C4graphGraph forms for C4 [ 360, 150 ] = XI(Rmap(180,137){10,6|4}_12)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 150 ] = XI(Rmap(180,137){10,6|4}_12).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {168, 232}, {180, 244}, {162, 224}, {140, 207}, {164, 224}, {139, 206}, {176, 247}, {177, 246}, {142, 198}, {171, 227}, {153, 209}, {152, 210}, {166, 247}, {176, 225}, {160, 243}, {172, 248}, {142, 213}, {179, 239}, {128, 221}, {175, 242}, {169, 244}, {141, 208}, {167, 249}, {164, 251}, {165, 250}, {147, 240}, {157, 245}, {139, 225}, {144, 250}, {144, 251}, {178, 223}, {140, 226}, {141, 227}, {153, 233}, {152, 234}, {133, 246}, {128, 248}, {168, 208}, {134, 255}, {167, 222}, {165, 223}, {166, 220}, {133, 254}, {138, 245}, {70, 199}, {71, 194}, {98, 231}, {59, 188}, {97, 230}, {49, 184}, {79, 197}, {84, 222}, {102, 236}, {103, 237}, {48, 187}, {99, 232}, {49, 189}, {100, 233}, {101, 234}, {68, 213}, {78, 220}, {96, 242}, {69, 214}, {114, 231}, {32, 182}, {86, 192}, {67, 212}, {117, 226}, {32, 185}, {79, 212}, {86, 202}, {113, 239}, {70, 217}, {20, 181}, {103, 198}, {104, 201}, {20, 183}, {31, 188}, {102, 197}, {91, 255}, {19, 182}, {88, 253}, {31, 184}, {80, 247}, {72, 239}, {89, 254}, {64, 232}, {81, 249}, {70, 238}, {66, 234}, {65, 233}, {68, 237}, {81, 248}, {83, 250}, {85, 252}, {69, 238}, {82, 249}, {84, 255}, {87, 252}, {90, 241}, {19, 190}, {123, 214}, {18, 189}, {67, 236}, {84, 251}, {7, 183}, {78, 254}, {11, 185}, {13, 191}, {4, 183}, {8, 187}, {1, 181}, {3, 182}, {11, 190}, {9, 188}, {103, 210}, {1, 183}, {12, 186}, {1, 182}, {10, 189}, {2, 181}, {102, 209}, {1, 185}, {6, 190}, {4, 188}, {3, 187}, {2, 186}, {12, 181}, {79, 246}, {77, 244}, {75, 242}, {73, 240}, {2, 184}, {5, 191}, {74, 241}, {78, 245}, {123, 199}, {3, 190}, {7, 186}, {5, 184}, {114, 207}, {4, 186}, {2, 189}, {76, 243}, {6, 185}, {24, 216}, {3, 194}, {27, 218}, {18, 211}, {16, 209}, {14, 207}, {5, 196}, {11, 200}, {40, 235}, {38, 229}, {26, 217}, {17, 210}, {13, 206}, {8, 204}, {32, 228}, {12, 200}, {9, 205}, {41, 236}, {53, 240}, {43, 238}, {6, 192}, {7, 193}, {4, 195}, {58, 253}, {42, 237}, {28, 219}, {24, 223}, {20, 211}, {19, 219}, {21, 220}, {23, 222}, {57, 243}, {22, 221}, {5, 201}, {7, 203}, {6, 202}, {8, 197}, {49, 252}, {10, 199}, {10, 196}, {33, 239}, {25, 215}, {15, 193}, {14, 192}, {9, 198}, {21, 197}, {54, 230}, {24, 200}, {23, 199}, {22, 198}, {25, 200}, {45, 252}, {29, 204}, {27, 202}, {16, 194}, {43, 249}, {42, 248}, {39, 245}, {38, 244}, {35, 241}, {34, 240}, {31, 205}, {19, 193}, {17, 195}, {26, 201}, {46, 253}, {30, 205}, {12, 216}, {15, 219}, {14, 218}, {13, 217}, {18, 196}, {61, 235}, {55, 225}, {54, 224}, {44, 250}, {37, 243}, {36, 242}, {28, 203}, {44, 251}, {104, 191}, {60, 228}, {63, 231}, {62, 230}, {61, 229}, {56, 226}, {57, 227}, {31, 196}, {8, 212}, {17, 205}, {16, 204}, {11, 215}, {10, 214}, {9, 213}, {30, 195}, {32, 253}, {40, 246}, {58, 228}, {41, 247}, {15, 208}, {29, 194}, {45, 201}, {47, 203}, {46, 202}, {39, 193}, {15, 232}, {22, 241}, {23, 255}, {14, 231}, {48, 218}, {53, 223}, {52, 222}, {13, 230}, {21, 254}, {39, 203}, {34, 207}, {50, 220}, {51, 221}, {33, 206}, {48, 192}, {20, 229}, {35, 208}, {44, 216}, {47, 219}, {46, 218}, {45, 217}, {30, 235}, {38, 211}, {36, 209}, {37, 210}, {47, 216}, {47, 215}, {59, 195}, {54, 206}, {16, 233}, {70, 191}, {29, 228}, {27, 226}, {25, 224}, {23, 238}, {21, 236}, {18, 235}, {17, 234}, {44, 215}, {40, 211}, {30, 229}, {26, 225}, {22, 237}, {48, 204}, {71, 187}, {41, 212}, {43, 214}, {35, 221}, {28, 227}, {42, 213}, {33, 288}, {62, 319}, {58, 312}, {84, 342}, {76, 335}, {80, 339}, {71, 323}, {73, 333}, {72, 332}, {92, 344}, {36, 289}, {81, 340}, {75, 334}, {39, 290}, {83, 342}, {98, 356}, {52, 307}, {82, 341}, {64, 328}, {65, 329}, {109, 357}, {67, 330}, {45, 295}, {104, 354}, {40, 291}, {85, 350}, {41, 292}, {43, 294}, {108, 353}, {56, 310}, {42, 293}, {68, 331}, {106, 357}, {115, 355}, {80, 321}, {75, 345}, {86, 322}, {114, 358}, {72, 349}, {82, 327}, {56, 302}, {76, 346}, {57, 303}, {119, 353}, {73, 350}, {24, 256}, {29, 261}, {28, 260}, {27, 259}, {26, 258}, {25, 257}, {124, 356}, {50, 296}, {55, 301}, {54, 300}, {51, 297}, {123, 352}, {77, 336}, {79, 338}, {87, 330}, {52, 298}, {53, 299}, {94, 320}, {95, 321}, {120, 358}, {78, 337}, {94, 321}, {98, 322}, {112, 336}, {127, 351}, {61, 284}, {110, 335}, {118, 340}, {119, 339}, {34, 263}, {59, 286}, {121, 348}, {107, 333}, {33, 262}, {63, 280}, {97, 326}, {100, 323}, {122, 349}, {56, 272}, {58, 274}, {57, 273}, {115, 347}, {60, 277}, {62, 279}, {112, 346}, {35, 264}, {61, 278}, {46, 261}, {34, 270}, {55, 283}, {36, 265}, {118, 347}, {49, 287}, {100, 330}, {101, 331}, {37, 266}, {59, 276}, {99, 337}, {126, 332}, {127, 333}, {108, 351}, {37, 273}, {108, 344}, {38, 275}, {105, 348}, {110, 344}, {111, 345}, {124, 331}, {55, 271}, {63, 263}, {62, 262}, {111, 343}, {125, 325}, {50, 267}, {60, 261}, {52, 269}, {89, 352}, {113, 331}, {115, 329}, {121, 323}, {53, 270}, {121, 325}, {126, 322}, {106, 343}, {116, 329}, {93, 355}, {122, 324}, {124, 322}, {51, 268}, {120, 327}, {77, 269}, {123, 315}, {96, 289}, {99, 290}, {116, 309}, {127, 318}, {112, 306}, {72, 267}, {83, 272}, {90, 281}, {126, 313}, {64, 264}, {66, 266}, {65, 265}, {117, 316}, {85, 287}, {87, 285}, {66, 271}, {120, 309}, {96, 303}, {109, 317}, {110, 318}, {113, 288}, {106, 312}, {118, 293}, {119, 292}, {64, 281}, {66, 283}, {105, 304}, {68, 286}, {71, 285}, {69, 287}, {125, 295}, {65, 282}, {92, 256}, {93, 257}, {94, 258}, {95, 259}, {88, 261}, {111, 306}, {67, 285}, {105, 311}, {126, 288}, {109, 269}, {69, 295}, {85, 311}, {88, 314}, {89, 315}, {92, 318}, {93, 319}, {124, 286}, {125, 287}, {74, 297}, {108, 271}, {112, 275}, {80, 308}, {96, 260}, {114, 278}, {115, 279}, {120, 284}, {121, 285}, {122, 286}, {83, 310}, {98, 263}, {105, 268}, {107, 270}, {113, 276}, {90, 316}, {91, 317}, {82, 309}, {97, 262}, {106, 269}, {88, 305}, {95, 308}, {99, 264}, {116, 280}, {117, 281}, {118, 282}, {119, 283}, {91, 310}, {100, 265}, {103, 266}, {116, 282}, {122, 276}, {86, 313}, {101, 266}, {102, 265}, {74, 314}, {87, 295}, {89, 296}, {91, 298}, {93, 300}, {95, 302}, {101, 276}, {125, 268}, {127, 270}, {90, 297}, {94, 301}, {97, 277}, {50, 324}, {51, 325}, {117, 259}, {81, 294}, {92, 299}, {107, 284}, {63, 327}, {73, 304}, {75, 306}, {60, 326}, {74, 305}, {104, 277}, {107, 278}, {109, 272}, {111, 274}, {76, 306}, {77, 307}, {110, 273}, {163, 291}, {162, 288}, {141, 264}, {178, 311}, {135, 257}, {135, 256}, {151, 272}, {164, 300}, {156, 277}, {172, 293}, {136, 258}, {137, 259}, {140, 263}, {147, 280}, {180, 312}, {139, 262}, {167, 298}, {148, 281}, {138, 260}, {166, 296}, {165, 299}, {153, 279}, {129, 273}, {173, 316}, {170, 312}, {176, 292}, {161, 308}, {174, 315}, {143, 274}, {150, 267}, {129, 289}, {131, 291}, {130, 290}, {173, 268}, {132, 294}, {149, 311}, {148, 310}, {141, 303}, {140, 302}, {144, 307}, {162, 257}, {179, 279}, {136, 301}, {174, 267}, {154, 319}, {149, 304}, {145, 308}, {138, 303}, {133, 291}, {180, 274}, {156, 314}, {153, 319}, {152, 318}, {147, 309}, {139, 301}, {131, 292}, {180, 275}, {177, 278}, {137, 302}, {128, 297}, {148, 317}, {146, 315}, {151, 317}, {155, 305}, {135, 300}, {134, 298}, {159, 307}, {135, 299}, {133, 296}, {145, 316}, {158, 304}, {161, 271}, {150, 313}, {171, 260}, {137, 313}, {163, 275}, {176, 258}, {178, 256}, {142, 314}, {172, 280}, {146, 294}, {169, 284}, {175, 282}, {154, 289}, {160, 283}, {143, 305}, {155, 293}, {157, 290}, {157, 349}, {161, 353}, {158, 350}, {160, 353}, {159, 346}, {159, 345}, {146, 341}, {152, 351}, {170, 354}, {174, 359}, {149, 351}, {132, 329}, {149, 344}, {129, 335}, {136, 326}, {129, 334}, {169, 358}, {155, 340}, {131, 339}, {179, 355}, {131, 338}, {145, 320}, {132, 341}, {150, 324}, {130, 337}, {128, 340}, {158, 330}, {154, 334}, {151, 321}, {151, 320}, {177, 358}, {143, 343}, {145, 328}, {157, 324}, {138, 337}, {148, 328}, {158, 323}, {147, 333}, {132, 347}, {134, 359}, {175, 334}, {161, 320}, {130, 352}, {177, 338}, {130, 359}, {173, 328}, {134, 352}, {142, 360}, {143, 360}, {136, 354}, {172, 327}, {170, 326}, {178, 350}, {137, 356}, {168, 325}, {162, 332}, {160, 335}, {163, 338}, {173, 348}, {171, 346}, {150, 356}, {171, 345}, {167, 341}, {164, 342}, {155, 360}, {174, 349}, {165, 342}, {163, 336}, {156, 360}, {175, 347}, {168, 348}, {144, 357}, {166, 339}, {146, 359}, {154, 355}, {169, 336}, {159, 357}, {170, 343}, {156, 354}, {179, 332} }>;

(II) A more general form is to represent the graph as the orbit of {168, 232} under the group generated by the following permutations:

a: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 22)(15, 25)(16, 27)(18, 30)(21, 34)(23, 37)(24, 39)(26, 42)(28, 44)(29, 46)(33, 51)(35, 54)(36, 56)(40, 61)(41, 63)(43, 66)(45, 68)(49, 59)(50, 73)(52, 76)(53, 78)(55, 81)(57, 84)(60, 88)(62, 90)(64, 93)(65, 95)(67, 98)(69, 101)(70, 103)(71, 86)(72, 105)(74, 97)(75, 109)(77, 112)(79, 114)(80, 116)(82, 119)(83, 96)(85, 122)(87, 124)(89, 127)(91, 129)(92, 130)(94, 118)(99, 135)(100, 137)(102, 140)(104, 142)(106, 111)(107, 133)(108, 146)(110, 134)(113, 125)(115, 145)(117, 153)(120, 131)(121, 126)(123, 152)(128, 139)(132, 161)(136, 155)(138, 165)(141, 164)(143, 170)(144, 171)(147, 166)(148, 154)(149, 174)(150, 158)(151, 175)(157, 178)(160, 167)(162, 168)(163, 169)(172, 176)(173, 179)(181, 183)(182, 185)(184, 188)(187, 192)(189, 195)(191, 198)(193, 200)(194, 202)(196, 205)(197, 207)(199, 210)(201, 213)(203, 216)(204, 218)(206, 221)(208, 224)(209, 226)(211, 229)(212, 231)(214, 234)(215, 219)(217, 237)(220, 240)(222, 243)(223, 245)(225, 248)(227, 251)(228, 253)(230, 241)(232, 257)(233, 259)(236, 263)(238, 266)(239, 268)(242, 272)(244, 275)(246, 278)(247, 280)(249, 283)(250, 260)(252, 286)(254, 270)(255, 273)(256, 290)(258, 293)(262, 297)(264, 300)(265, 302)(267, 304)(269, 306)(271, 294)(274, 312)(276, 287)(277, 314)(279, 316)(281, 319)(282, 321)(284, 291)(285, 322)(288, 325)(289, 310)(292, 327)(295, 331)(296, 333)(298, 335)(299, 337)(301, 340)(303, 342)(305, 326)(307, 346)(308, 329)(309, 339)(311, 349)(313, 323)(315, 351)(317, 334)(318, 352)(320, 347)(324, 350)(328, 355)(330, 356)(332, 348)(338, 358)(341, 353)(344, 359)(345, 357)(354, 360)
b: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17, 28)(19, 31)(21, 33)(22, 35)(24, 38)(25, 40)(27, 43)(29, 45)(30, 47)(32, 49)(34, 52)(36, 55)(37, 57)(39, 59)(41, 62)(42, 64)(44, 61)(46, 69)(48, 70)(50, 72)(51, 74)(53, 77)(54, 79)(56, 82)(58, 85)(60, 87)(63, 91)(65, 94)(66, 96)(67, 97)(68, 99)(71, 104)(73, 106)(75, 108)(76, 110)(78, 113)(80, 115)(81, 117)(83, 120)(84, 114)(86, 123)(88, 125)(89, 126)(90, 128)(92, 112)(93, 131)(95, 132)(98, 134)(100, 136)(101, 138)(102, 139)(103, 141)(105, 143)(107, 144)(109, 147)(111, 149)(116, 151)(118, 145)(119, 154)(121, 156)(122, 157)(124, 130)(127, 159)(129, 160)(133, 162)(135, 163)(137, 146)(140, 167)(142, 168)(148, 172)(150, 174)(152, 171)(153, 176)(155, 173)(158, 170)(161, 175)(164, 177)(165, 169)(166, 179)(178, 180)(182, 184)(183, 186)(185, 189)(187, 191)(188, 193)(190, 196)(192, 199)(194, 201)(195, 203)(197, 206)(198, 208)(200, 211)(202, 214)(204, 217)(205, 219)(207, 222)(209, 225)(210, 227)(212, 230)(213, 232)(215, 235)(216, 229)(218, 238)(220, 239)(221, 241)(223, 244)(224, 246)(226, 249)(228, 252)(231, 255)(233, 258)(234, 260)(236, 262)(237, 264)(240, 269)(242, 271)(243, 273)(245, 276)(247, 279)(248, 281)(250, 284)(251, 278)(253, 287)(254, 288)(256, 275)(257, 291)(259, 294)(261, 295)(263, 298)(265, 301)(266, 303)(268, 305)(270, 307)(272, 309)(274, 311)(277, 285)(280, 317)(282, 320)(283, 289)(286, 290)(292, 319)(293, 328)(296, 332)(299, 336)(300, 338)(302, 341)(304, 343)(306, 344)(308, 347)(310, 327)(312, 350)(313, 315)(314, 325)(316, 340)(318, 346)(321, 329)(322, 352)(323, 354)(324, 349)(326, 330)(331, 337)(333, 357)(334, 353)(339, 355)(342, 358)(345, 351)(348, 360)(356, 359)
c: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18, 29)(20, 32)(22, 34)(23, 36)(25, 39)(26, 41)(28, 44)(30, 46)(31, 48)(33, 50)(35, 53)(37, 56)(38, 58)(40, 60)(42, 63)(43, 65)(45, 67)(49, 71)(51, 73)(52, 75)(54, 78)(55, 80)(57, 83)(59, 86)(61, 88)(62, 89)(64, 92)(66, 95)(68, 98)(69, 100)(70, 102)(74, 107)(76, 109)(77, 111)(79, 104)(81, 116)(82, 118)(84, 96)(85, 121)(90, 127)(91, 129)(93, 130)(94, 119)(97, 133)(99, 135)(101, 137)(103, 140)(106, 112)(108, 145)(110, 148)(113, 150)(114, 142)(115, 146)(117, 152)(120, 155)(122, 126)(123, 153)(125, 158)(128, 147)(131, 136)(134, 154)(138, 164)(139, 166)(141, 165)(143, 169)(144, 171)(149, 173)(151, 160)(156, 177)(157, 162)(163, 170)(167, 175)(168, 178)(174, 179)(181, 182)(183, 185)(184, 187)(186, 190)(188, 192)(189, 194)(191, 197)(193, 200)(195, 202)(196, 204)(198, 207)(199, 209)(201, 212)(203, 215)(205, 218)(206, 220)(208, 223)(210, 226)(211, 228)(213, 231)(214, 233)(216, 219)(217, 236)(221, 240)(222, 242)(224, 245)(225, 247)(227, 250)(229, 253)(230, 254)(232, 256)(234, 259)(235, 261)(237, 263)(238, 265)(239, 267)(241, 270)(243, 272)(244, 274)(246, 277)(248, 280)(249, 282)(251, 260)(252, 285)(255, 289)(257, 290)(258, 292)(262, 296)(264, 299)(266, 302)(268, 304)(269, 306)(271, 308)(273, 310)(275, 312)(276, 313)(278, 314)(279, 315)(281, 318)(283, 321)(284, 305)(286, 322)(287, 323)(288, 324)(291, 326)(293, 327)(294, 329)(295, 330)(297, 333)(298, 334)(300, 337)(301, 339)(303, 342)(307, 345)(309, 340)(311, 348)(316, 351)(317, 335)(319, 352)(320, 353)(325, 350)(328, 344)(331, 356)(332, 349)(336, 343)(338, 354)(341, 347)(346, 357)(355, 359)(358, 360)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 150 ]
360
-1 181 182 183 185
-2 189 181 184 186
-3 187 190 182 194
-4 188 183 195 186
-5 201 191 184 196
-6 190 202 192 185
-7 203 193 183 186
-8 187 212 204 197
-9 198 188 213 205
-10 199 189 214 196
-11 200 190 215 185
-12 200 181 216 186
-13 191 206 217 230
-14 231 192 207 218
-15 232 193 208 219
-16 209 233 204 194
-17 210 234 205 195
-18 189 211 235 196
-19 190 182 193 219
-20 211 181 183 229
-21 220 254 236 197
-22 198 221 237 241
-23 199 222 255 238
-24 200 223 256 216
-25 200 224 257 215
-26 201 225 258 217
-27 202 226 259 218
-28 203 227 260 219
-29 204 194 228 261
-30 235 205 195 229
-31 188 205 184 196
-32 253 182 228 185
-33 288 206 239 262
-34 270 207 240 263
-35 264 221 208 241
-36 209 242 265 289
-37 210 243 266 273
-38 275 211 244 229
-39 245 290 203 193
-40 211 235 246 291
-41 212 236 247 292
-42 213 237 248 293
-43 214 238 249 294
-44 215 216 250 251
-45 201 217 295 252
-46 253 202 261 218
-47 203 215 216 219
-48 187 192 204 218
-49 287 189 184 252
-50 220 267 324 296
-51 297 221 268 325
-52 298 222 269 307
-53 299 223 270 240
-54 300 224 206 230
-55 301 225 271 283
-56 310 302 226 272
-57 243 303 227 273
-58 253 312 228 274
-59 286 188 276 195
-60 277 326 228 261
-61 278 235 229 284
-62 319 279 262 230
-63 231 280 327 263
-64 264 232 281 328
-65 265 233 282 329
-66 266 234 271 283
-67 330 212 236 285
-68 286 331 213 237
-69 287 214 238 295
-70 199 191 238 217
-71 187 323 194 285
-72 332 267 239 349
-73 333 304 240 350
-74 297 314 305 241
-75 242 334 345 306
-76 243 335 346 306
-77 244 269 336 307
-78 220 254 245 337
-79 212 246 338 197
-80 308 321 247 339
-81 248 249 294 340
-82 341 309 249 327
-83 342 310 250 272
-84 342 222 255 251
-85 287 311 350 252
-86 322 202 192 313
-87 330 295 252 285
-88 253 314 261 305
-89 352 254 315 296
-90 297 281 316 241
-91 298 255 310 317
-92 299 256 344 318
-93 319 300 355 257
-94 320 321 301 258
-95 308 321 302 259
-96 242 289 303 260
-97 277 326 262 230
-98 231 322 356 263
-99 264 232 290 337
-100 330 265 233 323
-101 276 331 266 234
-102 209 265 236 197
-103 198 210 266 237
-104 277 354 201 191
-105 311 268 304 348
-106 343 312 269 357
-107 278 333 270 284
-108 353 344 271 351
-109 269 357 272 317
-110 344 335 273 318
-111 343 345 306 274
-112 275 346 336 306
-113 276 331 288 239
-114 231 278 358 207
-115 355 279 347 329
-116 309 280 282 329
-117 226 259 281 316
-118 347 282 293 340
-119 353 292 283 339
-120 309 358 327 284
-121 323 325 348 285
-122 286 276 324 349
-123 352 199 214 315
-124 286 331 322 356
-125 287 268 325 295
-126 288 332 322 313
-127 333 270 318 351
-128 297 221 248 340
-129 289 334 335 273
-130 352 290 337 359
-131 291 292 338 339
-132 341 347 294 329
-133 254 246 291 296
-134 352 298 255 359
-135 299 256 300 257
-136 354 301 258 326
-137 356 302 313 259
-138 245 303 260 337
-139 301 225 206 262
-140 302 226 207 263
-141 264 303 227 208
-142 198 213 314 360
-143 343 305 360 274
-144 357 250 251 307
-145 308 320 316 328
-146 341 315 359 294
-147 309 333 280 240
-148 310 281 317 328
-149 311 344 304 351
-150 267 356 313 324
-151 320 321 272 317
-152 210 234 318 351
-153 209 319 233 279
-154 319 289 355 334
-155 293 305 360 340
-156 277 354 314 360
-157 245 290 324 349
-158 330 323 304 350
-159 345 346 357 307
-160 243 353 335 283
-161 308 320 353 271
-162 288 332 224 257
-163 275 291 336 338
-164 342 300 224 251
-165 342 299 223 250
-166 220 247 339 296
-167 341 298 222 249
-168 232 325 348 208
-169 244 336 358 284
-170 343 354 312 326
-171 345 346 227 260
-172 280 248 293 327
-173 268 348 316 328
-174 267 315 359 349
-175 242 334 347 282
-176 225 247 258 292
-177 278 246 358 338
-178 223 256 311 350
-179 332 355 279 239
-180 275 244 312 274
-181 1 12 2 20
-182 1 3 19 32
-183 1 4 7 20
-184 2 5 49 31
-185 11 1 6 32
-186 12 2 4 7
-187 3 48 71 8
-188 4 59 9 31
-189 2 49 18 10
-190 11 3 6 19
-191 13 70 5 104
-192 14 48 6 86
-193 15 39 7 19
-194 3 16 71 29
-195 4 59 17 30
-196 5 18 31 10
-197 79 102 8 21
-198 22 103 9 142
-199 23 123 70 10
-200 11 12 24 25
-201 45 26 5 104
-202 46 27 6 86
-203 47 28 39 7
-204 48 16 29 8
-205 17 30 9 31
-206 33 13 139 54
-207 34 14 114 140
-208 35 168 15 141
-209 36 102 16 153
-210 37 103 17 152
-211 38 18 40 20
-212 67 79 8 41
-213 68 9 42 142
-214 123 69 10 43
-215 11 44 25 47
-216 44 12 24 47
-217 45 13 26 70
-218 46 14 48 27
-219 47 15 28 19
-220 78 166 50 21
-221 22 35 51 128
-222 23 167 84 52
-223 165 24 178 53
-224 25 162 54 164
-225 55 176 26 139
-226 56 27 117 140
-227 57 28 171 141
-228 58 60 29 32
-229 38 61 30 20
-230 13 62 97 54
-231 14 114 63 98
-232 99 168 15 64
-233 100 16 65 153
-234 66 101 17 152
-235 61 18 40 30
-236 67 102 41 21
-237 22 68 103 42
-238 23 69 70 43
-239 33 113 179 72
-240 34 147 73 53
-241 22 35 90 74
-242 36 96 75 175
-243 57 37 160 76
-244 77 169 180 38
-245 78 157 39 138
-246 133 177 79 40
-247 176 166 80 41
-248 81 128 172 42
-249 167 81 82 43
-250 44 165 144 83
-251 44 144 84 164
-252 45 49 85 87
-253 88 46 58 32
-254 78 89 133 21
-255 23 134 91 84
-256 24 178 135 92
-257 25 135 93 162
-258 176 26 136 94
-259 27 137 95 117
-260 28 138 171 96
-261 88 46 60 29
-262 33 62 139 97
-263 34 63 140 98
-264 99 35 64 141
-265 100 36 102 65
-266 66 101 37 103
-267 50 72 150 174
-268 125 105 51 173
-269 77 106 52 109
-270 34 127 107 53
-271 55 66 161 108
-272 56 83 151 109
-273 110 57 37 129
-274 143 111 58 180
-275 112 180 38 163
-276 122 101 113 59
-277 156 60 104 97
-278 177 114 61 107
-279 179 115 62 153
-280 147 116 172 63
-281 90 148 117 64
-282 116 118 65 175
-283 55 66 160 119
-284 169 61 107 120
-285 121 67 71 87
-286 122 68 124 59
-287 69 125 49 85
-288 33 113 126 162
-289 154 36 96 129
-290 99 157 39 130
-291 133 40 163 131
-292 176 41 119 131
-293 155 172 118 42
-294 132 146 81 43
-295 45 69 125 87
-296 89 133 166 50
-297 90 51 128 74
-298 134 167 91 52
-299 165 135 92 53
-300 135 93 54 164
-301 55 136 94 139
-302 56 137 95 140
-303 57 138 96 141
-304 158 105 149 73
-305 88 143 155 74
-306 111 112 75 76
-307 77 144 159 52
-308 145 80 95 161
-309 147 82 116 120
-310 56 91 148 83
-311 178 105 149 85
-312 58 180 170 106
-313 126 137 150 86
-314 88 156 74 142
-315 89 123 146 174
-316 90 145 117 173
-317 91 148 151 109
-318 110 92 127 152
-319 154 93 62 153
-320 145 94 161 151
-321 80 94 95 151
-322 124 126 86 98
-323 121 100 158 71
-324 122 157 50 150
-325 121 168 125 51
-326 136 60 170 97
-327 82 172 63 120
-328 145 148 173 64
-329 132 115 116 65
-330 67 100 158 87
-331 68 101 113 124
-332 179 126 72 162
-333 147 127 73 107
-334 154 129 75 175
-335 110 160 129 76
-336 77 112 169 163
-337 99 78 138 130
-338 177 79 163 131
-339 166 80 119 131
-340 155 81 128 118
-341 132 167 146 82
-342 165 83 84 164
-343 143 111 170 106
-344 110 92 149 108
-345 111 159 171 75
-346 112 159 171 76
-347 132 115 118 175
-348 121 168 105 173
-349 122 157 72 174
-350 178 158 73 85
-351 127 149 108 152
-352 89 123 134 130
-353 160 161 108 119
-354 156 136 104 170
-355 154 179 93 115
-356 124 137 150 98
-357 144 159 106 109
-358 177 114 169 120
-359 134 146 130 174
-360 143 155 156 142
0

**************