, 344} }>;

(II) A more general form is to represent the graph as the orbit of {163, 190} under the group generated by the following permutations:

a: (1, 2)(3, 6)(5, 7)(8, 13)(9, 15)(10, 17)(11, 19)(12, 21)(14, 24)(16, 29)(18, 32)(20, 37)(22, 40)(23, 27)(25, 39)(26, 45)(28, 48)(30, 51)(31, 35)(33, 36)(34, 56)(38, 60)(41, 63)(42, 65)(43, 52)(44, 53)(46, 70)(47, 73)(49, 67)(50, 54)(55, 66)(57, 80)(58, 82)(59, 84)(61, 87)(62, 91)(64, 94)(68, 101)(69, 72)(71, 77)(74, 106)(75, 108)(76, 110)(78, 111)(79, 81)(83, 116)(85, 92)(86, 90)(88, 115)(89, 120)(93, 97)(95, 105)(96, 119)(98, 99)(100, 127)(102, 130)(103, 132)(104, 134)(107, 137)(109, 139)(112, 123)(113, 146)(114, 148)(117, 121)(118, 151)(122, 156)(124, 145)(125, 133)(126, 147)(129, 160)(131, 163)(135, 168)(136, 142)(138, 170)(140, 144)(141, 173)(149, 157)(150, 177)(152, 161)(153, 154)(155, 178)(158, 180)(159, 164)(162, 165)(166, 167)(169, 172)(171, 174)(175, 176)(181, 231)(183, 357)(184, 186)(187, 227)(188, 213)(189, 194)(190, 203)(191, 218)(192, 244)(193, 343)(195, 319)(196, 292)(197, 331)(198, 258)(199, 346)(200, 255)(201, 202)(204, 300)(205, 295)(206, 229)(207, 241)(208, 237)(209, 284)(210, 354)(211, 246)(212, 260)(214, 358)(215, 315)(216, 257)(217, 239)(219, 324)(220, 316)(221, 223)(222, 277)(224, 254)(225, 312)(226, 234)(228, 290)(230, 280)(232, 348)(233, 360)(236, 329)(238, 353)(240, 259)(242, 249)(243, 265)(245, 317)(247, 253)(248, 320)(250, 281)(251, 347)(252, 279)(256, 327)(261, 287)(262, 355)(263, 286)(264, 308)(266, 271)(267, 275)(268, 278)(269, 309)(270, 301)(272, 352)(273, 274)(276, 285)(282, 289)(283, 288)(291, 293)(294, 323)(296, 303)(297, 298)(299, 306)(302, 307)(304, 314)(305, 359)(310, 335)(311, 351)(313, 330)(318, 332)(321, 336)(322, 342)(325, 350)(326, 339)(328, 356)(334, 349)(337, 338)(340, 341)(344, 345)
b: (2, 4)(3, 8)(5, 10)(6, 11)(7, 12)(9, 16)(13, 19)(14, 26)(15, 28)(17, 21)(18, 34)(20, 38)(22, 41)(23, 42)(24, 43)(25, 44)(27, 47)(29, 48)(30, 53)(31, 55)(32, 36)(33, 56)(35, 58)(37, 59)(39, 51)(40, 62)(45, 52)(46, 71)(49, 75)(50, 76)(54, 78)(57, 70)(60, 84)(61, 89)(63, 91)(64, 96)(65, 73)(66, 82)(67, 100)(68, 102)(69, 103)(72, 104)(74, 107)(77, 80)(79, 113)(81, 114)(83, 117)(85, 118)(86, 116)(87, 105)(88, 119)(90, 121)(92, 122)(93, 123)(94, 115)(95, 120)(97, 124)(98, 125)(99, 126)(101, 129)(106, 136)(108, 127)(109, 141)(110, 111)(112, 145)(128, 159)(130, 160)(132, 134)(133, 147)(135, 138)(137, 142)(139, 144)(140, 173)(143, 163)(146, 148)(149, 174)(150, 161)(151, 156)(152, 166)(153, 179)(155, 180)(157, 162)(158, 172)(165, 171)(167, 177)(168, 175)(169, 178)(170, 176)(181, 278)(182, 189)(183, 193)(184, 201)(185, 196)(186, 191)(187, 275)(188, 205)(190, 249)(192, 219)(195, 338)(197, 343)(198, 221)(199, 321)(200, 327)(202, 218)(203, 350)(204, 223)(206, 267)(207, 268)(209, 246)(210, 339)(211, 280)(212, 290)(213, 250)(214, 315)(215, 317)(216, 313)(217, 347)(220, 232)(222, 260)(224, 265)(225, 303)(226, 254)(227, 229)(228, 277)(230, 284)(231, 241)(233, 348)(234, 243)(235, 298)(236, 346)(237, 333)(238, 326)(239, 253)(240, 255)(242, 325)(244, 328)(245, 358)(247, 251)(248, 351)(252, 274)(256, 259)(257, 285)(258, 300)(261, 283)(262, 323)(263, 289)(264, 312)(266, 355)(269, 359)(270, 334)(271, 294)(272, 282)(273, 291)(276, 330)(279, 293)(281, 295)(286, 352)(287, 340)(288, 341)(296, 308)(299, 302)(301, 318)(304, 309)(305, 314)(306, 310)(307, 335)(311, 344)(316, 360)(319, 342)(320, 345)(322, 337)(324, 356)(329, 336)(331, 357)(332, 349)(353, 354)
c: (2, 4)(3, 12)(5, 11)(6, 10)(7, 8)(9, 28)(13, 17)(14, 44)(15, 16)(18, 56)(19, 21)(20, 58)(22, 47)(23, 62)(24, 51)(25, 26)(27, 41)(30, 45)(31, 59)(33, 34)(35, 38)(37, 55)(39, 43)(40, 42)(49, 78)(50, 100)(52, 53)(54, 75)(57, 77)(60, 66)(61, 119)(63, 65)(64, 120)(67, 76)(68, 104)(69, 129)(70, 80)(72, 102)(73, 91)(74, 124)(79, 114)(81, 113)(82, 84)(83, 121)(85, 125)(87, 94)(88, 89)(90, 117)(92, 126)(93, 136)(95, 96)(97, 107)(98, 118)(99, 122)(101, 103)(105, 115)(106, 123)(108, 110)(109, 173)(111, 127)(112, 137)(128, 163)(130, 132)(131, 164)(133, 156)(134, 160)(135, 171)(138, 165)(140, 141)(142, 145)(143, 159)(147, 151)(149, 170)(150, 167)(153, 179)(155, 169)(157, 168)(161, 177)(162, 175)(174, 176)(178, 180)(181, 275)(182, 189)(183, 353)(184, 191)(185, 298)(186, 201)(187, 278)(188, 300)(190, 285)(192, 345)(193, 354)(195, 270)(196, 235)(197, 238)(198, 250)(199, 236)(203, 313)(204, 281)(205, 258)(206, 268)(207, 267)(209, 226)(210, 331)(211, 243)(212, 273)(213, 221)(215, 245)(216, 350)(217, 251)(219, 320)(220, 360)(222, 293)(223, 295)(224, 230)(225, 264)(227, 241)(228, 252)(229, 231)(232, 316)(234, 280)(237, 333)(240, 256)(242, 330)(244, 351)(246, 254)(247, 347)(248, 328)(249, 257)(255, 259)(260, 279)(262, 286)(263, 271)(265, 284)(266, 272)(269, 310)(274, 277)(276, 325)(282, 355)(287, 341)(288, 340)(289, 294)(290, 291)(292, 297)(299, 304)(301, 322)(302, 309)(303, 312)(305, 307)(306, 359)(311, 324)(314, 335)(317, 358)(318, 337)(319, 332)(321, 346)(323, 352)(326, 343)(334, 338)(339, 357)(342, 349)(344, 356)
d: (1, 3, 7)(2, 5, 6)(4, 9, 15)(8, 14, 27)(10, 18, 35)(11, 20, 33)(12, 22, 25)(13, 23, 24)(16, 30, 54)(17, 31, 32)(19, 36, 37)(21, 39, 40)(26, 46, 72)(28, 49, 52)(29, 50, 51)(34, 57, 81)(38, 61, 90)(41, 64, 97)(42, 66, 99)(43, 67, 48)(44, 68, 71)(45, 69, 70)(47, 74, 95)(53, 77, 101)(55, 65, 98)(56, 79, 80)(58, 83, 88)(59, 85, 91)(60, 86, 87)(62, 92, 84)(63, 93, 94)(73, 105, 106)(75, 109, 142)(76, 110, 143)(78, 112, 140)(82, 115, 116)(89, 119, 153)(96, 120, 154)(100, 128, 127)(102, 131, 165)(103, 133, 167)(104, 135, 164)(107, 138, 172)(108, 136, 139)(111, 144, 123)(113, 147, 176)(114, 149, 156)(117, 150, 178)(118, 152, 160)(121, 155, 177)(122, 157, 148)(124, 158, 171)(125, 132, 166)(126, 146, 175)(129, 161, 151)(130, 162, 163)(134, 159, 168)(137, 169, 170)(141, 173, 179)(145, 174, 180)(181, 185, 231)(182, 186, 184)(183, 360, 300)(187, 227, 235)(188, 258, 189)(190, 305, 315)(191, 211, 207)(192, 325, 239)(193, 342, 255)(194, 198, 213)(195, 208, 334)(196, 286, 242)(197, 222, 219)(199, 245, 259)(200, 322, 343)(201, 206, 234)(202, 226, 229)(203, 215, 359)(204, 233, 357)(205, 232, 354)(209, 260, 281)(210, 348, 295)(212, 284, 250)(214, 335, 257)(216, 310, 358)(217, 350, 244)(218, 241, 246)(220, 341, 347)(221, 224, 291)(223, 293, 254)(225, 333, 312)(228, 304, 301)(230, 289, 261)(236, 355, 351)(237, 319, 349)(238, 318, 327)(240, 317, 346)(243, 266, 288)(247, 248, 313)(249, 263, 292)(251, 340, 316)(252, 344, 339)(253, 330, 320)(256, 332, 353)(262, 329, 311)(264, 306, 267)(265, 283, 271)(268, 269, 303)(270, 314, 290)(272, 321, 328)(273, 307, 338)(274, 337, 302)(275, 299, 308)(276, 323, 298)(277, 331, 324)(278, 296, 309)(279, 326, 345)(280, 287, 282)(285, 297, 294)(336, 352, 356)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 134 ]
360
-1 201 191 184 186
-2 202 184 218 186
-3 211 182 184 206
-4 201 191 202 218
-5 182 226 184 241
-6 246 182 229 186
-7 234 182 207 186
-8 189 201 267 280
-9 211 226 206 241
-10 231 254 189 201
-11 209 189 191 227
-12 243 189 191 268
-13 275 202 194 230
-14 264 188 287 206
-15 234 246 207 229
-16 231 254 267 280
-17 202 224 181 194
-18 188 223 181 206
-19 187 194 218 284
-20 188 211 235 260
-21 265 278 194 218
-22 188 211 266 269
-23 198 299 289 226
-24 308 213 261 229
-25 288 258 303 207
-26 267 312 205 340
-27 234 258 282 306
-28 209 243 268 227
-29 275 224 181 230
-30 264 287 223 181
-31 198 291 226 185
-32 231 221 213 229
-33 187 258 281 207
-34 267 278 204 205
-35 234 258 293 185
-36 198 227 250 241
-37 212 213 235 246
-38 298 222 280 205
-39 198 283 241 296
-40 309 213 246 271
-41 355 280 205 359
-42 221 254 302 263
-43 227 250 283 296
-44 341 300 268 225
-45 275 341 225 295
-46 264 232 225 316
-47 243 310 300 272
-48 187 265 278 284
-49 266 235 269 260
-50 299 289 291 185
-51 231 308 221 261
-52 187 288 281 303
-53 278 312 204 340
-54 282 293 185 306
-55 221 254 196 273
-56 275 300 268 295
-57 264 232 233 296
-58 243 300 279 196
-59 209 298 290 250
-60 297 277 295 230
-61 232 276 287 219
-62 209 304 250 294
-63 305 262 295 230
-64 232 287 203 351
-65 286 223 224 307
-66 223 224 292 274
-67 309 212 235 271
-68 333 269 347 183
-69 210 299 333 347
-70 220 308 312 348
-71 220 312 303 360
-72 354 333 251 306
-73 352 265 335 204
-74 266 321 358 183
-75 298 222 355 359
-76 302 196 273 263
-77 233 225 316 296
-78 310 279 272 196
-79 210 299 269 183
-80 308 303 348 360
-81 309 354 357 306
-82 265 204 292 252
-83 286 266 183 326
-84 297 281 228 284
-85 276 212 270 260
-86 210 331 289 294
-87 324 348 261 285
-88 242 288 345 360
-89 220 330 192 340
-90 354 323 282 197
-91 323 281 314 284
-92 212 301 260 285
-93 210 289 315 329
-94 190 311 348 261
-95 288 216 360 328
-96 220 248 350 340
-97 354 236 215 282
-98 242 291 293 338
-99 291 249 293 337
-100 298 290 304 294
-101 309 333 357 251
-102 193 237 359 217
-103 302 237 217 339
-104 353 310 247 237
-105 233 257 356 283
-106 214 357 336 271
-107 199 245 355 193
-108 297 277 305 262
-109 276 203 219 351
-110 286 292 274 307
-111 352 335 292 252
-112 286 321 358 326
-113 302 193 359 339
-114 331 353 310 304
-115 233 344 249 283
-116 357 271 339 263
-117 352 355 193 238
-118 330 222 290 334
-119 341 320 325 316
-120 341 244 313 316
-121 353 343 272 262
-122 222 257 290 318
-123 214 336 339 263
-124 353 346 272 317
-125 279 325 195 273
-126 190 322 279 273
-127 297 323 314 228
-128 276 301 270 285
-129 331 247 237 304
-130 343 239 305 208
-131 319 342 203 350
-132 326 239 208 307
-133 319 350 252 274
-134 253 335 238 208
-135 319 256 248 358
-136 331 315 294 329
-137 343 346 262 317
-138 342 245 259 351
-139 190 311 324 285
-140 242 345 216 328
-141 330 192 248 350
-142 323 236 215 197
-143 242 249 337 338
-144 344 257 356 249
-145 352 199 245 238
-146 343 326 305 307
-147 342 203 252 274
-148 335 314 238 197
-149 256 301 324 358
-150 342 356 318 351
-151 277 313 228 349
-152 320 270 195 219
-153 253 347 239 251
-154 247 347 217 251
-155 200 321 256 329
-156 277 332 216 228
-157 214 270 327 219
-158 321 256 346 240
-159 330 257 334 318
-160 253 314 197 208
-161 319 301 324 248
-162 200 334 192 315
-163 190 322 325 195
-164 332 313 216 349
-165 244 255 215 349
-166 334 345 192 338
-167 244 344 337 349
-168 320 214 195 327
-169 200 346 240 329
-170 311 322 240 317
-171 332 240 317 328
-172 199 255 236 259
-173 320 244 313 325
-174 245 356 259 318
-175 200 345 315 338
-176 255 344 215 337
-177 332 311 322 328
-178 255 236 336 327
-179 253 247 217 239
-180 199 259 336 327
-181 17 18 29 30
-182 3 5 6 7
-183 68 79 83 74
-184 1 2 3 5
-185 35 50 31 54
-186 1 2 6 7
-187 33 48 19 52
-188 22 14 18 20
-189 11 12 8 10
-190 126 94 139 163
-191 11 1 12 4
-192 89 166 162 141
-193 102 113 117 107
-194 13 17 19 21
-195 168 125 152 163
-196 55 78 58 76
-197 90 148 160 142
-198 23 36 39 31
-199 145 180 172 107
-200 155 169 162 175
-201 1 4 8 10
-202 2 13 4 17
-203 147 64 109 131
-204 34 82 73 53
-205 34 26 38 41
-206 3 14 18 9
-207 33 25 15 7
-208 132 134 160 130
-209 11 59 28 62
-210 79 69 93 86
-211 22 3 9 20
-212 67 37 92 85
-213 24 37 40 32
-214 123 157 168 106
-215 165 176 97 142
-216 156 95 140 164
-217 154 102 179 103
-218 2 4 19 21
-219 157 61 152 109
-220 89 70 71 96
-221 55 51 42 32
-222 122 38 118 75
-223 66 18 30 65
-224 66 17 29 65
-225 44 77 45 46
-226 23 5 9 31
-227 11 36 28 43
-228 156 127 84 151
-229 24 15 6 32
-230 13 60 29 63
-231 16 51 10 32
-232 46 57 61 64
-233 77 57 115 105
-234 35 15 27 7
-235 67 37 49 20
-236 178 172 97 142
-237 102 103 104 129
-238 134 145 148 117
-239 132 179 130 153
-240 158 169 170 171
-241 36 5 39 9
-242 88 143 140 98
-243 12 47 58 28
-244 165 167 173 120
-245 145 138 107 174
-246 15 37 6 40
-247 154 179 104 129
-248 135 161 96 141
-249 99 143 144 115
-250 36 59 62 43
-251 154 101 72 153
-252 111 133 147 82
-253 134 179 160 153
-254 55 16 42 10
-255 165 176 178 172
-256 155 135 158 149
-257 122 144 159 105
-258 33 35 25 27
-259 180 138 172 174
-260 92 49 85 20
-261 24 94 51 87
-262 121 137 63 108
-263 123 116 42 76
-264 46 57 14 30
-265 48 82 73 21
-266 22 49 83 74
-267 34 26 16 8
-268 44 12 56 28
-269 22 68 79 49
-270 157 128 85 152
-271 67 116 40 106
-272 121 78 47 124
-273 55 125 126 76
-274 66 110 133 147
-275 45 56 13 29
-276 61 128 85 109
-277 156 60 151 108
-278 34 48 53 21
-279 78 58 125 126
-280 16 38 8 41
-281 33 91 84 52
-282 90 27 97 54
-283 115 39 105 43
-284 91 48 84 19
-285 92 128 139 87
-286 110 112 83 65
-287 14 61 30 64
-288 88 25 95 52
-289 23 93 50 86
-290 100 122 59 118
-291 99 50 31 98
-292 66 110 111 82
-293 99 35 54 98
-294 100 136 62 86
-295 45 56 60 63
-296 77 57 39 43
-297 60 127 84 108
-298 100 59 38 75
-299 23 79 69 50
-300 44 56 47 58
-301 92 149 128 161
-302 113 103 42 76
-303 25 80 71 52
-304 100 114 62 129
-305 146 63 108 130
-306 81 27 72 54
-307 110 132 146 65
-308 24 80 70 51
-309 67 101 81 40
-310 78 47 114 104
-311 177 170 94 139
-312 26 70 71 53
-313 151 173 120 164
-314 91 148 127 160
-315 136 93 162 175
-316 77 46 119 120
-317 124 137 170 171
-318 122 159 150 174
-319 133 135 161 131
-320 168 173 119 152
-321 155 112 158 74
-322 177 126 170 163
-323 90 91 127 142
-324 149 139 161 87
-325 125 173 119 163
-326 132 112 146 83
-327 178 157 168 180
-328 177 171 95 140
-329 155 136 169 93
-330 89 159 118 141
-331 114 136 129 86
-332 177 156 171 164
-333 68 101 69 72
-334 166 159 118 162
-335 111 134 148 73
-336 123 178 180 106
-337 99 143 176 167
-338 143 166 98 175
-339 123 113 103 116
-340 89 26 96 53
-341 44 45 119 120
-342 147 138 150 131
-343 121 146 137 130
-344 176 144 167 115
-345 88 166 140 175
-346 124 158 169 137
-347 154 68 69 153
-348 80 70 94 87
-349 165 167 151 164
-350 133 96 141 131
-351 138 150 64 109
-352 111 145 73 117
-353 121 124 114 104
-354 90 81 72 97
-355 117 41 107 75
-356 144 105 150 174
-357 101 81 116 106
-358 112 135 149 74
-359 102 113 41 75
-360 88 80 71 95
0

**************