C4graphGraph forms for C4 [ 360, 139 ] = XI(Rmap(180,5){3,10|10}_30)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 139 ] = XI(Rmap(180,5){3,10|10}_30).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {178, 181}, {178, 188}, {180, 187}, {168, 185}, {172, 186}, {160, 183}, {174, 185}, {163, 186}, {172, 182}, {171, 182}, {146, 183}, {146, 181}, {144, 187}, {143, 188}, {128, 190}, {135, 196}, {156, 223}, {137, 202}, {179, 245}, {180, 242}, {170, 227}, {175, 228}, {128, 205}, {156, 209}, {144, 222}, {173, 227}, {147, 221}, {174, 225}, {176, 225}, {163, 241}, {150, 197}, {155, 200}, {144, 197}, {170, 255}, {134, 220}, {132, 223}, {129, 221}, {142, 239}, {171, 202}, {151, 246}, {164, 198}, {165, 199}, {139, 232}, {161, 194}, {131, 230}, {139, 237}, {154, 253}, {156, 251}, {175, 199}, {160, 203}, {168, 196}, {175, 195}, {179, 222}, {132, 234}, {173, 195}, {141, 252}, {158, 237}, {159, 236}, {169, 220}, {157, 235}, {145, 232}, {158, 231}, {147, 233}, {170, 209}, {143, 243}, {157, 224}, {177, 204}, {84, 214}, {80, 213}, {125, 248}, {99, 229}, {104, 239}, {53, 189}, {121, 245}, {123, 246}, {107, 251}, {84, 198}, {105, 250}, {107, 255}, {103, 242}, {88, 206}, {114, 228}, {66, 218}, {83, 203}, {101, 253}, {102, 254}, {115, 234}, {64, 218}, {66, 216}, {120, 226}, {82, 201}, {114, 238}, {119, 233}, {127, 224}, {83, 243}, {84, 244}, {89, 249}, {90, 250}, {94, 254}, {81, 240}, {86, 247}, {92, 253}, {113, 208}, {79, 237}, {71, 228}, {82, 241}, {75, 232}, {85, 246}, {69, 225}, {70, 226}, {73, 236}, {78, 235}, {76, 233}, {77, 234}, {91, 252}, {122, 210}, {71, 238}, {80, 249}, {85, 255}, {93, 247}, {121, 211}, {99, 200}, {124, 215}, {72, 229}, {74, 231}, {125, 211}, {16, 191}, {73, 230}, {87, 248}, {96, 207}, {11, 186}, {15, 190}, {13, 188}, {90, 235}, {4, 182}, {5, 183}, {14, 189}, {67, 240}, {1, 181}, {82, 230}, {78, 250}, {1, 183}, {1, 182}, {12, 187}, {8, 191}, {2, 181}, {108, 219}, {123, 204}, {3, 187}, {76, 244}, {7, 190}, {92, 229}, {104, 210}, {120, 194}, {1, 186}, {3, 184}, {2, 185}, {66, 254}, {94, 226}, {101, 217}, {107, 215}, {4, 185}, {112, 205}, {2, 188}, {66, 252}, {6, 184}, {3, 189}, {78, 241}, {105, 214}, {17, 209}, {7, 198}, {53, 244}, {25, 216}, {23, 214}, {21, 212}, {19, 210}, {9, 200}, {30, 220}, {57, 251}, {34, 224}, {31, 221}, {10, 201}, {26, 217}, {22, 213}, {123, 184}, {54, 242}, {123, 191}, {6, 195}, {2, 196}, {29, 219}, {28, 218}, {9, 207}, {8, 206}, {3, 197}, {5, 194}, {20, 211}, {121, 190}, {9, 192}, {42, 227}, {11, 194}, {6, 204}, {51, 249}, {38, 236}, {36, 238}, {7, 205}, {10, 193}, {51, 248}, {60, 240}, {4, 202}, {27, 213}, {17, 223}, {16, 222}, {5, 203}, {8, 199}, {24, 215}, {12, 195}, {7, 214}, {17, 192}, {14, 220}, {15, 221}, {106, 184}, {18, 193}, {43, 255}, {13, 219}, {36, 243}, {106, 189}, {29, 196}, {62, 231}, {31, 198}, {10, 208}, {27, 193}, {21, 206}, {30, 197}, {48, 208}, {28, 254}, {24, 251}, {4, 225}, {61, 216}, {25, 252}, {18, 247}, {16, 245}, {6, 227}, {16, 246}, {63, 217}, {61, 219}, {5, 226}, {40, 207}, {32, 199}, {26, 253}, {88, 191}, {33, 200}, {39, 206}, {37, 204}, {35, 202}, {62, 212}, {34, 201}, {49, 218}, {38, 205}, {8, 228}, {28, 240}, {27, 247}, {20, 248}, {10, 230}, {9, 229}, {23, 250}, {22, 249}, {36, 203}, {48, 193}, {56, 201}, {18, 224}, {50, 192}, {39, 212}, {24, 237}, {26, 239}, {17, 231}, {47, 217}, {46, 216}, {37, 211}, {35, 213}, {25, 238}, {44, 212}, {41, 208}, {43, 210}, {11, 241}, {45, 215}, {15, 245}, {14, 244}, {19, 232}, {42, 209}, {23, 236}, {19, 239}, {20, 233}, {50, 207}, {22, 235}, {12, 242}, {62, 192}, {33, 223}, {32, 222}, {13, 243}, {21, 234}, {65, 321}, {76, 332}, {67, 322}, {69, 324}, {86, 343}, {23, 277}, {92, 350}, {86, 341}, {40, 300}, {61, 313}, {49, 309}, {34, 295}, {73, 332}, {63, 314}, {59, 318}, {94, 347}, {100, 353}, {62, 312}, {77, 331}, {67, 325}, {102, 352}, {68, 323}, {13, 261}, {52, 316}, {44, 293}, {91, 338}, {111, 358}, {27, 273}, {58, 304}, {49, 315}, {90, 336}, {93, 343}, {95, 341}, {106, 352}, {109, 359}, {110, 356}, {25, 274}, {59, 304}, {45, 294}, {88, 339}, {110, 357}, {60, 305}, {75, 326}, {43, 293}, {81, 350}, {28, 268}, {38, 310}, {118, 358}, {14, 287}, {65, 336}, {26, 267}, {12, 286}, {47, 317}, {91, 329}, {75, 344}, {19, 263}, {81, 325}, {54, 290}, {44, 312}, {33, 309}, {32, 308}, {20, 257}, {68, 337}, {58, 303}, {56, 301}, {47, 314}, {11, 285}, {72, 350}, {32, 310}, {116, 354}, {117, 355}, {40, 319}, {60, 299}, {57, 302}, {46, 313}, {127, 359}, {120, 353}, {50, 296}, {93, 327}, {55, 300}, {74, 342}, {52, 297}, {70, 347}, {54, 299}, {41, 311}, {53, 298}, {89, 326}, {46, 271}, {111, 334}, {117, 340}, {34, 257}, {126, 349}, {96, 324}, {40, 269}, {109, 328}, {111, 330}, {102, 320}, {110, 328}, {119, 337}, {108, 331}, {116, 339}, {47, 263}, {58, 272}, {109, 327}, {118, 348}, {112, 347}, {97, 333}, {45, 256}, {49, 284}, {100, 329}, {29, 307}, {63, 273}, {113, 351}, {115, 349}, {15, 288}, {30, 305}, {60, 268}, {51, 258}, {59, 266}, {57, 264}, {55, 262}, {35, 273}, {117, 327}, {18, 289}, {58, 265}, {55, 260}, {54, 261}, {39, 276}, {22, 291}, {44, 281}, {36, 274}, {45, 283}, {37, 275}, {100, 338}, {105, 351}, {21, 290}, {52, 259}, {51, 260}, {61, 261}, {101, 349}, {113, 329}, {115, 331}, {35, 282}, {63, 262}, {56, 257}, {42, 275}, {106, 339}, {118, 335}, {98, 344}, {110, 340}, {119, 332}, {24, 292}, {43, 279}, {42, 278}, {41, 277}, {31, 291}, {97, 349}, {37, 280}, {48, 270}, {94, 352}, {116, 330}, {33, 286}, {91, 356}, {92, 355}, {102, 345}, {126, 319}, {69, 262}, {101, 294}, {64, 261}, {72, 269}, {77, 267}, {112, 310}, {113, 311}, {114, 309}, {71, 271}, {82, 282}, {74, 258}, {97, 296}, {30, 338}, {67, 271}, {84, 280}, {87, 283}, {96, 300}, {103, 299}, {117, 313}, {81, 284}, {127, 306}, {68, 266}, {89, 279}, {65, 270}, {98, 301}, {116, 315}, {108, 316}, {111, 318}, {118, 292}, {71, 276}, {96, 307}, {68, 272}, {79, 283}, {78, 282}, {77, 281}, {76, 280}, {70, 274}, {69, 273}, {86, 259}, {87, 258}, {29, 331}, {109, 314}, {126, 294}, {31, 326}, {80, 265}, {112, 298}, {124, 294}, {73, 277}, {75, 279}, {74, 278}, {89, 260}, {80, 270}, {127, 289}, {95, 256}, {122, 293}, {56, 344}, {79, 303}, {95, 319}, {55, 342}, {108, 269}, {64, 290}, {83, 305}, {88, 315}, {38, 320}, {59, 348}, {93, 314}, {79, 295}, {90, 306}, {99, 267}, {100, 268}, {103, 271}, {104, 256}, {97, 264}, {39, 333}, {121, 275}, {98, 265}, {46, 322}, {98, 270}, {122, 278}, {85, 312}, {125, 272}, {53, 347}, {114, 284}, {87, 295}, {48, 321}, {52, 325}, {70, 308}, {41, 346}, {65, 306}, {103, 276}, {104, 283}, {126, 269}, {72, 316}, {120, 268}, {125, 265}, {85, 288}, {57, 335}, {105, 287}, {83, 299}, {122, 258}, {124, 260}, {99, 281}, {124, 262}, {64, 315}, {115, 264}, {107, 279}, {119, 266}, {95, 289}, {50, 333}, {168, 297}, {177, 304}, {166, 293}, {142, 267}, {152, 285}, {153, 287}, {164, 291}, {166, 302}, {170, 288}, {129, 266}, {164, 303}, {167, 297}, {128, 272}, {133, 277}, {165, 308}, {176, 289}, {147, 257}, {149, 263}, {137, 282}, {173, 318}, {143, 284}, {134, 274}, {164, 304}, {156, 264}, {145, 263}, {148, 259}, {132, 286}, {131, 285}, {138, 276}, {129, 288}, {140, 301}, {136, 297}, {137, 301}, {138, 302}, {139, 303}, {146, 311}, {132, 290}, {144, 310}, {150, 305}, {148, 316}, {171, 259}, {149, 317}, {131, 298}, {177, 280}, {149, 319}, {148, 313}, {155, 309}, {135, 296}, {151, 312}, {176, 256}, {140, 317}, {175, 286}, {162, 275}, {134, 308}, {154, 296}, {152, 298}, {151, 292}, {135, 307}, {162, 278}, {137, 317}, {155, 302}, {169, 287}, {157, 295}, {158, 292}, {161, 285}, {142, 307}, {145, 300}, {140, 306}, {157, 291}, {129, 318}, {166, 281}, {136, 311}, {148, 340}, {149, 341}, {169, 360}, {167, 357}, {128, 323}, {161, 357}, {162, 358}, {135, 322}, {146, 343}, {153, 351}, {167, 353}, {138, 333}, {145, 342}, {158, 342}, {172, 356}, {174, 359}, {142, 324}, {151, 348}, {130, 334}, {165, 360}, {159, 337}, {131, 332}, {150, 345}, {130, 339}, {178, 355}, {143, 350}, {139, 344}, {134, 338}, {141, 345}, {133, 336}, {179, 358}, {147, 326}, {150, 320}, {180, 354}, {141, 346}, {153, 321}, {154, 322}, {152, 321}, {153, 323}, {152, 323}, {133, 346}, {159, 320}, {136, 343}, {133, 357}, {130, 352}, {173, 334}, {174, 328}, {138, 354}, {136, 353}, {166, 335}, {141, 356}, {130, 360}, {163, 329}, {140, 359}, {165, 334}, {162, 335}, {177, 348}, {168, 325}, {167, 328}, {161, 336}, {176, 324}, {178, 327}, {159, 360}, {169, 337}, {172, 340}, {154, 355}, {179, 330}, {160, 345}, {155, 354}, {160, 346}, {163, 351}, {171, 341}, {180, 330} }>;

(II) A more general form is to represent the graph as the orbit of {178, 181} under the group generated by the following permutations:

a: (2, 11)(3, 19)(4, 5)(6, 43)(7, 9)(8, 51)(10, 61)(12, 75)(13, 82)(14, 26)(15, 17)(16, 74)(18, 66)(20, 21)(22, 114)(23, 72)(24, 111)(25, 27)(28, 127)(29, 131)(30, 47)(31, 33)(32, 55)(34, 64)(35, 36)(37, 44)(38, 40)(39, 125)(41, 148)(42, 85)(45, 130)(46, 48)(49, 157)(50, 128)(52, 133)(53, 142)(54, 56)(57, 59)(58, 138)(60, 140)(62, 121)(63, 134)(65, 67)(68, 97)(69, 70)(71, 80)(73, 108)(76, 77)(78, 143)(79, 116)(81, 90)(83, 137)(84, 99)(86, 141)(87, 88)(89, 175)(91, 93)(92, 105)(94, 176)(95, 102)(96, 112)(98, 103)(100, 109)(101, 169)(104, 106)(107, 173)(110, 136)(113, 117)(115, 119)(120, 174)(122, 123)(124, 165)(126, 159)(129, 156)(132, 147)(135, 152)(139, 180)(144, 145)(146, 172)(149, 150)(151, 162)(153, 154)(155, 164)(158, 179)(160, 171)(161, 168)(163, 178)(166, 177)(181, 186)(182, 183)(184, 210)(185, 194)(187, 232)(188, 241)(189, 239)(190, 192)(191, 258)(193, 216)(195, 279)(196, 285)(197, 263)(198, 200)(199, 260)(201, 261)(202, 203)(204, 293)(205, 207)(206, 248)(208, 313)(209, 288)(211, 212)(213, 238)(214, 229)(215, 334)(217, 220)(218, 224)(219, 230)(221, 223)(222, 342)(225, 226)(227, 255)(228, 249)(231, 245)(233, 234)(235, 284)(236, 269)(237, 330)(240, 306)(242, 344)(243, 282)(244, 267)(246, 278)(247, 252)(250, 350)(251, 318)(253, 287)(254, 289)(256, 352)(257, 290)(259, 346)(262, 308)(264, 266)(265, 276)(268, 359)(270, 271)(272, 333)(273, 274)(275, 312)(277, 316)(280, 281)(283, 339)(286, 326)(291, 309)(292, 358)(294, 360)(295, 315)(296, 323)(297, 357)(298, 307)(299, 301)(300, 310)(302, 304)(303, 354)(305, 317)(311, 340)(314, 338)(319, 320)(321, 322)(324, 347)(325, 336)(327, 329)(328, 353)(331, 332)(335, 348)(337, 349)(341, 345)(343, 356)(351, 355)
b: (2, 5)(3, 9)(4, 11)(6, 17)(7, 19)(8, 21)(10, 27)(12, 33)(13, 36)(14, 40)(15, 43)(16, 44)(18, 48)(20, 51)(22, 56)(23, 47)(24, 59)(25, 61)(26, 38)(28, 67)(29, 70)(30, 72)(31, 75)(32, 77)(34, 80)(35, 82)(37, 74)(39, 88)(41, 93)(45, 68)(46, 66)(49, 103)(50, 106)(52, 100)(53, 96)(54, 114)(55, 76)(57, 111)(58, 79)(60, 81)(62, 123)(63, 73)(64, 71)(65, 127)(69, 131)(78, 137)(83, 143)(84, 145)(86, 113)(87, 125)(89, 147)(90, 140)(91, 148)(92, 150)(94, 135)(95, 153)(97, 130)(98, 157)(99, 144)(101, 159)(102, 154)(104, 128)(105, 149)(107, 129)(108, 134)(109, 133)(112, 142)(115, 165)(116, 138)(117, 141)(119, 124)(120, 168)(121, 122)(126, 169)(132, 175)(139, 164)(152, 176)(155, 180)(156, 173)(158, 177)(160, 178)(161, 174)(163, 171)(166, 179)(181, 183)(182, 186)(184, 192)(185, 194)(187, 200)(188, 203)(189, 207)(190, 210)(191, 212)(195, 223)(196, 226)(197, 229)(198, 232)(199, 234)(201, 213)(202, 241)(204, 231)(205, 239)(208, 247)(209, 227)(211, 258)(214, 263)(215, 266)(217, 236)(218, 271)(219, 274)(220, 269)(221, 279)(222, 281)(224, 270)(225, 285)(228, 290)(230, 273)(233, 260)(235, 301)(237, 304)(238, 261)(242, 309)(244, 300)(245, 293)(246, 312)(249, 257)(250, 317)(251, 318)(252, 313)(253, 320)(254, 322)(255, 288)(256, 323)(259, 329)(262, 332)(264, 334)(265, 295)(267, 310)(268, 325)(272, 283)(275, 278)(276, 315)(277, 314)(280, 342)(284, 299)(287, 319)(289, 321)(291, 344)(292, 348)(294, 337)(296, 352)(297, 353)(298, 324)(302, 330)(305, 350)(307, 347)(308, 331)(311, 343)(316, 338)(327, 346)(328, 357)(333, 339)(335, 358)(336, 359)(340, 356)(341, 351)(345, 355)(349, 360)
c: (1, 2)(3, 8)(5, 13)(6, 16)(7, 17)(9, 23)(10, 26)(11, 29)(12, 32)(14, 39)(15, 42)(18, 47)(19, 34)(20, 43)(21, 53)(22, 55)(24, 58)(25, 60)(27, 63)(28, 66)(30, 71)(31, 74)(33, 38)(35, 69)(36, 83)(37, 85)(40, 90)(41, 92)(44, 76)(45, 98)(46, 100)(48, 101)(49, 102)(50, 105)(51, 89)(52, 110)(54, 70)(56, 104)(57, 68)(59, 118)(61, 120)(62, 84)(64, 94)(65, 126)(67, 91)(72, 133)(73, 99)(75, 87)(77, 131)(78, 96)(79, 139)(80, 124)(81, 141)(82, 142)(86, 109)(88, 106)(95, 140)(97, 153)(103, 134)(107, 125)(108, 161)(112, 132)(113, 154)(114, 150)(115, 152)(116, 130)(117, 136)(119, 166)(121, 170)(122, 147)(127, 149)(128, 156)(129, 162)(135, 163)(137, 176)(138, 169)(143, 160)(144, 175)(145, 157)(146, 178)(148, 167)(151, 177)(155, 159)(158, 164)(165, 180)(168, 172)(171, 174)(173, 179)(182, 185)(183, 188)(184, 191)(186, 196)(187, 199)(189, 206)(190, 209)(192, 214)(193, 217)(194, 219)(195, 222)(197, 228)(198, 231)(200, 236)(201, 239)(202, 225)(203, 243)(204, 246)(205, 223)(207, 250)(208, 253)(210, 257)(211, 255)(212, 244)(213, 262)(215, 265)(216, 268)(218, 254)(220, 276)(221, 278)(224, 263)(226, 261)(227, 245)(229, 277)(230, 267)(232, 295)(233, 293)(234, 298)(235, 300)(237, 303)(238, 305)(240, 252)(241, 307)(242, 308)(247, 314)(248, 279)(249, 260)(251, 272)(256, 301)(258, 326)(259, 328)(264, 323)(266, 335)(269, 336)(270, 294)(271, 338)(274, 299)(275, 288)(280, 312)(281, 332)(282, 324)(283, 344)(284, 345)(285, 331)(286, 310)(287, 333)(289, 317)(290, 347)(291, 342)(292, 304)(296, 351)(297, 340)(302, 337)(306, 319)(309, 320)(311, 355)(313, 353)(315, 352)(316, 357)(318, 358)(321, 349)(322, 329)(325, 356)(327, 343)(330, 334)(341, 359)(346, 350)(354, 360)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 139 ]
360
-1 181 182 183 186
-2 188 181 185 196
-3 187 189 184 197
-4 202 225 182 185
-5 203 226 183 194
-6 204 227 184 195
-7 198 190 214 205
-8 199 191 206 228
-9 200 192 207 229
-10 201 193 208 230
-11 194 186 241 285
-12 187 242 286 195
-13 188 243 261 219
-14 220 287 189 244
-15 221 288 190 245
-16 222 245 191 246
-17 209 231 223 192
-18 289 224 247 193
-19 210 232 239 263
-20 211 233 257 248
-21 212 234 290 206
-22 213 235 291 249
-23 277 214 236 250
-24 215 237 292 251
-25 216 238 252 274
-26 253 267 217 239
-27 213 247 193 273
-28 254 268 218 240
-29 331 196 219 307
-30 220 305 338 197
-31 198 221 291 326
-32 308 199 222 310
-33 286 309 200 223
-34 201 224 257 295
-35 202 213 282 273
-36 243 203 238 274
-37 275 211 280 204
-38 320 310 236 205
-39 276 212 333 206
-40 319 300 269 207
-41 277 311 346 208
-42 209 275 278 227
-43 210 255 279 293
-44 212 312 281 293
-45 256 215 283 294
-46 322 313 216 271
-47 314 217 317 263
-48 321 193 270 208
-49 309 315 218 284
-50 333 192 207 296
-51 258 248 249 260
-52 297 259 325 316
-53 298 189 244 347
-54 242 299 290 261
-55 342 300 260 262
-56 201 344 257 301
-57 264 302 335 251
-58 265 303 304 272
-59 266 304 348 318
-60 299 268 305 240
-61 313 216 261 219
-62 231 212 312 192
-63 314 217 262 273
-64 290 315 261 218
-65 321 270 336 306
-66 254 216 218 252
-67 322 325 271 240
-68 266 323 337 272
-69 225 324 262 273
-70 308 226 347 274
-71 276 238 271 228
-72 269 316 229 350
-73 277 332 236 230
-74 231 342 278 258
-75 232 344 279 326
-76 233 244 332 280
-77 331 234 267 281
-78 235 282 250 241
-79 237 303 283 295
-80 265 213 270 249
-81 325 240 284 350
-82 201 282 230 241
-83 243 299 203 305
-84 198 244 214 280
-85 255 288 246 312
-86 341 343 247 259
-87 258 248 283 295
-88 191 315 206 339
-89 279 249 260 326
-90 235 336 250 306
-91 356 338 252 329
-92 253 355 229 350
-93 343 247 314 327
-94 352 254 226 347
-95 319 341 256 289
-96 300 324 207 307
-97 264 333 349 296
-98 265 344 301 270
-99 200 267 281 229
-100 353 268 338 329
-101 253 217 294 349
-102 352 254 320 345
-103 242 276 299 271
-104 210 256 239 283
-105 287 214 250 351
-106 352 189 184 339
-107 255 279 215 251
-108 331 269 316 219
-109 314 359 327 328
-110 356 357 328 340
-111 330 334 358 318
-112 298 310 347 205
-113 311 208 329 351
-114 309 238 228 284
-115 264 331 234 349
-116 330 354 315 339
-117 355 313 327 340
-118 335 292 358 348
-119 233 266 332 337
-120 353 268 226 194
-121 275 211 190 245
-122 210 278 258 293
-123 191 246 204 184
-124 215 260 294 262
-125 265 211 248 272
-126 319 269 294 349
-127 289 224 359 306
-128 190 323 205 272
-129 221 266 288 318
-130 352 334 360 339
-131 298 332 230 285
-132 286 223 234 290
-133 277 346 357 336
-134 220 308 338 274
-135 322 196 296 307
-136 297 353 343 311
-137 202 301 282 317
-138 276 354 333 302
-139 232 344 237 303
-140 301 359 306 317
-141 345 356 346 252
-142 267 324 239 307
-143 188 243 284 350
-144 187 222 310 197
-145 232 342 300 263
-146 343 311 181 183
-147 221 233 257 326
-148 313 259 316 340
-149 319 341 317 263
-150 320 345 305 197
-151 246 312 292 348
-152 298 321 323 285
-153 287 321 323 351
-154 253 322 355 296
-155 309 200 354 302
-156 209 264 223 251
-157 224 235 291 295
-158 231 342 237 292
-159 320 236 337 360
-160 345 203 346 183
-161 357 336 194 285
-162 275 278 335 358
-163 241 329 351 186
-164 198 291 303 304
-165 308 199 334 360
-166 302 335 281 293
-167 297 353 357 328
-168 297 325 185 196
-169 220 287 337 360
-170 209 255 288 227
-171 341 202 182 259
-172 356 182 186 340
-173 334 227 195 318
-174 225 359 185 328
-175 286 199 195 228
-176 256 289 225 324
-177 280 204 304 348
-178 188 355 181 327
-179 330 222 245 358
-180 187 242 330 354
-181 1 2 178 146
-182 1 4 171 172
-183 1 146 5 160
-184 123 3 6 106
-185 2 168 4 174
-186 11 1 172 163
-187 12 144 3 180
-188 143 2 13 178
-189 3 14 106 53
-190 121 15 7 128
-191 88 123 16 8
-192 17 50 62 9
-193 48 27 18 10
-194 11 5 161 120
-195 12 6 173 175
-196 2 135 168 29
-197 144 3 150 30
-198 7 84 31 164
-199 165 8 32 175
-200 33 99 155 9
-201 34 56 82 10
-202 35 4 137 171
-203 36 5 83 160
-204 177 123 37 6
-205 112 38 7 128
-206 88 39 8 21
-207 50 40 96 9
-208 113 48 41 10
-209 156 170 17 42
-210 122 104 19 43
-211 121 37 125 20
-212 44 39 62 21
-213 22 35 80 27
-214 23 105 7 84
-215 45 24 124 107
-216 66 46 25 61
-217 101 47 26 63
-218 66 49 28 64
-219 13 61 29 108
-220 134 14 169 30
-221 15 147 129 31
-222 144 179 16 32
-223 33 132 156 17
-224 34 157 127 18
-225 176 69 4 174
-226 70 5 94 120
-227 170 6 173 42
-228 114 71 8 175
-229 99 92 72 9
-230 82 73 10 131
-231 158 17 62 74
-232 145 139 19 75
-233 147 20 119 76
-234 77 132 115 21
-235 22 78 90 157
-236 23 38 159 73
-237 24 79 158 139
-238 25 36 114 71
-239 26 104 19 142
-240 67 81 60 28
-241 11 78 82 163
-242 12 103 180 54
-243 143 13 36 83
-244 14 84 53 76
-245 121 179 15 16
-246 123 16 85 151
-247 27 93 18 86
-248 125 51 20 87
-249 22 89 80 51
-250 23 78 90 105
-251 24 57 156 107
-252 66 25 91 141
-253 154 101 26 92
-254 66 102 28 94
-255 170 85 107 43
-256 176 45 104 95
-257 34 56 147 20
-258 122 51 74 87
-259 148 171 52 86
-260 55 89 124 51
-261 13 61 64 54
-262 55 69 124 63
-263 145 47 149 19
-264 57 156 115 97
-265 58 80 125 98
-266 68 59 129 119
-267 77 99 26 142
-268 100 60 28 120
-269 126 72 40 108
-270 80 48 65 98
-271 67 46 103 71
-272 68 58 125 128
-273 35 69 27 63
-274 134 25 36 70
-275 121 37 162 42
-276 103 71 39 138
-277 23 133 73 41
-278 122 74 162 42
-279 89 107 75 43
-280 177 37 84 76
-281 44 77 99 166
-282 78 35 82 137
-283 45 79 104 87
-284 143 81 114 49
-285 11 161 152 131
-286 33 132 12 175
-287 14 169 105 153
-288 15 170 85 129
-289 176 127 18 95
-290 132 64 21 54
-291 22 157 31 164
-292 24 158 118 151
-293 44 122 166 43
-294 45 101 124 126
-295 34 79 157 87
-296 154 135 50 97
-297 167 168 136 52
-298 112 53 152 131
-299 103 60 83 54
-300 55 145 40 96
-301 56 137 140 98
-302 155 166 57 138
-303 79 58 139 164
-304 177 58 59 164
-305 60 83 150 30
-306 90 127 140 65
-307 135 29 96 142
-308 165 134 70 32
-309 33 155 114 49
-310 144 112 38 32
-311 113 146 136 41
-312 44 62 85 151
-313 46 148 61 117
-314 47 93 63 109
-315 88 49 116 64
-316 148 72 52 108
-317 47 137 149 140
-318 111 59 129 173
-319 126 149 40 95
-320 102 38 159 150
-321 48 152 65 153
-322 154 67 46 135
-323 68 128 152 153
-324 176 69 96 142
-325 67 168 81 52
-326 89 147 31 75
-327 178 93 117 109
-328 110 167 174 109
-329 100 91 113 163
-330 111 179 180 116
-331 77 115 29 108
-332 73 119 76 131
-333 39 50 138 97
-334 165 111 173 130
-335 166 57 118 162
-336 133 90 161 65
-337 68 169 159 119
-338 100 134 91 30
-339 88 116 106 130
-340 110 148 117 172
-341 149 171 95 86
-342 55 145 158 74
-343 146 136 93 86
-344 56 139 75 98
-345 102 160 150 141
-346 133 160 41 141
-347 112 70 94 53
-348 177 59 118 151
-349 101 115 126 97
-350 143 81 92 72
-351 113 105 163 153
-352 102 94 106 130
-353 100 167 136 120
-354 155 180 116 138
-355 154 178 92 117
-356 110 91 172 141
-357 110 133 167 161
-358 111 179 118 162
-359 127 140 174 109
-360 165 169 159 130
0

**************