C4graphGraph forms for C4 [ 360, 149 ] = XI(Rmap(180,134){6,10|4}_12)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 149 ] = XI(Rmap(180,134){6,10|4}_12).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {177, 187}, {168, 184}, {173, 188}, {168, 189}, {136, 187}, {141, 184}, {142, 185}, {142, 182}, {151, 213}, {178, 240}, {172, 238}, {165, 224}, {154, 221}, {176, 247}, {140, 196}, {141, 197}, {146, 217}, {147, 194}, {166, 247}, {161, 243}, {167, 245}, {135, 212}, {152, 206}, {155, 205}, {136, 208}, {152, 193}, {167, 253}, {155, 192}, {147, 207}, {145, 242}, {165, 192}, {146, 245}, {159, 248}, {157, 250}, {140, 228}, {167, 207}, {137, 224}, {173, 196}, {139, 226}, {131, 232}, {138, 225}, {164, 200}, {135, 233}, {150, 249}, {177, 195}, {149, 230}, {169, 223}, {169, 222}, {143, 246}, {176, 201}, {178, 200}, {143, 244}, {175, 212}, {164, 219}, {69, 197}, {70, 198}, {121, 249}, {99, 225}, {111, 237}, {114, 240}, {108, 239}, {81, 213}, {98, 230}, {49, 183}, {85, 217}, {48, 190}, {68, 202}, {49, 191}, {115, 252}, {74, 218}, {127, 237}, {80, 195}, {76, 216}, {79, 219}, {86, 194}, {120, 238}, {112, 231}, {78, 214}, {78, 215}, {32, 186}, {97, 251}, {100, 254}, {101, 255}, {113, 234}, {98, 252}, {99, 253}, {67, 227}, {69, 229}, {68, 228}, {81, 241}, {99, 193}, {110, 203}, {107, 204}, {127, 216}, {116, 220}, {67, 234}, {20, 191}, {122, 209}, {113, 221}, {110, 222}, {121, 203}, {4, 183}, {12, 191}, {8, 187}, {80, 227}, {1, 181}, {86, 226}, {98, 214}, {100, 208}, {101, 209}, {102, 210}, {107, 223}, {3, 182}, {11, 190}, {9, 188}, {1, 183}, {90, 236}, {1, 182}, {10, 189}, {2, 181}, {1, 185}, {76, 244}, {4, 188}, {3, 187}, {2, 186}, {2, 184}, {4, 191}, {68, 255}, {64, 251}, {113, 202}, {68, 248}, {78, 242}, {74, 246}, {3, 190}, {78, 243}, {67, 254}, {65, 252}, {7, 186}, {5, 184}, {115, 206}, {116, 201}, {2, 189}, {66, 253}, {6, 185}, {3, 195}, {22, 214}, {19, 211}, {12, 204}, {11, 203}, {10, 202}, {9, 201}, {8, 200}, {7, 199}, {6, 198}, {5, 197}, {4, 196}, {21, 212}, {59, 250}, {5, 192}, {63, 250}, {13, 200}, {7, 194}, {16, 214}, {17, 215}, {122, 188}, {6, 193}, {33, 230}, {5, 205}, {56, 240}, {34, 234}, {7, 207}, {6, 206}, {56, 241}, {62, 247}, {60, 245}, {58, 243}, {18, 216}, {50, 248}, {47, 229}, {46, 228}, {43, 225}, {42, 224}, {19, 217}, {12, 199}, {61, 246}, {57, 242}, {28, 208}, {55, 251}, {31, 211}, {30, 210}, {29, 209}, {13, 192}, {15, 194}, {20, 218}, {45, 227}, {44, 226}, {35, 237}, {14, 193}, {59, 244}, {35, 236}, {32, 239}, {56, 232}, {46, 255}, {103, 182}, {8, 219}, {60, 239}, {45, 254}, {20, 199}, {16, 195}, {12, 223}, {24, 204}, {27, 207}, {26, 206}, {25, 205}, {9, 220}, {50, 231}, {44, 249}, {19, 198}, {17, 196}, {11, 222}, {10, 221}, {18, 197}, {8, 208}, {55, 239}, {11, 211}, {10, 210}, {9, 209}, {31, 198}, {62, 231}, {53, 236}, {103, 190}, {14, 212}, {15, 213}, {51, 232}, {53, 238}, {102, 189}, {21, 201}, {23, 203}, {22, 202}, {54, 235}, {104, 181}, {52, 235}, {54, 233}, {104, 183}, {16, 242}, {29, 255}, {28, 254}, {25, 251}, {24, 250}, {21, 247}, {20, 246}, {17, 243}, {48, 211}, {18, 244}, {27, 253}, {26, 252}, {19, 245}, {14, 233}, {32, 199}, {24, 241}, {13, 224}, {15, 226}, {22, 248}, {23, 249}, {14, 225}, {22, 230}, {30, 238}, {29, 237}, {28, 236}, {27, 235}, {26, 234}, {25, 233}, {24, 232}, {23, 231}, {40, 218}, {71, 181}, {16, 227}, {31, 235}, {33, 213}, {17, 228}, {34, 215}, {40, 222}, {41, 223}, {18, 229}, {59, 204}, {47, 215}, {37, 220}, {38, 220}, {55, 205}, {39, 221}, {30, 229}, {35, 216}, {13, 240}, {71, 186}, {47, 210}, {38, 219}, {36, 217}, {15, 241}, {37, 218}, {70, 185}, {41, 297}, {82, 338}, {83, 339}, {84, 340}, {85, 341}, {100, 356}, {101, 357}, {43, 298}, {45, 300}, {50, 304}, {51, 305}, {91, 345}, {96, 354}, {46, 301}, {63, 316}, {81, 338}, {55, 307}, {62, 314}, {61, 313}, {60, 312}, {103, 354}, {33, 295}, {92, 346}, {44, 299}, {53, 306}, {84, 339}, {71, 335}, {50, 315}, {64, 331}, {70, 333}, {69, 334}, {56, 308}, {59, 311}, {58, 310}, {57, 309}, {65, 332}, {82, 351}, {110, 355}, {30, 272}, {31, 273}, {88, 342}, {89, 343}, {39, 296}, {66, 333}, {60, 307}, {72, 344}, {89, 329}, {23, 262}, {25, 267}, {29, 271}, {28, 270}, {87, 325}, {117, 359}, {84, 320}, {26, 268}, {27, 269}, {72, 336}, {124, 356}, {88, 321}, {58, 288}, {87, 332}, {89, 322}, {95, 324}, {125, 358}, {61, 289}, {80, 332}, {125, 353}, {76, 337}, {94, 323}, {48, 302}, {49, 303}, {21, 266}, {125, 348}, {34, 256}, {36, 262}, {35, 257}, {103, 325}, {39, 260}, {109, 334}, {126, 349}, {124, 344}, {38, 259}, {52, 273}, {100, 321}, {36, 258}, {57, 287}, {46, 264}, {37, 259}, {101, 322}, {42, 258}, {120, 336}, {43, 257}, {63, 277}, {52, 286}, {45, 263}, {119, 349}, {111, 324}, {41, 261}, {42, 262}, {121, 341}, {109, 320}, {104, 326}, {117, 347}, {118, 344}, {118, 345}, {127, 336}, {52, 260}, {36, 277}, {44, 285}, {42, 283}, {40, 281}, {38, 279}, {107, 346}, {32, 274}, {33, 275}, {37, 278}, {51, 256}, {41, 282}, {83, 352}, {48, 261}, {34, 276}, {104, 350}, {43, 284}, {49, 265}, {62, 262}, {106, 338}, {88, 353}, {91, 354}, {126, 324}, {47, 276}, {54, 269}, {53, 270}, {114, 329}, {105, 341}, {54, 267}, {117, 328}, {124, 321}, {40, 278}, {93, 355}, {39, 280}, {105, 342}, {85, 277}, {112, 304}, {118, 310}, {116, 309}, {119, 309}, {67, 256}, {102, 293}, {77, 264}, {94, 280}, {95, 281}, {114, 308}, {87, 272}, {88, 273}, {90, 275}, {72, 258}, {79, 261}, {73, 259}, {120, 306}, {76, 263}, {89, 274}, {92, 279}, {102, 301}, {77, 257}, {109, 289}, {110, 290}, {111, 291}, {91, 278}, {75, 261}, {127, 304}, {119, 295}, {108, 317}, {122, 299}, {126, 303}, {96, 306}, {108, 319}, {114, 289}, {116, 295}, {121, 298}, {125, 302}, {112, 292}, {74, 287}, {75, 286}, {106, 319}, {107, 318}, {115, 294}, {123, 301}, {73, 286}, {106, 317}, {123, 300}, {126, 297}, {79, 279}, {80, 265}, {82, 267}, {84, 269}, {86, 271}, {64, 283}, {81, 266}, {85, 270}, {90, 257}, {72, 276}, {96, 316}, {65, 284}, {117, 296}, {123, 294}, {87, 265}, {93, 259}, {119, 297}, {123, 293}, {66, 285}, {83, 268}, {115, 300}, {111, 271}, {118, 278}, {71, 294}, {86, 311}, {106, 267}, {64, 290}, {65, 291}, {92, 318}, {70, 293}, {122, 281}, {69, 289}, {75, 302}, {94, 315}, {97, 260}, {66, 292}, {79, 297}, {77, 298}, {93, 314}, {105, 270}, {92, 308}, {124, 276}, {73, 288}, {77, 292}, {91, 306}, {75, 288}, {90, 305}, {82, 318}, {83, 319}, {94, 307}, {109, 256}, {95, 303}, {58, 328}, {51, 320}, {73, 314}, {61, 329}, {95, 299}, {63, 330}, {74, 317}, {105, 273}, {112, 264}, {96, 282}, {97, 283}, {120, 258}, {113, 268}, {57, 327}, {98, 284}, {99, 285}, {108, 274}, {93, 290}, {97, 286}, {172, 300}, {162, 291}, {154, 280}, {179, 305}, {131, 263}, {151, 275}, {174, 294}, {132, 271}, {128, 269}, {162, 301}, {177, 288}, {136, 282}, {164, 310}, {137, 283}, {134, 277}, {153, 266}, {130, 279}, {132, 274}, {139, 285}, {138, 284}, {161, 310}, {168, 319}, {170, 304}, {140, 272}, {180, 296}, {166, 314}, {165, 313}, {152, 260}, {130, 287}, {148, 265}, {135, 280}, {167, 312}, {179, 275}, {157, 316}, {145, 309}, {159, 315}, {129, 292}, {175, 266}, {171, 268}, {162, 264}, {172, 263}, {147, 318}, {146, 290}, {169, 281}, {152, 296}, {129, 307}, {173, 287}, {149, 295}, {131, 305}, {132, 311}, {169, 282}, {136, 316}, {151, 291}, {141, 312}, {130, 308}, {143, 313}, {143, 311}, {144, 298}, {148, 303}, {158, 293}, {135, 315}, {172, 272}, {133, 312}, {150, 299}, {144, 302}, {130, 317}, {134, 313}, {163, 355}, {150, 343}, {163, 354}, {129, 323}, {161, 355}, {156, 350}, {159, 348}, {160, 356}, {144, 341}, {160, 357}, {141, 330}, {166, 353}, {137, 321}, {168, 352}, {160, 360}, {155, 339}, {140, 325}, {175, 358}, {174, 359}, {157, 340}, {133, 335}, {145, 347}, {145, 346}, {157, 342}, {153, 338}, {129, 333}, {171, 359}, {147, 351}, {134, 330}, {148, 346}, {128, 335}, {170, 357}, {148, 347}, {133, 330}, {153, 329}, {128, 337}, {154, 331}, {131, 337}, {132, 343}, {158, 333}, {151, 324}, {128, 340}, {180, 352}, {133, 337}, {142, 347}, {158, 331}, {150, 323}, {138, 348}, {139, 349}, {149, 322}, {179, 356}, {158, 326}, {146, 331}, {156, 326}, {153, 322}, {179, 360}, {156, 327}, {155, 320}, {154, 326}, {134, 345}, {174, 335}, {138, 360}, {170, 334}, {178, 342}, {163, 325}, {178, 340}, {176, 343}, {137, 353}, {142, 359}, {173, 327}, {139, 358}, {160, 334}, {162, 332}, {149, 357}, {174, 351}, {175, 349}, {176, 323}, {180, 327}, {171, 351}, {144, 358}, {159, 360}, {171, 339}, {177, 328}, {166, 348}, {170, 336}, {156, 352}, {180, 328}, {165, 345}, {164, 344}, {163, 350}, {161, 350} }>;

(II) A more general form is to represent the graph as the orbit of {177, 187} under the group generated by the following permutations:

a: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(15, 23)(17, 26)(18, 28)(20, 31)(24, 36)(25, 38)(27, 40)(29, 43)(30, 45)(32, 48)(33, 50)(37, 54)(39, 57)(41, 60)(42, 56)(46, 65)(47, 67)(49, 70)(51, 72)(52, 74)(53, 76)(55, 79)(58, 83)(59, 85)(61, 88)(62, 81)(64, 92)(66, 95)(68, 98)(69, 100)(71, 103)(73, 106)(75, 108)(77, 111)(78, 113)(80, 102)(82, 93)(84, 118)(86, 121)(87, 123)(89, 125)(90, 127)(91, 128)(94, 119)(96, 133)(97, 130)(99, 122)(101, 138)(104, 142)(105, 143)(107, 146)(109, 124)(110, 147)(112, 151)(114, 137)(115, 140)(116, 135)(117, 156)(120, 131)(126, 129)(132, 144)(134, 157)(136, 141)(139, 150)(145, 154)(148, 158)(149, 159)(152, 173)(153, 166)(155, 164)(161, 171)(163, 174)(165, 178)(167, 169)(168, 177)(170, 179)(175, 176)(181, 182)(183, 185)(184, 187)(186, 190)(188, 193)(189, 195)(191, 198)(192, 200)(194, 203)(196, 206)(197, 208)(199, 211)(201, 212)(202, 214)(204, 217)(205, 219)(207, 222)(209, 225)(210, 227)(213, 231)(215, 234)(216, 236)(218, 235)(220, 233)(221, 242)(223, 245)(224, 240)(226, 249)(228, 252)(229, 254)(230, 248)(232, 258)(237, 257)(238, 263)(239, 261)(241, 262)(243, 268)(244, 270)(246, 273)(247, 266)(250, 277)(251, 279)(253, 281)(255, 284)(256, 276)(259, 267)(260, 287)(264, 291)(265, 293)(269, 278)(271, 298)(272, 300)(274, 302)(275, 304)(280, 309)(282, 312)(283, 308)(285, 299)(286, 317)(288, 319)(289, 321)(290, 318)(292, 324)(294, 325)(295, 315)(296, 327)(297, 307)(301, 332)(303, 333)(305, 336)(306, 337)(310, 339)(311, 341)(313, 342)(314, 338)(316, 330)(320, 344)(322, 348)(323, 349)(326, 347)(328, 352)(329, 353)(331, 346)(334, 356)(335, 354)(340, 345)(343, 358)(350, 359)(351, 355)(357, 360)
b: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 21)(15, 24)(16, 26)(18, 29)(20, 32)(22, 34)(23, 36)(25, 38)(27, 41)(28, 43)(30, 46)(31, 48)(33, 51)(37, 55)(39, 58)(40, 60)(42, 62)(44, 63)(45, 65)(47, 68)(49, 71)(50, 72)(52, 75)(53, 77)(54, 79)(56, 81)(57, 83)(59, 86)(61, 89)(64, 93)(66, 96)(67, 98)(69, 101)(70, 103)(73, 97)(74, 108)(76, 111)(78, 113)(80, 115)(82, 92)(84, 119)(85, 121)(87, 123)(88, 125)(91, 129)(94, 118)(95, 133)(99, 136)(100, 138)(102, 140)(105, 144)(106, 130)(107, 147)(109, 149)(110, 146)(112, 120)(114, 153)(116, 155)(122, 141)(124, 159)(126, 128)(131, 151)(132, 143)(134, 150)(135, 164)(137, 166)(139, 157)(145, 171)(148, 174)(152, 177)(154, 161)(158, 163)(162, 172)(165, 176)(167, 169)(168, 173)(175, 178)(181, 183)(182, 185)(184, 188)(186, 191)(187, 193)(189, 196)(190, 198)(192, 201)(194, 204)(195, 206)(197, 209)(200, 212)(202, 215)(203, 217)(205, 220)(207, 223)(208, 225)(210, 228)(213, 232)(214, 234)(216, 237)(218, 239)(219, 233)(221, 243)(222, 245)(224, 247)(226, 250)(227, 252)(229, 255)(230, 256)(231, 258)(235, 261)(236, 257)(238, 264)(240, 266)(242, 268)(244, 271)(246, 274)(248, 276)(249, 277)(251, 259)(253, 282)(254, 284)(260, 288)(263, 291)(265, 294)(267, 279)(269, 297)(270, 298)(272, 301)(273, 302)(275, 305)(278, 307)(280, 310)(281, 312)(283, 314)(285, 316)(287, 319)(289, 322)(292, 306)(293, 325)(295, 320)(296, 328)(299, 330)(300, 332)(303, 335)(304, 336)(308, 338)(309, 339)(313, 343)(315, 344)(321, 348)(323, 345)(324, 337)(326, 350)(327, 352)(331, 355)(333, 354)(334, 357)(340, 349)(342, 358)(346, 351)(347, 359)(356, 360)
c: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 22)(16, 25)(17, 27)(19, 30)(21, 33)(23, 35)(24, 37)(26, 39)(28, 42)(29, 44)(31, 47)(32, 49)(34, 52)(36, 53)(38, 56)(40, 59)(41, 61)(43, 50)(45, 64)(46, 66)(48, 69)(51, 73)(54, 78)(55, 80)(57, 82)(58, 84)(60, 87)(62, 90)(63, 91)(65, 94)(67, 97)(68, 99)(70, 102)(71, 104)(72, 105)(74, 107)(75, 109)(76, 110)(77, 112)(79, 114)(81, 116)(83, 117)(85, 120)(86, 122)(88, 124)(89, 126)(92, 130)(93, 131)(95, 132)(96, 134)(98, 135)(100, 137)(101, 139)(103, 141)(106, 145)(108, 148)(111, 150)(113, 152)(115, 154)(118, 157)(119, 153)(121, 127)(123, 158)(125, 160)(128, 161)(129, 162)(133, 163)(136, 165)(138, 159)(140, 167)(142, 168)(143, 169)(144, 170)(146, 172)(147, 173)(149, 175)(151, 176)(155, 177)(156, 174)(164, 178)(166, 179)(171, 180)(182, 184)(183, 186)(185, 189)(187, 192)(188, 194)(190, 197)(191, 199)(193, 202)(195, 205)(196, 207)(198, 210)(201, 213)(203, 216)(204, 218)(206, 221)(208, 224)(209, 226)(211, 229)(212, 230)(214, 233)(215, 235)(217, 238)(219, 240)(220, 241)(222, 244)(223, 246)(225, 248)(227, 251)(228, 253)(231, 257)(232, 259)(234, 260)(236, 262)(237, 249)(239, 265)(242, 267)(243, 269)(245, 272)(247, 275)(250, 278)(252, 280)(254, 283)(255, 285)(256, 286)(258, 270)(261, 289)(263, 290)(264, 292)(266, 295)(268, 296)(271, 299)(273, 276)(274, 303)(277, 306)(279, 308)(281, 311)(282, 313)(284, 315)(287, 318)(288, 320)(291, 323)(294, 326)(297, 329)(298, 304)(300, 331)(301, 333)(302, 334)(305, 314)(307, 332)(309, 338)(310, 340)(312, 325)(316, 345)(317, 346)(319, 347)(322, 349)(324, 343)(327, 351)(328, 339)(330, 354)(335, 350)(336, 341)(337, 355)(342, 344)(348, 360)(352, 359)(353, 356)(357, 358)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 149 ]
360
-1 181 182 183 185
-2 189 181 184 186
-3 187 190 182 195
-4 188 191 183 196
-5 192 205 184 197
-6 198 193 206 185
-7 199 194 207 186
-8 187 200 208 219
-9 209 220 188 201
-10 210 221 189 202
-11 211 222 190 203
-12 199 223 191 204
-13 200 224 192 240
-14 233 212 225 193
-15 213 226 194 241
-16 242 214 227 195
-17 243 215 228 196
-18 244 216 229 197
-19 198 211 245 217
-20 199 191 246 218
-21 266 201 212 247
-22 202 214 248 230
-23 231 203 249 262
-24 232 204 250 241
-25 233 267 205 251
-26 234 268 206 252
-27 253 235 269 207
-28 254 236 270 208
-29 209 255 237 271
-30 210 238 272 229
-31 198 211 235 273
-32 199 239 186 274
-33 275 213 295 230
-34 276 234 256 215
-35 257 236 237 216
-36 277 258 217 262
-37 220 278 259 218
-38 220 279 259 219
-39 221 280 260 296
-40 222 278 281 218
-41 297 223 282 261
-42 224 258 283 262
-43 298 257 225 284
-44 299 226 249 285
-45 254 300 227 263
-46 264 255 301 228
-47 210 276 215 229
-48 211 190 302 261
-49 265 191 303 183
-50 231 248 304 315
-51 232 320 256 305
-52 286 235 260 273
-53 236 270 238 306
-54 233 267 235 269
-55 205 239 251 307
-56 308 232 240 241
-57 242 287 309 327
-58 243 288 310 328
-59 244 311 204 250
-60 245 312 239 307
-61 289 246 313 329
-62 231 247 314 262
-63 330 277 250 316
-64 331 290 283 251
-65 332 291 284 252
-66 253 333 292 285
-67 254 234 256 227
-68 255 202 248 228
-69 289 334 229 197
-70 198 333 293 185
-71 181 335 294 186
-72 276 344 258 336
-73 286 288 259 314
-74 287 246 218 317
-75 286 288 302 261
-76 244 216 337 263
-77 264 298 257 292
-78 242 243 214 215
-79 297 279 261 219
-80 265 332 227 195
-81 266 213 338 241
-82 267 338 318 351
-83 319 352 268 339
-84 320 269 339 340
-85 341 277 270 217
-86 311 226 194 271
-87 265 332 325 272
-88 342 353 321 273
-89 343 322 274 329
-90 275 257 236 305
-91 354 278 345 306
-92 308 279 346 318
-93 355 290 259 314
-94 323 280 315 307
-95 299 324 281 303
-96 354 282 316 306
-97 286 260 283 251
-98 214 284 230 252
-99 253 225 193 285
-100 254 321 356 208
-101 209 255 322 357
-102 210 189 301 293
-103 354 190 182 325
-104 181 183 326 350
-105 341 342 270 273
-106 319 267 338 317
-107 223 346 204 318
-108 319 239 317 274
-109 320 256 289 334
-110 222 355 290 203
-111 291 324 237 271
-112 231 264 292 304
-113 221 234 202 268
-114 308 289 240 329
-115 300 206 294 252
-116 220 309 201 295
-117 347 359 328 296
-118 310 278 344 345
-119 297 309 349 295
-120 258 336 238 306
-121 341 298 203 249
-122 209 188 299 281
-123 300 301 293 294
-124 276 321 344 356
-125 353 302 358 348
-126 297 324 303 349
-127 237 336 216 304
-128 269 335 337 340
-129 333 323 292 307
-130 308 287 279 317
-131 232 337 305 263
-132 343 311 271 274
-133 330 312 335 337
-134 330 277 345 313
-135 233 212 280 315
-136 187 282 316 208
-137 353 321 224 283
-138 225 348 360 284
-139 226 358 349 285
-140 325 228 272 196
-141 330 312 184 197
-142 182 347 359 185
-143 244 311 246 313
-144 341 298 302 358
-145 242 309 346 347
-146 331 245 290 217
-147 194 207 318 351
-148 265 346 303 347
-149 322 357 295 230
-150 299 343 323 249
-151 275 213 291 324
-152 193 260 206 296
-153 266 322 338 329
-154 221 331 280 326
-155 320 192 205 339
-156 352 326 327 350
-157 342 250 316 340
-158 331 333 293 326
-159 248 315 348 360
-160 334 356 357 360
-161 243 310 355 350
-162 264 332 301 291
-163 354 355 325 350
-164 200 310 344 219
-165 224 345 192 313
-166 353 247 314 348
-167 253 245 312 207
-168 319 352 189 184
-169 222 223 281 282
-170 334 357 336 304
-171 268 359 339 351
-172 300 238 272 263
-173 188 287 327 196
-174 335 359 294 351
-175 266 212 358 349
-176 343 201 323 247
-177 187 288 195 328
-178 342 200 240 340
-179 275 356 305 360
-180 352 327 328 296
-181 1 2 71 104
-182 1 3 103 142
-183 1 4 49 104
-184 2 168 5 141
-185 1 70 6 142
-186 2 71 7 32
-187 177 3 136 8
-188 122 4 173 9
-189 2 102 168 10
-190 11 3 48 103
-191 12 4 49 20
-192 165 155 13 5
-193 99 14 6 152
-194 15 147 7 86
-195 177 3 80 16
-196 4 17 140 173
-197 69 5 18 141
-198 70 6 19 31
-199 12 7 20 32
-200 13 178 8 164
-201 176 116 9 21
-202 22 68 113 10
-203 11 110 121 23
-204 12 24 59 107
-205 55 155 25 5
-206 26 115 6 152
-207 167 147 27 7
-208 100 136 28 8
-209 122 101 29 9
-210 47 102 30 10
-211 11 48 19 31
-212 14 135 21 175
-213 33 15 81 151
-214 22 78 16 98
-215 34 78 47 17
-216 35 127 18 76
-217 36 146 19 85
-218 37 40 74 20
-219 79 38 8 164
-220 37 38 116 9
-221 154 113 39 10
-222 11 110 169 40
-223 12 169 41 107
-224 165 13 137 42
-225 99 14 138 43
-226 44 15 139 86
-227 45 67 80 16
-228 46 68 17 140
-229 47 69 18 30
-230 22 33 149 98
-231 23 112 50 62
-232 56 24 51 131
-233 14 25 135 54
-234 34 67 113 26
-235 27 52 31 54
-236 35 90 28 53
-237 111 35 127 29
-238 172 30 53 120
-239 55 60 108 32
-240 56 13 178 114
-241 56 24 15 81
-242 78 57 145 16
-243 78 58 17 161
-244 143 59 18 76
-245 167 146 60 19
-246 143 61 74 20
-247 176 166 62 21
-248 22 68 159 50
-249 44 121 23 150
-250 24 157 59 63
-251 55 25 64 97
-252 26 115 65 98
-253 66 99 167 27
-254 45 67 100 28
-255 46 68 101 29
-256 34 67 51 109
-257 77 35 90 43
-258 36 72 42 120
-259 37 38 93 73
-260 39 52 97 152
-261 79 48 41 75
-262 23 36 62 42
-263 45 172 76 131
-264 77 46 112 162
-265 80 49 148 87
-266 81 21 153 175
-267 25 82 106 54
-268 113 26 83 171
-269 27 84 128 54
-270 28 105 85 53
-271 132 111 29 86
-272 172 30 140 87
-273 88 105 52 31
-274 132 89 108 32
-275 33 90 179 151
-276 34 47 124 72
-277 134 36 63 85
-278 91 37 40 118
-279 79 92 38 130
-280 154 135 39 94
-281 122 169 40 95
-282 136 169 41 96
-283 137 42 64 97
-284 138 43 65 98
-285 44 66 99 139
-286 73 52 75 97
-287 57 74 173 130
-288 177 58 73 75
-289 69 114 61 109
-290 110 146 93 64
-291 111 151 162 65
-292 66 77 112 129
-293 123 102 70 158
-294 123 71 115 174
-295 33 116 149 119
-296 180 39 117 152
-297 79 126 41 119
-298 77 121 144 43
-299 44 122 95 150
-300 45 123 115 172
-301 46 123 102 162
-302 144 48 125 75
-303 49 126 148 95
-304 112 170 50 127
-305 90 179 51 131
-306 91 96 53 120
-307 55 60 94 129
-308 56 92 114 130
-309 57 145 116 119
-310 58 161 118 164
-311 132 143 59 86
-312 133 167 60 141
-313 143 165 134 61
-314 166 93 62 73
-315 135 159 50 94
-316 157 136 63 96
-317 106 74 108 130
-318 92 147 82 107
-319 168 83 106 108
-320 155 51 84 109
-321 88 100 124 137
-322 89 101 149 153
-323 176 94 150 129
-324 111 126 95 151
-325 103 140 163 87
-326 154 156 158 104
-327 57 156 180 173
-328 177 58 180 117
-329 89 114 61 153
-330 133 134 63 141
-331 154 146 158 64
-332 80 162 65 87
-333 66 70 158 129
-334 69 170 160 109
-335 133 71 128 174
-336 170 72 127 120
-337 133 128 76 131
-338 81 82 106 153
-339 155 83 171 84
-340 178 157 84 128
-341 121 144 105 85
-342 88 178 157 105
-343 132 176 89 150
-344 124 72 118 164
-345 165 134 91 118
-346 145 92 148 107
-347 145 148 117 142
-348 166 125 159 138
-349 126 139 119 175
-350 156 104 161 163
-351 147 82 171 174
-352 156 168 180 83
-353 88 166 125 137
-354 91 103 96 163
-355 110 93 161 163
-356 100 124 179 160
-357 101 170 149 160
-358 144 125 139 175
-359 171 117 174 142
-360 179 159 138 160
0

**************