C4graphGraph forms for C4 [ 360, 148 ] = XI(Rmap(180,121){5,6|6}_6)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 148 ] = XI(Rmap(180,121){5,6|6}_6).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {150, 211}, {169, 239}, {149, 220}, {148, 219}, {160, 243}, {168, 251}, {168, 252}, {138, 223}, {161, 244}, {170, 240}, {147, 206}, {151, 243}, {132, 225}, {135, 238}, {152, 244}, {158, 240}, {150, 249}, {158, 238}, {150, 228}, {168, 219}, {168, 220}, {138, 255}, {150, 227}, {147, 230}, {147, 239}, {120, 249}, {123, 250}, {61, 191}, {65, 195}, {64, 194}, {104, 234}, {107, 233}, {109, 232}, {125, 248}, {78, 198}, {116, 255}, {112, 253}, {120, 245}, {89, 201}, {103, 247}, {107, 251}, {108, 252}, {110, 254}, {42, 187}, {44, 189}, {79, 222}, {101, 246}, {44, 184}, {92, 200}, {94, 203}, {43, 188}, {93, 202}, {78, 214}, {108, 245}, {68, 222}, {92, 199}, {110, 242}, {91, 198}, {93, 192}, {126, 227}, {67, 221}, {126, 224}, {90, 197}, {94, 193}, {127, 223}, {18, 182}, {29, 185}, {28, 184}, {19, 183}, {125, 216}, {19, 181}, {95, 248}, {74, 226}, {121, 209}, {121, 211}, {29, 182}, {77, 230}, {124, 215}, {17, 189}, {18, 190}, {77, 224}, {80, 253}, {95, 241}, {80, 255}, {96, 207}, {122, 213}, {7, 183}, {91, 235}, {92, 236}, {79, 254}, {92, 237}, {97, 208}, {11, 185}, {71, 245}, {70, 244}, {4, 183}, {75, 248}, {66, 241}, {8, 187}, {79, 252}, {84, 231}, {1, 181}, {3, 182}, {76, 249}, {11, 190}, {9, 188}, {78, 251}, {123, 206}, {125, 200}, {1, 183}, {69, 243}, {68, 242}, {12, 186}, {1, 182}, {10, 189}, {8, 191}, {2, 181}, {77, 250}, {1, 185}, {6, 190}, {4, 188}, {3, 187}, {2, 186}, {12, 181}, {88, 225}, {2, 184}, {5, 191}, {104, 210}, {107, 209}, {124, 199}, {88, 228}, {3, 190}, {7, 186}, {5, 184}, {85, 232}, {87, 234}, {109, 208}, {4, 186}, {73, 247}, {72, 246}, {2, 189}, {6, 185}, {86, 233}, {90, 229}, {122, 197}, {14, 206}, {19, 211}, {18, 210}, {17, 209}, {16, 208}, {15, 207}, {3, 194}, {46, 239}, {36, 229}, {24, 217}, {5, 196}, {15, 204}, {45, 238}, {31, 220}, {25, 218}, {23, 212}, {8, 204}, {53, 241}, {12, 200}, {9, 205}, {30, 219}, {6, 192}, {25, 223}, {24, 222}, {7, 193}, {4, 195}, {13, 197}, {43, 226}, {62, 247}, {22, 220}, {60, 246}, {39, 237}, {38, 236}, {23, 221}, {5, 201}, {54, 250}, {11, 199}, {10, 198}, {9, 197}, {7, 203}, {6, 202}, {13, 192}, {15, 194}, {10, 196}, {37, 235}, {33, 239}, {32, 238}, {21, 219}, {14, 193}, {31, 208}, {48, 224}, {55, 231}, {54, 230}, {53, 229}, {52, 228}, {51, 227}, {50, 226}, {49, 225}, {30, 207}, {60, 237}, {58, 235}, {56, 233}, {54, 231}, {20, 198}, {35, 241}, {34, 240}, {25, 203}, {24, 202}, {21, 199}, {16, 195}, {57, 234}, {39, 244}, {12, 216}, {44, 248}, {14, 218}, {13, 217}, {17, 196}, {38, 243}, {26, 204}, {27, 205}, {37, 242}, {59, 236}, {26, 194}, {28, 196}, {27, 195}, {36, 253}, {20, 206}, {37, 254}, {8, 212}, {46, 242}, {11, 215}, {10, 214}, {9, 213}, {16, 205}, {42, 247}, {40, 245}, {22, 200}, {23, 201}, {41, 246}, {55, 232}, {47, 240}, {53, 213}, {40, 202}, {41, 203}, {29, 249}, {60, 216}, {63, 218}, {24, 254}, {43, 205}, {42, 204}, {25, 255}, {89, 191}, {62, 217}, {13, 229}, {15, 231}, {14, 230}, {61, 212}, {22, 252}, {35, 201}, {23, 253}, {58, 214}, {59, 215}, {63, 210}, {20, 250}, {21, 251}, {45, 221}, {47, 223}, {46, 222}, {32, 209}, {40, 217}, {38, 215}, {36, 213}, {34, 211}, {33, 210}, {41, 218}, {37, 214}, {19, 228}, {35, 212}, {16, 232}, {18, 234}, {17, 233}, {21, 236}, {54, 207}, {36, 221}, {26, 224}, {27, 225}, {22, 237}, {64, 187}, {65, 188}, {28, 226}, {63, 193}, {62, 192}, {29, 227}, {20, 235}, {39, 216}, {56, 312}, {75, 331}, {68, 324}, {62, 318}, {61, 317}, {60, 316}, {59, 315}, {58, 314}, {57, 313}, {82, 336}, {48, 307}, {51, 304}, {72, 332}, {49, 308}, {71, 322}, {69, 320}, {50, 311}, {87, 338}, {73, 335}, {74, 332}, {70, 321}, {86, 337}, {69, 333}, {70, 334}, {31, 278}, {30, 277}, {43, 288}, {45, 289}, {47, 290}, {50, 288}, {48, 291}, {49, 292}, {89, 332}, {90, 335}, {51, 293}, {85, 333}, {91, 323}, {47, 310}, {83, 330}, {26, 256}, {27, 257}, {84, 334}, {31, 260}, {52, 303}, {46, 309}, {30, 259}, {28, 258}, {45, 306}, {101, 324}, {127, 350}, {106, 331}, {113, 336}, {102, 325}, {32, 261}, {34, 263}, {102, 323}, {33, 262}, {100, 323}, {118, 337}, {123, 348}, {117, 349}, {59, 272}, {114, 345}, {61, 273}, {53, 282}, {105, 326}, {111, 320}, {116, 347}, {99, 339}, {112, 321}, {52, 263}, {55, 260}, {105, 346}, {113, 322}, {55, 259}, {40, 285}, {58, 271}, {56, 269}, {42, 287}, {97, 340}, {100, 338}, {113, 327}, {32, 279}, {57, 270}, {41, 286}, {44, 276}, {52, 268}, {51, 267}, {50, 266}, {49, 265}, {48, 264}, {33, 280}, {63, 262}, {35, 282}, {98, 347}, {102, 348}, {127, 325}, {114, 328}, {115, 329}, {120, 322}, {34, 281}, {39, 284}, {38, 283}, {56, 261}, {119, 329}, {123, 325}, {57, 262}, {116, 331}, {117, 330}, {118, 329}, {106, 298}, {115, 305}, {76, 271}, {119, 305}, {87, 272}, {96, 295}, {74, 258}, {98, 298}, {99, 299}, {96, 297}, {97, 296}, {66, 264}, {70, 268}, {67, 265}, {91, 273}, {93, 279}, {77, 256}, {94, 275}, {115, 318}, {122, 311}, {68, 266}, {69, 267}, {98, 300}, {114, 316}, {124, 306}, {111, 319}, {66, 275}, {67, 274}, {81, 256}, {83, 258}, {85, 260}, {87, 262}, {112, 289}, {64, 274}, {65, 275}, {101, 311}, {118, 292}, {71, 276}, {82, 257}, {86, 261}, {116, 290}, {117, 291}, {84, 259}, {119, 288}, {109, 309}, {110, 310}, {79, 278}, {99, 314}, {100, 317}, {103, 317}, {78, 277}, {126, 293}, {104, 308}, {120, 293}, {127, 290}, {126, 291}, {88, 263}, {95, 319}, {105, 265}, {71, 294}, {75, 298}, {73, 296}, {67, 289}, {106, 264}, {74, 297}, {96, 259}, {85, 304}, {97, 260}, {76, 299}, {86, 305}, {76, 293}, {81, 312}, {125, 276}, {124, 279}, {112, 284}, {113, 285}, {114, 286}, {115, 287}, {75, 294}, {94, 307}, {99, 270}, {72, 295}, {93, 306}, {98, 269}, {89, 297}, {122, 266}, {80, 289}, {108, 285}, {65, 307}, {80, 290}, {81, 291}, {90, 296}, {83, 288}, {64, 308}, {72, 316}, {100, 272}, {111, 283}, {109, 280}, {111, 282}, {117, 256}, {119, 258}, {82, 292}, {103, 273}, {73, 318}, {102, 273}, {110, 281}, {118, 257}, {103, 287}, {95, 294}, {106, 275}, {104, 274}, {108, 278}, {84, 303}, {101, 286}, {105, 274}, {88, 292}, {121, 261}, {66, 319}, {81, 300}, {83, 302}, {107, 277}, {121, 263}, {82, 301}, {136, 264}, {148, 277}, {136, 267}, {149, 278}, {132, 257}, {137, 271}, {161, 295}, {146, 276}, {158, 281}, {164, 300}, {167, 303}, {158, 279}, {147, 280}, {128, 269}, {144, 286}, {145, 287}, {137, 281}, {139, 282}, {154, 267}, {131, 272}, {167, 308}, {143, 284}, {142, 283}, {156, 266}, {175, 312}, {166, 317}, {132, 280}, {170, 310}, {169, 309}, {165, 313}, {164, 312}, {146, 271}, {176, 302}, {179, 301}, {130, 285}, {166, 313}, {133, 295}, {175, 269}, {171, 270}, {140, 299}, {166, 270}, {155, 305}, {129, 298}, {167, 268}, {144, 315}, {128, 300}, {144, 316}, {133, 297}, {130, 302}, {129, 301}, {134, 296}, {167, 265}, {162, 268}, {145, 318}, {159, 304}, {159, 303}, {132, 309}, {139, 313}, {137, 314}, {139, 319}, {153, 301}, {146, 294}, {135, 306}, {140, 314}, {141, 315}, {131, 315}, {136, 304}, {146, 299}, {136, 307}, {160, 283}, {138, 311}, {161, 284}, {137, 310}, {145, 302}, {130, 322}, {162, 354}, {135, 326}, {165, 356}, {164, 357}, {148, 341}, {144, 338}, {163, 353}, {162, 352}, {151, 341}, {149, 342}, {171, 360}, {157, 350}, {156, 351}, {143, 331}, {155, 350}, {163, 358}, {157, 344}, {128, 326}, {129, 327}, {155, 348}, {164, 355}, {173, 357}, {174, 358}, {172, 357}, {155, 337}, {170, 352}, {131, 335}, {174, 354}, {154, 343}, {138, 324}, {174, 352}, {173, 355}, {169, 359}, {152, 342}, {143, 321}, {142, 320}, {133, 341}, {134, 342}, {159, 334}, {134, 340}, {179, 353}, {159, 333}, {154, 328}, {142, 346}, {143, 347}, {140, 345}, {179, 358}, {141, 344}, {177, 359}, {180, 354}, {131, 340}, {176, 359}, {154, 333}, {151, 320}, {139, 339}, {176, 360}, {157, 325}, {156, 324}, {152, 321}, {177, 360}, {129, 347}, {178, 360}, {140, 343}, {145, 330}, {135, 346}, {153, 327}, {130, 349}, {153, 326}, {141, 338}, {177, 336}, {179, 336}, {128, 356}, {172, 328}, {166, 323}, {178, 343}, {133, 355}, {134, 353}, {173, 330}, {142, 356}, {163, 329}, {178, 345}, {162, 334}, {180, 344}, {161, 332}, {180, 345}, {178, 351}, {176, 349}, {141, 354}, {160, 335}, {173, 349}, {175, 350}, {151, 357}, {170, 344}, {163, 337}, {175, 348}, {149, 353}, {171, 351}, {160, 340}, {165, 339}, {177, 327}, {169, 351}, {148, 355}, {171, 339}, {174, 342}, {172, 341}, {156, 359}, {172, 343}, {180, 328}, {153, 356}, {157, 352}, {152, 358}, {165, 346} }>;

(II) A more general form is to represent the graph as the orbit of {150, 211} under the group generated by the following permutations:

a: (2, 4)(3, 6)(5, 9)(7, 12)(8, 13)(10, 16)(11, 18)(14, 22)(15, 24)(17, 27)(20, 31)(21, 33)(23, 36)(25, 39)(26, 40)(28, 43)(30, 46)(32, 49)(34, 52)(35, 53)(37, 55)(38, 57)(41, 60)(42, 62)(44, 65)(45, 67)(47, 70)(48, 71)(50, 74)(51, 76)(54, 79)(56, 82)(58, 85)(59, 87)(61, 90)(63, 92)(64, 93)(66, 95)(68, 96)(69, 99)(72, 101)(73, 103)(75, 106)(77, 108)(78, 109)(80, 112)(81, 113)(84, 110)(86, 118)(88, 121)(89, 122)(91, 97)(94, 125)(98, 129)(100, 131)(102, 134)(104, 124)(105, 135)(107, 132)(111, 139)(116, 143)(117, 130)(120, 126)(123, 149)(127, 152)(128, 153)(133, 156)(136, 146)(137, 159)(138, 161)(140, 154)(142, 165)(147, 168)(148, 169)(151, 171)(155, 163)(157, 174)(158, 167)(160, 166)(162, 170)(164, 177)(172, 178)(173, 176)(175, 179)(181, 183)(182, 185)(184, 188)(187, 192)(189, 195)(191, 197)(193, 200)(194, 202)(196, 205)(198, 208)(199, 210)(201, 213)(203, 216)(204, 217)(206, 220)(207, 222)(209, 225)(211, 228)(212, 229)(214, 232)(215, 234)(218, 237)(219, 239)(223, 244)(224, 245)(227, 249)(230, 252)(231, 254)(233, 257)(235, 260)(236, 262)(238, 265)(240, 268)(242, 259)(243, 270)(248, 275)(250, 278)(251, 280)(255, 284)(256, 285)(258, 288)(261, 292)(264, 294)(266, 297)(267, 299)(269, 301)(271, 304)(273, 296)(274, 306)(276, 307)(277, 309)(279, 308)(281, 303)(283, 313)(286, 316)(287, 318)(290, 321)(291, 322)(295, 324)(300, 327)(302, 330)(305, 329)(310, 334)(311, 332)(312, 336)(314, 333)(315, 338)(317, 335)(320, 339)(323, 340)(325, 342)(328, 345)(341, 351)(344, 354)(348, 353)(350, 358)(355, 359)(357, 360)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(14, 21)(16, 24)(17, 26)(19, 29)(20, 30)(22, 33)(23, 35)(25, 38)(27, 40)(28, 42)(31, 46)(32, 48)(34, 51)(36, 53)(37, 55)(39, 57)(41, 59)(43, 62)(44, 64)(45, 66)(47, 69)(49, 71)(50, 73)(52, 76)(54, 78)(56, 81)(58, 84)(60, 87)(61, 89)(63, 92)(65, 93)(67, 95)(68, 97)(70, 99)(72, 100)(74, 103)(75, 105)(77, 107)(79, 109)(80, 111)(82, 113)(83, 115)(85, 110)(86, 117)(88, 120)(90, 122)(91, 96)(94, 124)(98, 128)(101, 131)(102, 133)(104, 125)(106, 135)(108, 132)(112, 139)(114, 141)(116, 142)(118, 130)(119, 145)(121, 126)(123, 148)(127, 151)(129, 153)(134, 156)(136, 158)(137, 159)(138, 160)(140, 162)(143, 165)(146, 167)(147, 168)(149, 169)(152, 171)(154, 170)(155, 173)(157, 172)(161, 166)(163, 176)(164, 175)(174, 178)(177, 179)(181, 182)(183, 185)(184, 187)(186, 190)(188, 192)(189, 194)(193, 199)(195, 202)(196, 204)(198, 207)(200, 210)(201, 212)(203, 215)(205, 217)(206, 219)(208, 222)(209, 224)(211, 227)(213, 229)(214, 231)(216, 234)(218, 236)(220, 239)(221, 241)(223, 243)(225, 245)(226, 247)(228, 249)(230, 251)(232, 254)(233, 256)(235, 259)(237, 262)(238, 264)(240, 267)(242, 260)(244, 270)(246, 272)(248, 274)(250, 277)(252, 280)(253, 282)(255, 283)(257, 285)(258, 287)(261, 291)(263, 293)(265, 294)(266, 296)(268, 299)(269, 300)(271, 303)(273, 297)(275, 306)(276, 308)(278, 309)(279, 307)(281, 304)(284, 313)(286, 315)(288, 318)(289, 319)(290, 320)(292, 322)(295, 323)(298, 326)(301, 327)(302, 329)(305, 330)(310, 333)(311, 335)(314, 334)(316, 338)(317, 332)(321, 339)(324, 340)(325, 341)(328, 344)(331, 346)(337, 349)(342, 351)(343, 352)(345, 354)(347, 356)(348, 355)(350, 357)(353, 359)(358, 360)
c: (1, 2)(3, 5)(4, 7)(6, 10)(9, 14)(11, 17)(12, 19)(13, 20)(15, 23)(16, 25)(18, 28)(21, 32)(22, 34)(24, 37)(26, 35)(27, 41)(29, 44)(30, 45)(31, 47)(33, 50)(36, 54)(38, 56)(39, 52)(40, 58)(42, 61)(43, 63)(46, 68)(48, 66)(49, 72)(51, 75)(53, 77)(55, 80)(57, 83)(59, 86)(60, 88)(62, 91)(64, 89)(65, 94)(67, 96)(69, 98)(71, 76)(73, 102)(74, 104)(78, 93)(79, 110)(81, 111)(82, 114)(84, 112)(85, 116)(87, 119)(90, 123)(92, 121)(95, 126)(97, 127)(99, 130)(100, 115)(101, 132)(105, 133)(106, 136)(107, 124)(108, 137)(109, 138)(113, 140)(117, 139)(118, 144)(120, 146)(122, 147)(125, 150)(128, 151)(129, 154)(131, 155)(134, 157)(135, 148)(141, 163)(142, 164)(143, 159)(145, 166)(149, 170)(152, 162)(153, 172)(156, 169)(158, 168)(160, 175)(161, 167)(165, 173)(171, 176)(177, 178)(179, 180)(182, 184)(183, 186)(185, 189)(187, 191)(188, 193)(190, 196)(192, 198)(194, 201)(195, 203)(197, 206)(199, 209)(200, 211)(202, 214)(204, 212)(205, 218)(207, 221)(208, 223)(210, 226)(213, 230)(215, 233)(216, 228)(217, 235)(219, 238)(220, 240)(222, 242)(224, 241)(225, 246)(227, 248)(229, 250)(231, 253)(232, 255)(234, 258)(236, 261)(237, 263)(239, 266)(243, 269)(244, 268)(245, 271)(247, 273)(249, 276)(251, 279)(252, 281)(256, 282)(257, 286)(259, 289)(260, 290)(262, 288)(265, 295)(267, 298)(270, 302)(272, 305)(274, 297)(275, 307)(277, 306)(278, 310)(280, 311)(283, 312)(284, 303)(285, 314)(287, 317)(291, 319)(292, 316)(293, 294)(296, 325)(299, 322)(300, 320)(301, 328)(304, 331)(308, 332)(309, 324)(313, 330)(315, 337)(318, 323)(321, 334)(326, 341)(327, 343)(329, 338)(333, 347)(335, 348)(336, 345)(339, 349)(340, 350)(342, 352)(344, 353)(346, 355)(351, 359)(354, 358)(356, 357)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 148 ]
360
-1 181 182 183 185
-2 189 181 184 186
-3 187 190 182 194
-4 188 183 195 186
-5 201 191 184 196
-6 190 202 192 185
-7 203 193 183 186
-8 187 212 191 204
-9 188 213 205 197
-10 198 189 214 196
-11 199 190 215 185
-12 200 181 216 186
-13 192 217 229 197
-14 193 206 218 230
-15 231 204 194 207
-16 232 205 195 208
-17 209 189 233 196
-18 210 190 234 182
-19 211 181 183 228
-20 198 235 206 250
-21 199 236 251 219
-22 220 200 237 252
-23 253 221 201 212
-24 254 222 202 217
-25 255 223 203 218
-26 256 224 204 194
-27 257 225 205 195
-28 258 226 184 196
-29 182 227 249 185
-30 277 259 207 219
-31 220 278 260 208
-32 209 279 238 261
-33 210 280 239 262
-34 211 281 240 263
-35 201 212 282 241
-36 253 221 213 229
-37 242 254 235 214
-38 243 236 215 283
-39 244 237 216 284
-40 245 202 217 285
-41 286 246 203 218
-42 187 287 247 204
-43 188 288 226 205
-44 276 189 248 184
-45 221 289 238 306
-46 242 309 222 239
-47 310 223 290 240
-48 264 224 291 307
-49 308 265 225 292
-50 266 288 311 226
-51 267 227 293 304
-52 268 303 228 263
-53 213 282 229 241
-54 231 250 207 230
-55 231 232 259 260
-56 233 312 269 261
-57 234 313 270 262
-58 235 214 314 271
-59 236 215 315 272
-60 246 237 216 316
-61 212 191 273 317
-62 192 247 217 318
-63 210 193 218 262
-64 187 308 194 274
-65 275 188 195 307
-66 264 275 319 241
-67 221 265 289 274
-68 242 222 266 324
-69 243 320 267 333
-70 244 321 268 334
-71 276 245 322 294
-72 332 246 316 295
-73 247 335 296 318
-74 297 332 258 226
-75 298 331 248 294
-76 299 249 271 293
-77 256 224 250 230
-78 198 277 214 251
-79 254 222 278 252
-80 253 255 289 290
-81 256 300 312 291
-82 257 301 292 336
-83 330 288 258 302
-84 231 334 259 303
-85 232 333 260 304
-86 233 337 261 305
-87 234 272 338 262
-88 225 292 228 263
-89 297 332 201 191
-90 335 229 197 296
-91 198 235 323 273
-92 199 200 236 237
-93 202 279 192 306
-94 275 203 193 307
-95 319 248 294 241
-96 297 259 207 295
-97 260 208 296 340
-98 298 300 269 347
-99 299 270 314 339
-100 323 272 338 317
-101 286 311 246 324
-102 323 325 348 273
-103 287 247 273 317
-104 308 210 234 274
-105 265 346 326 274
-106 264 275 298 331
-107 209 233 277 251
-108 245 278 252 285
-109 232 309 280 208
-110 242 254 310 281
-111 319 320 282 283
-112 253 321 289 284
-113 322 336 327 285
-114 286 345 316 328
-115 287 305 318 329
-116 331 255 290 347
-117 330 256 291 349
-118 257 292 337 329
-119 288 258 305 329
-120 245 322 249 293
-121 209 211 261 263
-122 266 311 213 197
-123 325 348 206 250
-124 199 279 215 306
-125 276 200 248 216
-126 224 291 227 293
-127 223 290 325 350
-128 300 356 269 326
-129 298 301 347 327
-130 322 302 349 285
-131 335 315 272 340
-132 309 257 225 280
-133 297 341 355 295
-134 342 353 296 340
-135 346 238 326 306
-136 264 267 304 307
-137 310 281 314 271
-138 255 223 311 324
-139 319 313 282 339
-140 299 343 345 314
-141 354 344 315 338
-142 320 356 346 283
-143 331 321 347 284
-144 286 315 316 338
-145 330 287 302 318
-146 276 299 271 294
-147 280 206 239 230
-148 341 277 355 219
-149 220 342 353 278
-150 211 227 249 228
-151 341 243 320 357
-152 342 244 321 358
-153 301 356 326 327
-154 343 267 333 328
-155 337 348 305 350
-156 266 324 359 351
-157 352 344 325 350
-158 279 281 238 240
-159 333 334 303 304
-160 243 335 283 340
-161 244 332 284 295
-162 352 354 268 334
-163 353 358 337 329
-164 300 355 312 357
-165 356 313 346 339
-166 323 313 270 317
-167 308 265 268 303
-168 220 251 219 252
-169 309 359 239 351
-170 352 310 344 240
-171 270 360 339 351
-172 341 343 357 328
-173 330 355 357 349
-174 352 342 354 358
-175 312 269 348 350
-176 302 359 349 360
-177 336 359 327 360
-178 343 345 360 351
-179 353 301 336 358
-180 354 344 345 328
-181 1 12 2 19
-182 1 3 18 29
-183 1 4 7 19
-184 44 2 5 28
-185 11 1 6 29
-186 12 2 4 7
-187 3 8 42 64
-188 4 9 43 65
-189 44 2 17 10
-190 11 3 6 18
-191 89 5 61 8
-192 13 93 6 62
-193 14 94 7 63
-194 3 15 26 64
-195 4 16 27 65
-196 5 17 28 10
-197 122 13 90 9
-198 78 91 20 10
-199 11 124 92 21
-200 22 12 92 125
-201 23 89 35 5
-202 24 93 6 40
-203 25 94 7 41
-204 15 26 8 42
-205 16 27 9 43
-206 123 14 147 20
-207 15 30 96 54
-208 16 31 97 109
-209 121 17 107 32
-210 33 104 18 63
-211 121 34 150 19
-212 23 35 61 8
-213 122 36 9 53
-214 78 58 37 10
-215 11 124 59 38
-216 12 125 60 39
-217 13 24 40 62
-218 14 25 41 63
-219 168 148 30 21
-220 22 168 149 31
-221 23 45 67 36
-222 68 24 79 46
-223 25 47 127 138
-224 77 26 48 126
-225 88 132 27 49
-226 28 50 74 43
-227 126 29 51 150
-228 88 150 19 52
-229 13 90 36 53
-230 77 14 147 54
-231 55 15 84 54
-232 55 16 85 109
-233 56 17 107 86
-234 57 104 18 87
-235 58 91 37 20
-236 59 92 38 21
-237 22 92 60 39
-238 45 135 158 32
-239 33 46 147 169
-240 34 47 158 170
-241 66 35 95 53
-242 110 46 68 37
-243 69 38 160 151
-244 70 39 161 152
-245 71 40 108 120
-246 101 60 72 41
-247 103 62 73 42
-248 44 125 95 75
-249 29 150 76 120
-250 77 123 20 54
-251 78 168 107 21
-252 22 79 168 108
-253 23 112 36 80
-254 110 24 79 37
-255 25 80 116 138
-256 77 26 81 117
-257 132 27 82 118
-258 28 83 74 119
-259 55 84 30 96
-260 55 85 31 97
-261 121 56 86 32
-262 33 57 63 87
-263 88 121 34 52
-264 66 48 136 106
-265 67 167 49 105
-266 122 68 156 50
-267 154 69 136 51
-268 167 70 52 162
-269 56 128 98 175
-270 99 166 57 171
-271 58 146 137 76
-272 100 59 87 131
-273 91 102 103 61
-274 67 104 105 64
-275 66 94 106 65
-276 44 146 125 71
-277 78 148 30 107
-278 79 149 31 108
-279 124 158 93 32
-280 33 132 147 109
-281 110 34 158 137
-282 111 35 139 53
-283 111 38 160 142
-284 143 112 39 161
-285 113 40 108 130
-286 144 101 114 41
-287 145 103 115 42
-288 50 83 119 43
-289 45 67 112 80
-290 47 80 116 127
-291 48 81 126 117
-292 88 49 82 118
-293 126 51 76 120
-294 146 71 95 75
-295 133 72 161 96
-296 90 134 73 97
-297 89 133 74 96
-298 106 129 75 98
-299 99 146 140 76
-300 81 128 98 164
-301 179 82 129 153
-302 176 145 83 130
-303 167 159 84 52
-304 136 159 51 85
-305 155 115 86 119
-306 45 124 135 93
-307 48 136 94 65
-308 167 49 104 64
-309 132 46 169 109
-310 110 47 137 170
-311 122 101 50 138
-312 56 81 164 175
-313 165 166 57 139
-314 99 58 137 140
-315 144 59 141 131
-316 144 114 60 72
-317 100 166 103 61
-318 145 115 62 73
-319 66 111 95 139
-320 111 69 151 142
-321 143 112 70 152
-322 113 71 130 120
-323 100 166 91 102
-324 68 101 156 138
-325 123 102 157 127
-326 135 105 128 153
-327 177 113 129 153
-328 154 114 180 172
-329 115 118 119 163
-330 145 83 117 173
-331 143 116 106 75
-332 89 72 161 74
-333 154 69 159 85
-334 70 159 84 162
-335 90 160 73 131
-336 177 113 179 82
-337 155 118 86 163
-338 100 144 141 87
-339 99 165 171 139
-340 134 160 97 131
-341 133 148 172 151
-342 134 149 152 174
-343 154 178 172 140
-344 157 180 170 141
-345 178 114 180 140
-346 165 135 105 142
-347 143 116 129 98
-348 155 123 102 175
-349 176 117 173 130
-350 155 157 127 175
-351 156 178 169 171
-352 157 170 162 174
-353 134 179 149 163
-354 180 162 141 174
-355 133 148 173 164
-356 165 128 142 153
-357 172 151 173 164
-358 179 152 163 174
-359 176 177 156 169
-360 176 177 178 171
0

**************