C4graphGraph forms for C4 [ 360, 142 ] = XI(Rmap(180,15){4,30|6}_20)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 142 ] = XI(Rmap(180,15){4,30|6}_20).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {160, 185}, {157, 187}, {137, 186}, {142, 185}, {136, 183}, {137, 182}, {142, 204}, {178, 240}, {136, 203}, {153, 221}, {168, 236}, {140, 202}, {154, 220}, {141, 203}, {159, 216}, {171, 236}, {165, 237}, {150, 223}, {177, 253}, {180, 228}, {164, 241}, {141, 219}, {144, 198}, {150, 193}, {157, 197}, {146, 200}, {143, 211}, {133, 231}, {160, 196}, {134, 239}, {135, 238}, {170, 218}, {146, 227}, {144, 226}, {155, 232}, {158, 234}, {163, 215}, {162, 214}, {159, 235}, {169, 208}, {171, 210}, {161, 219}, {172, 209}, {180, 201}, {142, 240}, {100, 229}, {87, 212}, {101, 225}, {117, 243}, {61, 186}, {126, 246}, {62, 183}, {114, 251}, {62, 181}, {52, 187}, {80, 223}, {115, 252}, {75, 218}, {79, 222}, {77, 220}, {102, 247}, {96, 242}, {97, 243}, {43, 184}, {78, 221}, {106, 254}, {107, 255}, {99, 246}, {81, 199}, {84, 194}, {98, 244}, {64, 215}, {76, 219}, {86, 193}, {87, 192}, {96, 250}, {104, 245}, {114, 239}, {115, 238}, {122, 231}, {97, 254}, {103, 248}, {105, 246}, {121, 230}, {86, 245}, {101, 195}, {24, 191}, {98, 202}, {112, 216}, {23, 190}, {17, 189}, {71, 235}, {18, 191}, {74, 231}, {64, 237}, {16, 190}, {94, 240}, {95, 241}, {73, 230}, {118, 217}, {8, 184}, {79, 255}, {78, 254}, {77, 253}, {67, 243}, {89, 233}, {90, 234}, {91, 235}, {81, 224}, {83, 226}, {92, 237}, {121, 200}, {4, 182}, {15, 189}, {14, 188}, {11, 185}, {5, 183}, {86, 228}, {87, 229}, {93, 239}, {82, 225}, {122, 201}, {1, 181}, {72, 252}, {70, 242}, {84, 224}, {8, 189}, {1, 183}, {66, 244}, {13, 187}, {12, 186}, {9, 191}, {85, 227}, {111, 217}, {1, 182}, {2, 181}, {3, 187}, {7, 190}, {1, 186}, {68, 255}, {3, 184}, {2, 185}, {64, 252}, {71, 251}, {70, 250}, {126, 194}, {2, 188}, {6, 184}, {3, 189}, {88, 230}, {7, 198}, {58, 251}, {9, 200}, {10, 201}, {20, 208}, {61, 249}, {60, 248}, {22, 210}, {21, 209}, {113, 181}, {4, 193}, {63, 250}, {39, 226}, {10, 207}, {6, 195}, {2, 196}, {57, 255}, {56, 254}, {52, 242}, {3, 197}, {5, 194}, {48, 247}, {31, 216}, {9, 206}, {33, 233}, {26, 211}, {49, 248}, {48, 249}, {30, 215}, {28, 213}, {6, 204}, {55, 253}, {11, 193}, {10, 192}, {7, 205}, {14, 197}, {40, 227}, {29, 214}, {16, 220}, {61, 241}, {59, 247}, {36, 232}, {19, 222}, {41, 228}, {113, 188}, {4, 202}, {5, 203}, {8, 199}, {27, 212}, {18, 221}, {45, 253}, {19, 192}, {28, 207}, {12, 216}, {56, 236}, {19, 199}, {15, 219}, {14, 218}, {13, 217}, {98, 182}, {44, 249}, {24, 206}, {25, 207}, {104, 190}, {105, 191}, {20, 195}, {25, 192}, {55, 238}, {23, 205}, {4, 223}, {51, 232}, {17, 205}, {54, 234}, {53, 233}, {41, 245}, {24, 196}, {31, 194}, {62, 225}, {27, 250}, {54, 215}, {52, 213}, {50, 211}, {21, 247}, {44, 206}, {30, 252}, {26, 249}, {53, 214}, {40, 203}, {36, 199}, {32, 195}, {18, 246}, {59, 223}, {49, 213}, {5, 224}, {56, 221}, {41, 204}, {35, 198}, {33, 196}, {17, 244}, {16, 245}, {7, 226}, {29, 251}, {6, 225}, {57, 222}, {51, 212}, {43, 204}, {42, 205}, {34, 197}, {8, 224}, {9, 227}, {59, 209}, {55, 220}, {63, 212}, {58, 214}, {37, 200}, {39, 202}, {10, 228}, {61, 211}, {60, 210}, {22, 248}, {38, 201}, {32, 208}, {20, 229}, {30, 239}, {28, 237}, {26, 235}, {24, 233}, {22, 231}, {52, 198}, {21, 230}, {29, 238}, {25, 234}, {19, 229}, {35, 213}, {27, 236}, {34, 218}, {32, 217}, {36, 222}, {11, 240}, {15, 244}, {12, 241}, {47, 210}, {45, 208}, {14, 243}, {48, 206}, {49, 207}, {13, 242}, {67, 188}, {46, 209}, {23, 232}, {81, 336}, {101, 359}, {102, 356}, {73, 330}, {74, 329}, {28, 280}, {84, 337}, {58, 316}, {25, 286}, {67, 331}, {50, 315}, {42, 288}, {23, 284}, {105, 354}, {107, 359}, {41, 292}, {82, 351}, {89, 340}, {95, 338}, {48, 318}, {75, 325}, {16, 287}, {50, 317}, {11, 283}, {79, 351}, {65, 337}, {44, 316}, {13, 285}, {12, 284}, {95, 335}, {114, 354}, {15, 286}, {54, 295}, {39, 310}, {37, 308}, {55, 293}, {38, 309}, {59, 296}, {53, 294}, {88, 332}, {45, 312}, {63, 298}, {60, 297}, {47, 314}, {51, 293}, {46, 313}, {21, 268}, {38, 319}, {29, 260}, {80, 330}, {22, 269}, {83, 328}, {93, 326}, {30, 259}, {127, 354}, {75, 342}, {83, 334}, {91, 326}, {56, 294}, {70, 344}, {57, 295}, {40, 311}, {62, 289}, {117, 343}, {103, 324}, {119, 340}, {35, 263}, {105, 333}, {110, 326}, {123, 339}, {76, 357}, {112, 345}, {51, 281}, {76, 358}, {107, 320}, {108, 327}, {109, 326}, {31, 307}, {34, 271}, {110, 323}, {78, 352}, {124, 338}, {33, 270}, {53, 282}, {125, 338}, {85, 357}, {17, 288}, {81, 352}, {101, 340}, {103, 342}, {116, 325}, {127, 333}, {18, 289}, {50, 257}, {35, 272}, {96, 339}, {102, 341}, {37, 273}, {54, 258}, {39, 275}, {38, 274}, {108, 344}, {124, 328}, {111, 346}, {20, 290}, {97, 343}, {94, 358}, {26, 291}, {92, 357}, {58, 256}, {103, 349}, {44, 279}, {104, 339}, {106, 337}, {40, 276}, {46, 274}, {123, 327}, {36, 281}, {43, 278}, {109, 336}, {47, 273}, {127, 321}, {110, 336}, {27, 292}, {42, 277}, {93, 354}, {104, 343}, {83, 275}, {74, 267}, {85, 276}, {68, 262}, {97, 291}, {119, 309}, {68, 263}, {76, 271}, {72, 267}, {89, 282}, {108, 303}, {117, 310}, {65, 261}, {66, 262}, {73, 268}, {75, 270}, {31, 345}, {100, 290}, {106, 291}, {112, 313}, {69, 265}, {113, 317}, {120, 308}, {69, 264}, {82, 287}, {71, 266}, {86, 283}, {99, 302}, {121, 308}, {126, 307}, {47, 352}, {122, 309}, {125, 301}, {126, 302}, {113, 288}, {120, 297}, {88, 266}, {95, 268}, {67, 279}, {120, 300}, {106, 319}, {111, 314}, {115, 293}, {124, 299}, {57, 353}, {72, 272}, {90, 258}, {102, 318}, {116, 301}, {66, 280}, {85, 271}, {99, 313}, {77, 272}, {79, 274}, {100, 314}, {78, 273}, {119, 296}, {80, 305}, {63, 348}, {117, 278}, {98, 262}, {37, 320}, {118, 272}, {127, 281}, {60, 347}, {69, 290}, {99, 260}, {100, 259}, {68, 301}, {70, 303}, {125, 276}, {88, 306}, {64, 299}, {69, 302}, {91, 304}, {118, 285}, {49, 349}, {107, 263}, {108, 256}, {109, 257}, {110, 258}, {111, 259}, {65, 300}, {96, 269}, {94, 302}, {124, 268}, {46, 351}, {89, 296}, {91, 298}, {116, 261}, {118, 263}, {120, 265}, {122, 267}, {87, 293}, {116, 262}, {45, 350}, {82, 289}, {90, 297}, {92, 303}, {121, 266}, {112, 260}, {42, 348}, {43, 349}, {90, 300}, {123, 269}, {71, 304}, {92, 299}, {93, 298}, {73, 305}, {80, 296}, {74, 306}, {84, 300}, {114, 266}, {115, 267}, {34, 347}, {72, 305}, {109, 276}, {32, 346}, {66, 312}, {33, 346}, {123, 256}, {77, 305}, {94, 290}, {125, 257}, {65, 318}, {119, 264}, {147, 275}, {158, 286}, {154, 282}, {153, 281}, {148, 277}, {156, 285}, {129, 258}, {159, 284}, {149, 278}, {135, 260}, {131, 256}, {162, 294}, {163, 295}, {132, 257}, {154, 287}, {151, 274}, {138, 271}, {134, 259}, {155, 284}, {173, 298}, {133, 269}, {152, 273}, {130, 264}, {130, 265}, {172, 295}, {168, 292}, {136, 261}, {171, 294}, {150, 280}, {167, 297}, {169, 312}, {171, 314}, {170, 315}, {172, 313}, {137, 287}, {162, 309}, {167, 304}, {163, 308}, {131, 283}, {132, 285}, {128, 282}, {166, 316}, {168, 307}, {135, 283}, {146, 270}, {138, 279}, {169, 311}, {173, 307}, {174, 270}, {149, 310}, {151, 306}, {145, 311}, {176, 278}, {147, 315}, {151, 319}, {134, 303}, {142, 292}, {163, 265}, {162, 264}, {152, 306}, {149, 319}, {139, 288}, {129, 301}, {150, 312}, {164, 277}, {166, 279}, {143, 315}, {161, 277}, {133, 304}, {136, 318}, {179, 261}, {139, 317}, {153, 289}, {132, 317}, {170, 275}, {140, 310}, {141, 311}, {159, 291}, {165, 280}, {131, 316}, {161, 286}, {148, 299}, {138, 331}, {128, 322}, {166, 356}, {129, 323}, {143, 332}, {149, 337}, {132, 321}, {130, 324}, {158, 345}, {175, 360}, {164, 355}, {146, 346}, {169, 353}, {133, 334}, {143, 322}, {172, 353}, {157, 336}, {156, 332}, {138, 347}, {155, 329}, {128, 339}, {144, 323}, {139, 344}, {129, 338}, {147, 327}, {179, 359}, {178, 358}, {152, 332}, {139, 350}, {137, 351}, {178, 356}, {128, 343}, {176, 359}, {152, 320}, {155, 323}, {154, 322}, {153, 321}, {140, 341}, {147, 330}, {144, 329}, {145, 333}, {180, 360}, {148, 328}, {156, 321}, {145, 335}, {156, 322}, {151, 329}, {131, 355}, {165, 324}, {175, 334}, {134, 357}, {168, 331}, {135, 355}, {176, 340}, {174, 330}, {140, 360}, {130, 356}, {173, 331}, {175, 328}, {167, 334}, {174, 327}, {141, 358}, {164, 335}, {176, 349}, {180, 345}, {170, 325}, {177, 350}, {145, 353}, {173, 348}, {165, 342}, {179, 320}, {166, 341}, {158, 360}, {179, 325}, {178, 324}, {148, 355}, {160, 344}, {174, 342}, {175, 341}, {167, 347}, {177, 333}, {157, 352}, {161, 348}, {160, 350}, {177, 335} }>;

(II) A more general form is to represent the graph as the orbit of {160, 185} under the group generated by the following permutations:

a: (1, 2)(3, 8)(4, 11)(5, 14)(6, 17)(7, 20)(9, 26)(10, 28)(12, 33)(13, 36)(15, 43)(16, 45)(18, 50)(19, 52)(21, 58)(22, 54)(23, 32)(24, 61)(25, 49)(27, 68)(29, 73)(30, 74)(31, 75)(34, 84)(35, 87)(37, 91)(38, 92)(39, 94)(40, 97)(41, 66)(42, 101)(44, 48)(46, 108)(47, 110)(51, 118)(53, 95)(55, 77)(56, 125)(57, 96)(59, 131)(60, 90)(62, 113)(63, 107)(64, 122)(65, 138)(67, 136)(69, 83)(70, 79)(71, 121)(72, 115)(76, 149)(78, 109)(80, 135)(81, 157)(82, 139)(85, 106)(86, 150)(88, 114)(89, 164)(93, 152)(98, 142)(99, 147)(100, 144)(102, 166)(103, 158)(104, 169)(105, 143)(111, 155)(112, 174)(116, 168)(117, 141)(119, 148)(120, 167)(123, 172)(124, 162)(126, 170)(127, 156)(128, 145)(129, 171)(130, 175)(132, 153)(133, 163)(134, 151)(137, 160)(140, 178)(146, 159)(154, 177)(161, 176)(165, 180)(173, 179)(182, 185)(183, 188)(184, 189)(186, 196)(187, 199)(190, 208)(191, 211)(192, 213)(194, 218)(195, 205)(197, 224)(198, 229)(200, 235)(201, 237)(202, 240)(203, 243)(204, 244)(206, 249)(209, 256)(210, 258)(212, 263)(214, 268)(215, 231)(216, 270)(217, 232)(219, 278)(220, 253)(221, 257)(222, 242)(223, 283)(225, 288)(226, 290)(227, 291)(228, 280)(230, 251)(233, 241)(234, 248)(236, 301)(238, 305)(239, 306)(245, 312)(246, 315)(247, 316)(250, 255)(252, 267)(254, 276)(259, 329)(260, 330)(261, 331)(262, 292)(264, 328)(265, 334)(269, 295)(271, 337)(272, 293)(273, 326)(274, 303)(275, 302)(277, 340)(279, 318)(281, 285)(282, 335)(284, 346)(286, 349)(287, 350)(289, 317)(294, 338)(296, 355)(298, 320)(299, 309)(300, 347)(304, 308)(307, 325)(310, 358)(311, 343)(313, 327)(314, 323)(319, 357)(322, 333)(324, 360)(332, 354)(336, 352)(339, 353)(341, 356)(342, 345)(344, 351)(348, 359)
b: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 24)(10, 29)(11, 31)(13, 37)(14, 40)(15, 44)(16, 46)(17, 48)(19, 53)(20, 56)(22, 30)(23, 59)(25, 58)(26, 66)(27, 69)(28, 71)(32, 78)(33, 81)(34, 85)(35, 88)(36, 89)(38, 55)(39, 95)(41, 99)(42, 102)(43, 105)(45, 106)(47, 111)(49, 114)(50, 116)(51, 119)(52, 121)(54, 123)(57, 128)(60, 134)(61, 98)(63, 130)(64, 133)(65, 139)(67, 141)(68, 143)(70, 120)(72, 74)(73, 144)(75, 109)(76, 138)(77, 151)(79, 154)(80, 155)(83, 124)(84, 160)(86, 112)(87, 162)(90, 108)(91, 165)(92, 167)(93, 103)(94, 168)(96, 163)(97, 169)(100, 171)(101, 153)(104, 172)(107, 156)(110, 174)(113, 136)(115, 122)(117, 145)(118, 152)(125, 170)(126, 142)(127, 176)(129, 147)(131, 158)(132, 179)(135, 180)(140, 164)(146, 157)(148, 175)(149, 177)(150, 159)(161, 166)(173, 178)(181, 183)(182, 186)(184, 191)(185, 194)(187, 200)(188, 203)(189, 206)(190, 209)(192, 214)(193, 216)(195, 221)(196, 224)(197, 227)(198, 230)(199, 233)(201, 238)(202, 241)(204, 246)(205, 247)(207, 251)(208, 254)(210, 259)(211, 262)(212, 264)(213, 266)(215, 269)(217, 273)(218, 276)(219, 279)(220, 274)(222, 282)(223, 284)(225, 289)(226, 268)(228, 260)(229, 294)(231, 252)(232, 296)(234, 256)(235, 280)(236, 290)(237, 304)(239, 248)(240, 307)(242, 308)(243, 311)(244, 249)(245, 313)(250, 265)(253, 319)(255, 322)(257, 325)(258, 327)(261, 317)(263, 332)(270, 336)(272, 306)(275, 338)(277, 341)(278, 333)(281, 340)(283, 345)(285, 320)(286, 316)(287, 351)(288, 318)(291, 312)(292, 302)(293, 309)(295, 339)(297, 303)(298, 324)(299, 334)(300, 344)(301, 315)(305, 329)(310, 335)(321, 359)(323, 330)(326, 342)(331, 358)(337, 350)(343, 353)(346, 352)(347, 357)(348, 356)(349, 354)(355, 360)
c: (2, 4)(3, 7)(5, 12)(6, 16)(8, 23)(9, 21)(10, 27)(13, 35)(14, 39)(15, 42)(18, 46)(19, 51)(20, 55)(24, 59)(25, 63)(26, 65)(28, 70)(29, 69)(32, 77)(33, 80)(34, 83)(37, 88)(38, 56)(40, 95)(43, 104)(44, 102)(47, 74)(49, 96)(50, 116)(53, 119)(54, 93)(57, 127)(58, 130)(60, 133)(61, 136)(62, 137)(64, 134)(66, 139)(67, 140)(68, 132)(71, 120)(72, 111)(73, 146)(75, 147)(76, 148)(78, 151)(79, 153)(81, 155)(84, 159)(85, 124)(86, 142)(90, 91)(94, 135)(97, 149)(98, 113)(100, 115)(101, 154)(103, 123)(105, 172)(107, 156)(108, 165)(109, 129)(112, 126)(114, 163)(122, 171)(128, 176)(131, 178)(138, 175)(141, 164)(143, 179)(144, 157)(150, 160)(158, 173)(168, 180)(169, 177)(181, 182)(183, 186)(184, 190)(185, 193)(187, 198)(188, 202)(189, 205)(191, 209)(192, 212)(194, 216)(195, 220)(196, 223)(197, 226)(199, 232)(200, 230)(201, 236)(203, 241)(204, 245)(206, 247)(207, 250)(208, 253)(210, 231)(211, 261)(213, 242)(214, 264)(215, 239)(217, 272)(218, 275)(219, 277)(221, 274)(222, 281)(224, 284)(225, 287)(227, 268)(228, 292)(229, 293)(233, 296)(234, 298)(235, 300)(237, 303)(238, 290)(240, 283)(243, 310)(244, 288)(246, 313)(248, 269)(249, 318)(251, 265)(252, 259)(254, 319)(255, 321)(256, 324)(257, 301)(258, 326)(260, 302)(262, 317)(263, 285)(266, 308)(267, 314)(270, 330)(271, 328)(273, 306)(276, 338)(278, 343)(279, 341)(280, 344)(282, 340)(286, 348)(289, 351)(291, 337)(294, 309)(295, 354)(297, 304)(299, 357)(305, 346)(307, 345)(311, 335)(312, 350)(315, 325)(316, 356)(320, 332)(322, 359)(323, 336)(327, 342)(329, 352)(331, 360)(333, 353)(334, 347)(339, 349)(355, 358)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 142 ]
360
-1 181 182 183 186
-2 188 181 185 196
-3 187 189 184 197
-4 223 202 182 193
-5 224 203 183 194
-6 225 204 184 195
-7 198 190 226 205
-8 199 189 224 184
-9 200 191 227 206
-10 201 192 228 207
-11 193 283 185 240
-12 216 284 186 241
-13 187 242 217 285
-14 188 243 218 197
-15 286 189 244 219
-16 220 287 190 245
-17 189 244 288 205
-18 221 289 191 246
-19 199 222 192 229
-20 290 195 229 208
-21 209 268 247 230
-22 231 210 269 248
-23 232 190 205 284
-24 233 191 206 196
-25 286 234 192 207
-26 211 235 291 249
-27 212 236 292 250
-28 213 280 237 207
-29 214 238 260 251
-30 215 259 239 252
-31 345 194 216 307
-32 346 195 217 208
-33 233 346 270 196
-34 347 271 218 197
-35 198 213 272 263
-36 199 232 222 281
-37 308 320 200 273
-38 319 309 201 274
-39 275 310 202 226
-40 276 311 203 227
-41 245 204 292 228
-42 277 288 205 348
-43 278 204 184 349
-44 279 249 206 316
-45 253 312 350 208
-46 209 313 274 351
-47 352 210 314 273
-48 247 249 206 318
-49 213 248 349 207
-50 211 257 315 317
-51 232 212 281 293
-52 187 198 242 213
-53 233 214 282 294
-54 234 258 215 295
-55 220 253 238 293
-56 221 254 236 294
-57 353 222 255 295
-58 256 214 316 251
-59 209 223 247 296
-60 297 210 248 347
-61 211 249 186 241
-62 289 181 225 183
-63 298 212 348 250
-64 299 215 237 252
-65 300 337 261 318
-66 244 312 280 262
-67 188 243 331 279
-68 255 301 262 263
-69 264 265 290 302
-70 242 344 303 250
-71 266 235 304 251
-72 267 272 305 252
-73 330 268 305 230
-74 231 267 306 329
-75 342 270 325 218
-76 357 358 271 219
-77 220 253 272 305
-78 352 221 254 273
-79 222 255 274 351
-80 330 223 305 296
-81 352 199 224 336
-82 287 289 225 351
-83 275 334 226 328
-84 300 224 194 337
-85 276 357 227 271
-86 245 193 228 283
-87 212 192 293 229
-88 266 332 306 230
-89 233 282 296 340
-90 297 234 300 258
-91 298 235 304 326
-92 299 357 237 303
-93 298 354 326 239
-94 290 302 358 240
-95 268 335 338 241
-96 242 269 250 339
-97 243 254 343 291
-98 244 202 182 262
-99 246 302 313 260
-100 290 259 314 229
-101 225 359 195 340
-102 341 356 247 318
-103 342 324 248 349
-104 343 190 245 339
-105 354 333 191 246
-106 319 254 291 337
-107 320 255 359 263
-108 256 344 303 327
-109 276 257 336 326
-110 323 258 336 326
-111 346 259 314 217
-112 345 313 216 260
-113 188 288 181 317
-114 266 354 239 251
-115 267 238 293 252
-116 301 325 261 262
-117 243 310 343 278
-118 217 272 263 285
-119 264 309 296 340
-120 297 308 265 300
-121 308 200 266 230
-122 231 309 201 267
-123 256 269 327 339
-124 299 268 338 328
-125 276 257 301 338
-126 246 302 194 307
-127 321 354 333 281
-128 343 322 282 339
-129 301 323 258 338
-130 264 265 356 324
-131 256 355 283 316
-132 321 257 317 285
-133 231 334 269 304
-134 357 259 303 239
-135 355 238 260 283
-136 203 183 261 318
-137 287 182 186 351
-138 331 279 347 271
-139 288 344 317 350
-140 341 310 202 360
-141 311 203 358 219
-142 204 292 185 240
-143 211 332 322 315
-144 198 323 226 329
-145 353 311 333 335
-146 200 346 270 227
-147 275 330 315 327
-148 277 299 355 328
-149 319 310 278 337
-150 223 312 280 193
-151 319 306 274 329
-152 320 332 273 306
-153 221 321 289 281
-154 220 287 322 282
-155 232 323 284 329
-156 321 332 322 285
-157 187 352 336 197
-158 286 234 345 360
-159 235 291 216 284
-160 344 185 196 350
-161 286 277 348 219
-162 264 309 214 294
-163 308 265 215 295
-164 277 355 335 241
-165 342 280 324 237
-166 341 279 356 316
-167 297 334 347 304
-168 331 236 292 307
-169 353 311 312 208
-170 275 325 315 218
-171 210 236 314 294
-172 209 353 313 295
-173 298 331 348 307
-174 330 342 270 327
-175 341 334 360 328
-176 278 359 349 340
-177 253 333 335 350
-178 356 324 358 240
-179 320 325 359 261
-180 201 345 228 360
-181 1 2 113 62
-182 1 4 137 98
-183 1 136 5 62
-184 3 6 8 43
-185 11 2 160 142
-186 1 12 137 61
-187 13 3 157 52
-188 67 2 14 113
-189 3 15 17 8
-190 23 16 104 7
-191 24 105 18 9
-192 25 19 10 87
-193 11 4 150 86
-194 5 126 84 31
-195 101 6 20 32
-196 33 2 24 160
-197 34 3 14 157
-198 144 35 7 52
-199 36 81 8 19
-200 121 146 37 9
-201 122 180 38 10
-202 4 39 140 98
-203 136 5 40 141
-204 6 41 43 142
-205 23 17 7 42
-206 44 24 48 9
-207 25 49 28 10
-208 45 169 20 32
-209 46 59 172 21
-210 22 47 60 171
-211 143 26 50 61
-212 27 51 63 87
-213 35 49 28 52
-214 58 29 162 53
-215 30 64 163 54
-216 12 112 159 31
-217 111 13 118 32
-218 34 14 170 75
-219 15 161 141 76
-220 55 77 154 16
-221 56 78 18 153
-222 57 79 36 19
-223 80 4 59 150
-224 81 5 84 8
-225 101 82 6 62
-226 144 39 83 7
-227 146 40 85 9
-228 180 41 86 10
-229 100 19 20 87
-230 88 121 73 21
-231 22 122 133 74
-232 23 155 36 51
-233 33 89 24 53
-234 90 25 158 54
-235 91 26 71 159
-236 56 168 27 171
-237 165 92 28 64
-238 55 135 115 29
-239 134 114 93 30
-240 11 178 94 142
-241 12 61 95 164
-242 13 70 52 96
-243 67 14 117 97
-244 66 15 17 98
-245 16 104 41 86
-246 99 126 105 18
-247 102 48 59 21
-248 22 103 49 60
-249 44 26 48 61
-250 70 27 63 96
-251 58 114 71 29
-252 115 72 30 64
-253 55 77 45 177
-254 56 78 106 97
-255 57 68 79 107
-256 123 58 108 131
-257 132 125 50 109
-258 110 90 129 54
-259 100 111 134 30
-260 99 112 135 29
-261 179 136 116 65
-262 66 68 116 98
-263 35 68 107 118
-264 69 162 119 130
-265 69 130 163 120
-266 88 121 114 71
-267 122 115 72 74
-268 124 73 95 21
-269 22 133 123 96
-270 33 146 75 174
-271 34 138 85 76
-272 77 35 72 118
-273 78 47 37 152
-274 46 79 38 151
-275 147 170 39 83
-276 125 40 85 109
-277 148 161 42 164
-278 176 149 117 43
-279 44 67 166 138
-280 66 165 28 150
-281 36 127 51 153
-282 154 89 128 53
-283 11 135 86 131
-284 12 23 155 159
-285 132 13 156 118
-286 25 15 158 161
-287 154 16 82 137
-288 113 17 139 42
-289 82 18 62 153
-290 100 69 94 20
-291 26 159 106 97
-292 168 27 41 142
-293 55 115 51 87
-294 56 171 162 53
-295 57 172 163 54
-296 89 80 59 119
-297 90 167 60 120
-298 91 93 63 173
-299 124 92 148 64
-300 90 84 65 120
-301 68 125 116 129
-302 99 69 126 94
-303 134 70 92 108
-304 133 167 91 71
-305 77 80 72 73
-306 88 74 151 152
-307 168 126 173 31
-308 121 37 163 120
-309 122 38 162 119
-310 39 149 117 140
-311 145 169 40 141
-312 66 45 169 150
-313 99 46 112 172
-314 100 111 47 171
-315 143 147 170 50
-316 44 166 58 131
-317 132 113 50 139
-318 102 48 136 65
-319 38 149 106 151
-320 179 37 107 152
-321 132 156 127 153
-322 143 154 156 128
-323 110 144 155 129
-324 165 178 103 130
-325 179 170 116 75
-326 110 91 93 109
-327 123 147 108 174
-328 124 148 83 175
-329 144 155 74 151
-330 80 147 73 174
-331 67 168 138 173
-332 88 143 156 152
-333 177 145 105 127
-334 133 167 83 175
-335 177 145 95 164
-336 110 157 81 109
-337 149 84 106 65
-338 124 125 95 129
-339 123 104 128 96
-340 176 89 101 119
-341 166 102 140 175
-342 165 103 75 174
-343 104 117 128 97
-344 70 160 139 108
-345 112 158 180 31
-346 33 111 146 32
-347 34 167 60 138
-348 161 63 173 42
-349 176 103 49 43
-350 45 177 160 139
-351 46 79 82 137
-352 78 47 157 81
-353 57 145 169 172
-354 114 93 105 127
-355 135 148 131 164
-356 166 178 102 130
-357 134 92 85 76
-358 178 94 141 76
-359 176 101 179 107
-360 158 180 140 175
0

**************