C4graphGraph forms for C4 [ 360, 147 ] = XI(Rmap(180,113){3,8|8}_10)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 147 ] = XI(Rmap(180,113){3,8|8}_10).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {177, 184}, {177, 189}, {173, 181}, {162, 184}, {173, 183}, {171, 182}, {160, 190}, {155, 186}, {154, 185}, {152, 190}, {146, 181}, {145, 186}, {155, 182}, {146, 188}, {147, 189}, {138, 187}, {135, 191}, {129, 193}, {133, 196}, {150, 215}, {149, 214}, {144, 216}, {128, 201}, {135, 206}, {152, 210}, {152, 211}, {138, 197}, {161, 238}, {158, 206}, {129, 208}, {144, 193}, {148, 198}, {174, 252}, {179, 231}, {143, 218}, {175, 250}, {164, 242}, {179, 229}, {142, 217}, {162, 248}, {178, 232}, {130, 221}, {156, 195}, {165, 197}, {171, 202}, {145, 243}, {162, 192}, {172, 207}, {168, 205}, {147, 245}, {128, 232}, {153, 241}, {144, 249}, {179, 218}, {150, 252}, {137, 226}, {179, 216}, {150, 250}, {141, 224}, {160, 205}, {148, 249}, {149, 251}, {162, 204}, {152, 246}, {143, 254}, {148, 229}, {164, 214}, {180, 192}, {161, 212}, {134, 240}, {163, 213}, {154, 226}, {132, 253}, {133, 255}, {180, 207}, {148, 233}, {175, 210}, {170, 212}, {170, 213}, {110, 238}, {95, 222}, {95, 221}, {100, 230}, {61, 187}, {78, 200}, {83, 219}, {89, 209}, {101, 237}, {117, 255}, {123, 240}, {96, 242}, {126, 236}, {124, 239}, {126, 237}, {127, 234}, {97, 247}, {111, 248}, {36, 188}, {82, 202}, {126, 230}, {70, 223}, {73, 208}, {85, 204}, {92, 198}, {94, 196}, {69, 217}, {127, 225}, {84, 203}, {93, 194}, {115, 236}, {73, 233}, {81, 241}, {80, 240}, {79, 239}, {74, 234}, {85, 245}, {86, 246}, {76, 237}, {82, 243}, {70, 228}, {88, 250}, {89, 251}, {92, 254}, {77, 238}, {70, 226}, {71, 227}, {98, 199}, {90, 252}, {91, 253}, {75, 236}, {83, 244}, {78, 231}, {73, 227}, {117, 223}, {71, 235}, {72, 230}, {117, 219}, {16, 191}, {87, 248}, {11, 186}, {15, 190}, {13, 188}, {96, 209}, {4, 182}, {77, 255}, {5, 183}, {82, 224}, {83, 225}, {14, 189}, {1, 181}, {68, 241}, {1, 183}, {97, 215}, {1, 182}, {67, 244}, {12, 187}, {8, 191}, {2, 181}, {3, 187}, {69, 253}, {7, 190}, {126, 199}, {1, 186}, {3, 184}, {2, 185}, {4, 185}, {2, 188}, {6, 184}, {3, 189}, {109, 211}, {119, 201}, {41, 233}, {7, 198}, {33, 224}, {31, 222}, {29, 220}, {27, 218}, {25, 216}, {23, 214}, {9, 200}, {19, 209}, {22, 212}, {10, 201}, {34, 225}, {30, 221}, {26, 217}, {22, 213}, {6, 195}, {2, 196}, {21, 211}, {20, 210}, {13, 203}, {9, 207}, {8, 206}, {3, 197}, {5, 194}, {35, 228}, {28, 219}, {21, 210}, {9, 192}, {61, 244}, {42, 227}, {18, 219}, {11, 194}, {6, 204}, {28, 214}, {7, 205}, {10, 193}, {39, 235}, {4, 202}, {5, 203}, {8, 199}, {57, 246}, {36, 235}, {24, 215}, {16, 223}, {12, 195}, {24, 200}, {37, 245}, {35, 243}, {13, 220}, {62, 239}, {42, 251}, {17, 192}, {15, 222}, {37, 247}, {58, 232}, {13, 222}, {18, 193}, {15, 220}, {14, 221}, {49, 229}, {60, 234}, {29, 196}, {31, 198}, {10, 208}, {30, 197}, {43, 247}, {97, 191}, {35, 195}, {19, 242}, {31, 254}, {6, 228}, {10, 232}, {7, 229}, {28, 255}, {84, 183}, {24, 252}, {27, 254}, {4, 226}, {5, 227}, {16, 247}, {40, 207}, {32, 199}, {26, 253}, {94, 185}, {42, 194}, {17, 248}, {48, 217}, {39, 206}, {37, 204}, {35, 202}, {33, 200}, {19, 249}, {27, 241}, {26, 240}, {18, 249}, {49, 218}, {38, 205}, {34, 201}, {23, 251}, {8, 230}, {28, 242}, {20, 250}, {9, 231}, {36, 203}, {44, 220}, {17, 224}, {18, 225}, {16, 228}, {25, 239}, {47, 216}, {11, 243}, {45, 213}, {44, 212}, {43, 211}, {12, 244}, {15, 246}, {46, 215}, {41, 208}, {23, 238}, {19, 233}, {22, 236}, {14, 245}, {42, 209}, {22, 237}, {20, 234}, {25, 231}, {21, 235}, {32, 223}, {25, 280}, {32, 290}, {68, 326}, {90, 344}, {103, 357}, {99, 352}, {96, 356}, {64, 325}, {33, 295}, {55, 304}, {56, 319}, {92, 347}, {47, 295}, {57, 305}, {84, 348}, {85, 349}, {34, 299}, {63, 310}, {59, 306}, {45, 292}, {52, 318}, {75, 321}, {107, 353}, {63, 307}, {74, 326}, {30, 272}, {75, 325}, {51, 317}, {92, 338}, {105, 359}, {21, 282}, {88, 343}, {43, 314}, {49, 288}, {45, 316}, {121, 360}, {112, 354}, {116, 358}, {91, 334}, {118, 355}, {29, 267}, {76, 346}, {53, 291}, {44, 315}, {47, 311}, {50, 298}, {32, 313}, {81, 328}, {55, 302}, {52, 301}, {63, 293}, {46, 306}, {40, 309}, {50, 303}, {72, 342}, {94, 320}, {95, 321}, {48, 303}, {51, 300}, {120, 359}, {108, 332}, {112, 336}, {113, 337}, {108, 333}, {104, 330}, {107, 329}, {114, 336}, {115, 337}, {34, 257}, {66, 353}, {58, 281}, {48, 275}, {103, 324}, {104, 331}, {106, 329}, {111, 332}, {71, 355}, {111, 331}, {119, 339}, {29, 312}, {122, 348}, {44, 267}, {79, 360}, {51, 276}, {49, 278}, {108, 331}, {46, 262}, {59, 275}, {99, 331}, {104, 320}, {99, 330}, {112, 345}, {120, 337}, {121, 336}, {11, 289}, {73, 355}, {30, 308}, {124, 342}, {116, 351}, {125, 342}, {38, 266}, {107, 327}, {114, 350}, {14, 291}, {98, 335}, {103, 330}, {12, 290}, {122, 340}, {123, 341}, {48, 287}, {79, 352}, {102, 329}, {116, 347}, {38, 278}, {81, 353}, {63, 271}, {62, 270}, {61, 269}, {60, 268}, {59, 267}, {56, 264}, {43, 283}, {41, 281}, {40, 280}, {39, 279}, {101, 341}, {20, 293}, {56, 265}, {55, 262}, {53, 260}, {51, 258}, {47, 286}, {45, 284}, {23, 294}, {100, 341}, {101, 340}, {26, 296}, {54, 260}, {50, 256}, {27, 297}, {100, 342}, {102, 340}, {46, 285}, {57, 266}, {54, 261}, {17, 292}, {54, 259}, {50, 263}, {102, 339}, {103, 337}, {115, 325}, {52, 259}, {53, 258}, {40, 273}, {119, 333}, {121, 323}, {39, 283}, {114, 334}, {115, 335}, {120, 324}, {36, 282}, {56, 262}, {37, 283}, {105, 343}, {112, 334}, {113, 335}, {24, 295}, {55, 264}, {75, 267}, {110, 302}, {77, 268}, {83, 272}, {125, 313}, {124, 313}, {65, 263}, {65, 265}, {110, 294}, {102, 300}, {68, 271}, {120, 307}, {80, 285}, {122, 308}, {80, 287}, {69, 277}, {76, 284}, {74, 282}, {71, 279}, {78, 287}, {79, 286}, {85, 260}, {64, 274}, {69, 279}, {65, 275}, {90, 264}, {118, 292}, {67, 272}, {78, 285}, {123, 296}, {127, 299}, {106, 319}, {66, 276}, {91, 269}, {122, 300}, {105, 318}, {109, 314}, {117, 290}, {118, 289}, {107, 305}, {111, 309}, {114, 296}, {127, 293}, {89, 258}, {98, 313}, {106, 305}, {86, 266}, {67, 286}, {72, 277}, {89, 260}, {93, 256}, {108, 305}, {116, 297}, {125, 288}, {31, 321}, {76, 274}, {62, 352}, {110, 304}, {72, 279}, {74, 277}, {94, 257}, {38, 327}, {66, 288}, {87, 309}, {88, 314}, {93, 319}, {124, 280}, {58, 351}, {96, 261}, {77, 299}, {97, 262}, {121, 286}, {109, 261}, {53, 348}, {104, 257}, {52, 350}, {86, 316}, {105, 259}, {106, 256}, {118, 284}, {54, 349}, {87, 316}, {125, 278}, {87, 315}, {98, 270}, {68, 297}, {86, 315}, {90, 311}, {66, 300}, {88, 310}, {109, 259}, {123, 276}, {100, 276}, {81, 288}, {91, 298}, {99, 273}, {64, 307}, {65, 306}, {57, 333}, {67, 311}, {64, 310}, {82, 292}, {113, 263}, {119, 257}, {84, 291}, {101, 274}, {113, 265}, {58, 320}, {62, 324}, {60, 326}, {59, 321}, {33, 346}, {41, 338}, {93, 289}, {95, 291}, {80, 301}, {60, 322}, {70, 312}, {61, 323}, {165, 293}, {131, 258}, {142, 271}, {146, 273}, {170, 302}, {157, 280}, {158, 283}, {157, 282}, {158, 281}, {157, 277}, {180, 317}, {156, 278}, {157, 273}, {130, 274}, {143, 287}, {137, 285}, {166, 304}, {159, 263}, {167, 318}, {172, 309}, {161, 315}, {178, 296}, {143, 275}, {149, 265}, {129, 284}, {159, 256}, {163, 316}, {138, 298}, {172, 268}, {142, 303}, {139, 297}, {168, 266}, {131, 294}, {168, 269}, {160, 261}, {138, 303}, {132, 289}, {174, 264}, {135, 302}, {167, 270}, {151, 318}, {149, 319}, {165, 271}, {164, 270}, {134, 301}, {150, 314}, {161, 268}, {132, 298}, {163, 269}, {133, 299}, {169, 281}, {137, 312}, {165, 272}, {130, 308}, {144, 295}, {154, 301}, {136, 304}, {140, 308}, {139, 307}, {134, 317}, {141, 310}, {140, 311}, {137, 306}, {133, 312}, {131, 317}, {156, 290}, {153, 294}, {166, 358}, {131, 322}, {147, 338}, {167, 356}, {154, 350}, {160, 356}, {173, 360}, {130, 325}, {151, 336}, {142, 326}, {170, 354}, {147, 347}, {169, 354}, {158, 338}, {171, 359}, {136, 344}, {140, 348}, {136, 345}, {153, 328}, {155, 328}, {159, 332}, {128, 340}, {177, 357}, {151, 323}, {140, 344}, {128, 341}, {176, 357}, {145, 327}, {141, 346}, {141, 343}, {129, 346}, {156, 327}, {153, 322}, {134, 349}, {136, 360}, {175, 333}, {167, 324}, {135, 354}, {132, 355}, {174, 329}, {180, 349}, {164, 335}, {176, 347}, {168, 323}, {139, 359}, {178, 350}, {139, 358}, {163, 334}, {166, 328}, {172, 322}, {176, 351}, {145, 353}, {169, 345}, {146, 352}, {178, 320}, {151, 356}, {173, 344}, {169, 351}, {159, 357}, {176, 330}, {171, 343}, {175, 339}, {155, 358}, {177, 332}, {174, 339}, {166, 345} }>;

(II) A more general form is to represent the graph as the orbit of {177, 184} under the group generated by the following permutations:

a: (2, 5)(3, 9)(4, 11)(6, 17)(7, 20)(8, 22)(10, 28)(12, 33)(13, 36)(14, 40)(15, 21)(16, 45)(19, 34)(23, 58)(24, 61)(25, 30)(26, 65)(27, 68)(29, 71)(31, 74)(32, 76)(35, 82)(37, 87)(38, 88)(39, 44)(41, 77)(42, 94)(43, 86)(46, 91)(47, 67)(49, 63)(50, 80)(51, 103)(52, 106)(53, 99)(54, 108)(55, 112)(56, 114)(57, 109)(59, 69)(60, 92)(62, 122)(64, 125)(66, 120)(70, 118)(72, 75)(73, 133)(78, 138)(79, 140)(81, 139)(83, 144)(84, 146)(85, 111)(89, 104)(90, 121)(93, 154)(95, 157)(96, 119)(97, 163)(98, 101)(100, 115)(102, 167)(105, 107)(110, 169)(113, 123)(116, 153)(117, 129)(124, 130)(127, 148)(128, 164)(131, 176)(132, 137)(134, 159)(135, 170)(141, 156)(142, 143)(145, 171)(147, 172)(149, 178)(150, 168)(151, 174)(158, 161)(160, 175)(165, 179)(177, 180)(181, 183)(182, 186)(184, 192)(185, 194)(187, 200)(188, 203)(189, 207)(190, 210)(191, 213)(193, 219)(195, 224)(196, 227)(197, 231)(198, 234)(199, 237)(201, 242)(202, 243)(204, 248)(205, 250)(206, 212)(208, 255)(209, 257)(211, 246)(214, 232)(215, 269)(216, 272)(217, 275)(218, 271)(220, 235)(221, 280)(222, 282)(223, 284)(225, 249)(226, 289)(228, 292)(229, 293)(230, 236)(233, 299)(238, 281)(239, 308)(240, 263)(241, 297)(244, 295)(245, 309)(247, 316)(251, 320)(252, 323)(253, 306)(254, 326)(256, 301)(258, 330)(259, 305)(260, 331)(261, 333)(262, 334)(264, 336)(265, 296)(266, 314)(267, 279)(268, 338)(270, 340)(273, 291)(274, 313)(276, 337)(277, 321)(278, 310)(283, 315)(285, 298)(286, 311)(287, 303)(288, 307)(290, 346)(294, 351)(300, 324)(302, 354)(304, 345)(312, 355)(317, 357)(318, 329)(319, 350)(322, 347)(325, 342)(327, 343)(328, 358)(332, 349)(335, 341)(339, 356)(344, 360)(348, 352)(353, 359)
b: (2, 11)(3, 20)(4, 5)(6, 21)(7, 9)(10, 65)(12, 74)(13, 82)(14, 88)(15, 17)(16, 39)(18, 48)(19, 80)(23, 114)(24, 92)(25, 49)(26, 28)(27, 47)(29, 118)(30, 63)(31, 33)(32, 72)(34, 50)(35, 36)(37, 43)(38, 40)(41, 46)(42, 154)(44, 45)(51, 167)(52, 89)(53, 105)(55, 169)(56, 58)(57, 111)(59, 129)(60, 61)(62, 66)(64, 130)(67, 68)(69, 117)(70, 71)(73, 137)(75, 76)(77, 91)(78, 148)(79, 81)(83, 142)(84, 171)(85, 109)(86, 87)(90, 116)(93, 94)(95, 141)(96, 134)(97, 158)(98, 100)(99, 107)(101, 115)(102, 103)(104, 106)(110, 112)(113, 128)(119, 159)(120, 122)(121, 153)(123, 164)(124, 125)(127, 138)(131, 151)(132, 133)(136, 166)(139, 140)(143, 144)(145, 146)(147, 150)(149, 178)(152, 162)(155, 173)(156, 157)(160, 180)(161, 163)(168, 172)(174, 176)(175, 177)(181, 186)(182, 183)(184, 210)(185, 194)(187, 234)(188, 243)(189, 250)(190, 192)(191, 206)(193, 275)(195, 282)(196, 289)(197, 293)(198, 200)(199, 230)(201, 263)(202, 203)(204, 211)(205, 207)(208, 306)(209, 301)(212, 213)(214, 296)(215, 338)(216, 218)(217, 219)(220, 292)(221, 310)(222, 224)(223, 279)(225, 303)(226, 227)(228, 235)(229, 231)(232, 265)(233, 285)(236, 237)(238, 334)(239, 288)(240, 242)(241, 286)(244, 326)(245, 314)(246, 248)(247, 283)(249, 287)(251, 350)(252, 347)(253, 255)(254, 295)(256, 257)(258, 318)(259, 260)(261, 349)(262, 281)(264, 351)(266, 309)(267, 284)(268, 269)(270, 276)(271, 272)(273, 327)(274, 325)(277, 290)(278, 280)(291, 343)(294, 336)(297, 311)(298, 299)(300, 324)(302, 354)(304, 345)(305, 331)(307, 308)(312, 355)(313, 342)(315, 316)(317, 356)(319, 320)(321, 346)(322, 323)(328, 360)(329, 330)(332, 333)(335, 341)(337, 340)(339, 357)(344, 358)(348, 359)(352, 353)
c: (1, 2, 29, 59, 143, 179, 144, 129, 118, 11)(3, 51, 151, 175, 135, 177, 131, 167, 20, 8)(4, 13, 137, 31, 78, 148, 33, 73, 82, 5)(6, 53, 52, 152, 97, 147, 180, 96, 88, 39)(7, 24, 41, 17, 42, 171, 36, 70, 95, 80)(9, 19, 141, 71, 35, 84, 154, 15, 46, 92)(10, 45, 93, 155, 146, 133, 75, 48, 49, 47)(12, 122, 114, 57, 55, 176, 172, 164, 63, 72)(14, 134, 160, 150, 158, 162, 89, 105, 21, 16)(18, 76, 132, 145, 173, 94, 44, 65, 27, 25)(22, 50, 81, 79, 34)(23, 120, 74, 32, 30, 123, 168, 174, 169, 111)(26, 38, 90, 58, 87, 149, 139, 157, 117, 130)(28, 64, 69, 156, 140, 178, 86, 56, 116, 40)(37, 85, 54, 109, 43)(60, 98, 165, 100, 61, 102, 112, 108, 110, 103)(62, 127, 126, 138, 66, 121, 119, 170, 159, 153)(67, 128, 163, 106, 166, 99, 77, 115, 142, 125)(68, 124, 83, 101, 91, 107, 136, 104, 161, 113)(181, 196, 267, 275, 218, 216, 193, 284, 289, 186)(182, 188, 312, 321, 287, 229, 295, 208, 292, 194)(183, 185, 220, 306, 254, 231, 249, 346, 355, 243)(184, 258, 318, 210, 191, 189, 317, 356, 250, 206)(187, 300, 336, 333, 302, 357, 322, 270, 293, 230)(190, 215, 338, 192, 209, 343, 235, 228, 291, 301)(195, 348, 350, 246, 262, 347, 207, 242, 310, 279)(197, 276, 323, 339, 354, 332, 294, 324, 234, 199)(198, 200, 233, 224, 227, 202, 203, 226, 222, 285)(201, 213, 256, 328, 352, 299, 236, 303, 288, 286)(204, 260, 259, 211, 247, 245, 349, 261, 314, 283)(205, 252, 281, 248, 251, 359, 282, 223, 221, 240)(212, 263, 241, 239, 225, 237, 298, 353, 360, 257)(214, 307, 277, 290, 308, 296, 266, 264, 351, 309)(217, 278, 311, 232, 316, 319, 358, 273, 255, 325)(219, 274, 253, 327, 344, 320, 315, 265, 297, 280)(238, 337, 326, 313, 272, 341, 269, 329, 345, 331)(244, 340, 334, 305, 304, 330, 268, 335, 271, 342)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 147 ]
360
-1 181 182 183 186
-2 188 181 185 196
-3 187 189 184 197
-4 202 182 226 185
-5 203 183 194 227
-6 204 184 195 228
-7 198 190 205 229
-8 199 191 206 230
-9 231 200 192 207
-10 232 201 193 208
-11 243 289 194 186
-12 187 244 290 195
-13 220 188 222 203
-14 221 189 245 291
-15 220 222 190 246
-16 223 191 247 228
-17 224 192 248 292
-18 225 193 249 219
-19 209 242 233 249
-20 210 234 293 250
-21 210 211 235 282
-22 212 213 236 237
-23 214 238 294 251
-24 200 215 295 252
-25 231 280 216 239
-26 253 217 240 296
-27 297 254 218 241
-28 242 255 214 219
-29 220 267 312 196
-30 308 221 272 197
-31 198 254 222 321
-32 199 223 290 313
-33 200 224 346 295
-34 299 201 257 225
-35 243 202 195 228
-36 188 235 203 282
-37 245 247 204 283
-38 266 278 205 327
-39 235 279 206 283
-40 309 280 207 273
-41 233 281 338 208
-42 209 194 227 251
-43 211 247 314 283
-44 220 212 267 315
-45 213 292 316 284
-46 215 262 306 285
-47 286 311 216 295
-48 275 287 303 217
-49 288 278 218 229
-50 298 256 303 263
-51 276 300 258 317
-52 301 259 350 318
-53 258 291 260 348
-54 259 260 261 349
-55 264 302 304 262
-56 264 319 265 262
-57 266 333 246 305
-58 232 320 281 351
-59 275 321 267 306
-60 234 322 268 326
-61 187 244 323 269
-62 352 324 270 239
-63 310 271 293 307
-64 310 325 274 307
-65 275 265 306 263
-66 276 353 288 300
-67 286 244 311 272
-68 297 271 326 241
-69 253 277 279 217
-70 223 312 226 228
-71 355 235 279 227
-72 342 277 279 230
-73 233 355 227 208
-74 277 234 282 326
-75 321 267 236 325
-76 346 237 284 274
-77 255 299 268 238
-78 231 287 200 285
-79 286 352 239 360
-80 287 301 240 285
-81 353 288 328 241
-82 243 202 224 292
-83 244 225 272 219
-84 203 291 183 348
-85 245 204 260 349
-86 266 246 315 316
-87 309 248 315 316
-88 310 343 314 250
-89 209 258 260 251
-90 264 311 344 252
-91 253 298 334 269
-92 198 254 347 338
-93 319 256 289 194
-94 320 257 185 196
-95 221 222 321 291
-96 209 242 356 261
-97 191 247 215 262
-98 199 313 335 270
-99 330 352 331 273
-100 341 276 342 230
-101 341 237 274 340
-102 300 339 329 340
-103 330 324 357 337
-104 330 320 331 257
-105 343 259 359 318
-106 319 256 305 329
-107 353 305 327 329
-108 331 332 333 305
-109 211 259 314 261
-110 302 238 304 294
-111 309 331 332 248
-112 354 334 345 336
-113 265 335 337 263
-114 334 336 350 296
-115 236 335 325 337
-116 297 347 358 351
-117 255 223 290 219
-118 289 355 292 284
-119 201 333 257 339
-120 324 337 359 307
-121 286 323 336 360
-122 308 300 348 340
-123 341 276 240 296
-124 342 280 313 239
-125 342 288 278 313
-126 199 236 237 230
-127 299 234 225 293
-128 341 232 201 340
-129 346 193 284 208
-130 308 221 325 274
-131 322 258 294 317
-132 253 298 289 355
-133 255 299 312 196
-134 301 349 240 317
-135 354 191 302 206
-136 344 345 304 360
-137 312 226 306 285
-138 187 298 303 197
-139 297 358 359 307
-140 308 311 344 348
-141 310 343 224 346
-142 303 271 326 217
-143 275 254 287 218
-144 193 216 249 295
-145 243 353 327 186
-146 352 188 181 273
-147 189 245 347 338
-148 198 233 249 229
-149 319 265 214 251
-150 215 314 250 252
-151 323 356 336 318
-152 210 211 190 246
-153 322 294 328 241
-154 301 226 185 350
-155 182 358 328 186
-156 278 290 195 327
-157 277 280 282 273
-158 281 206 283 338
-159 332 256 357 263
-160 190 356 205 261
-161 212 268 238 315
-162 192 204 248 184
-163 213 334 269 316
-164 242 214 335 270
-165 271 293 272 197
-166 345 358 304 328
-167 356 324 270 318
-168 266 323 269 205
-169 354 345 281 351
-170 354 212 213 302
-171 343 202 182 359
-172 309 322 268 207
-173 344 181 183 360
-174 264 339 252 329
-175 210 333 250 339
-176 330 357 347 351
-177 189 332 357 184
-178 232 320 350 296
-179 231 216 218 229
-180 192 349 207 317
-181 1 2 146 173
-182 1 155 4 171
-183 1 5 84 173
-184 177 3 6 162
-185 154 2 4 94
-186 11 1 155 145
-187 12 3 61 138
-188 2 13 36 146
-189 177 3 14 147
-190 15 160 7 152
-191 135 16 8 97
-192 180 17 162 9
-193 144 18 129 10
-194 11 5 93 42
-195 12 35 156 6
-196 133 2 94 29
-197 165 3 138 30
-198 92 148 7 31
-199 126 8 32 98
-200 33 78 24 9
-201 34 128 119 10
-202 35 4 82 171
-203 13 36 5 84
-204 37 6 85 162
-205 168 38 160 7
-206 135 158 39 8
-207 180 40 172 9
-208 73 41 129 10
-209 89 19 96 42
-210 20 152 21 175
-211 152 21 43 109
-212 22 44 170 161
-213 22 45 170 163
-214 23 28 149 164
-215 24 46 150 97
-216 144 25 47 179
-217 69 26 48 142
-218 143 179 27 49
-219 28 83 18 117
-220 44 13 15 29
-221 14 95 30 130
-222 13 15 95 31
-223 70 16 117 32
-224 33 82 17 141
-225 34 83 127 18
-226 154 4 70 137
-227 5 71 73 42
-228 35 70 16 6
-229 179 49 148 7
-230 100 126 72 8
-231 78 25 179 9
-232 178 58 128 10
-233 148 73 19 41
-234 60 127 74 20
-235 36 71 39 21
-236 22 115 126 75
-237 22 101 126 76
-238 77 110 23 161
-239 79 25 124 62
-240 123 134 80 26
-241 68 81 27 153
-242 28 19 96 164
-243 11 35 145 82
-244 12 67 61 83
-245 14 37 147 85
-246 57 15 86 152
-247 37 16 97 43
-248 111 17 162 87
-249 144 148 18 19
-250 88 150 20 175
-251 23 89 149 42
-252 24 90 150 174
-253 132 69 91 26
-254 143 92 27 31
-255 77 133 28 117
-256 93 159 50 106
-257 34 104 94 119
-258 89 51 53 131
-259 105 52 54 109
-260 89 85 53 54
-261 160 96 54 109
-262 55 56 46 97
-263 113 159 50 65
-264 55 56 90 174
-265 56 113 149 65
-266 57 168 38 86
-267 44 59 29 75
-268 77 60 161 172
-269 91 168 61 163
-270 167 62 98 164
-271 165 68 63 142
-272 165 67 83 30
-273 99 146 157 40
-274 101 64 130 76
-275 143 48 59 65
-276 66 100 123 51
-277 69 157 72 74
-278 156 125 38 49
-279 69 71 39 72
-280 25 124 157 40
-281 58 158 169 41
-282 36 157 74 21
-283 37 158 39 43
-284 45 118 129 76
-285 78 46 80 137
-286 121 67 79 47
-287 143 78 80 48
-288 66 81 125 49
-289 11 132 93 118
-290 12 156 117 32
-291 14 84 95 53
-292 45 82 17 118
-293 165 127 63 20
-294 110 23 131 153
-295 33 144 24 47
-296 123 178 26 114
-297 68 27 116 139
-298 132 91 50 138
-299 77 34 133 127
-300 66 122 102 51
-301 154 134 80 52
-302 55 110 135 170
-303 48 50 138 142
-304 55 110 166 136
-305 57 106 107 108
-306 46 59 137 65
-307 139 63 64 120
-308 122 30 140 130
-309 111 40 172 87
-310 88 63 64 141
-311 67 90 47 140
-312 133 70 137 29
-313 124 125 32 98
-314 88 150 43 109
-315 44 161 86 87
-316 45 86 163 87
-317 134 180 51 131
-318 167 105 52 151
-319 56 93 149 106
-320 178 58 104 94
-321 59 95 31 75
-322 60 172 131 153
-323 121 168 61 151
-324 167 103 62 120
-325 115 64 75 130
-326 68 60 74 142
-327 145 156 38 107
-328 155 166 81 153
-329 102 106 107 174
-330 99 176 103 104
-331 99 111 104 108
-332 111 177 159 108
-333 57 108 119 175
-334 112 91 114 163
-335 113 115 98 164
-336 121 112 114 151
-337 113 103 115 120
-338 92 147 158 41
-339 102 119 174 175
-340 122 101 102 128
-341 100 101 123 128
-342 100 124 125 72
-343 88 105 171 141
-344 90 136 140 173
-345 166 112 136 169
-346 33 129 141 76
-347 176 92 147 116
-348 122 84 140 53
-349 134 180 85 54
-350 154 178 114 52
-351 176 58 169 116
-352 99 79 146 62
-353 66 145 81 107
-354 112 135 169 170
-355 132 71 73 118
-356 167 160 96 151
-357 176 177 103 159
-358 155 166 116 139
-359 105 171 139 120
-360 121 79 136 173
0

**************