C4graphGraph forms for C4 [ 360, 151 ] = SDD(W(45,2))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 151 ] = SDD(W(45,2)).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {141, 238}, {139, 250}, {139, 249}, {136, 251}, {138, 249}, {140, 251}, {158, 229}, {142, 240}, {71, 199}, {115, 243}, {116, 244}, {55, 182}, {56, 186}, {100, 230}, {84, 215}, {72, 204}, {120, 253}, {127, 250}, {94, 216}, {121, 254}, {71, 206}, {99, 234}, {93, 214}, {56, 181}, {113, 252}, {56, 182}, {56, 183}, {95, 208}, {114, 253}, {73, 217}, {76, 220}, {44, 189}, {69, 212}, {103, 246}, {44, 184}, {89, 205}, {121, 236}, {44, 187}, {68, 220}, {70, 222}, {46, 183}, {71, 222}, {67, 218}, {117, 232}, {104, 247}, {24, 185}, {69, 228}, {31, 190}, {25, 184}, {91, 250}, {90, 248}, {83, 240}, {24, 188}, {85, 241}, {86, 242}, {87, 243}, {67, 229}, {30, 185}, {68, 227}, {79, 232}, {89, 254}, {92, 251}, {77, 229}, {78, 230}, {80, 248}, {75, 226}, {73, 227}, {16, 187}, {74, 225}, {88, 244}, {24, 181}, {99, 206}, {16, 190}, {17, 191}, {94, 240}, {72, 231}, {76, 227}, {81, 254}, {103, 215}, {104, 216}, {4, 182}, {15, 189}, {14, 188}, {11, 185}, {5, 183}, {13, 190}, {90, 233}, {93, 238}, {1, 181}, {84, 224}, {85, 225}, {86, 226}, {95, 235}, {73, 252}, {84, 225}, {1, 183}, {13, 187}, {12, 186}, {9, 191}, {1, 182}, {8, 191}, {2, 181}, {3, 187}, {65, 249}, {7, 190}, {75, 242}, {70, 255}, {66, 251}, {64, 249}, {80, 233}, {113, 203}, {1, 186}, {74, 241}, {65, 250}, {3, 184}, {2, 185}, {84, 239}, {82, 238}, {94, 226}, {81, 236}, {93, 224}, {2, 188}, {67, 253}, {6, 184}, {3, 189}, {89, 230}, {39, 231}, {63, 255}, {9, 200}, {6, 196}, {41, 235}, {40, 234}, {31, 221}, {15, 205}, {7, 196}, {52, 247}, {22, 213}, {10, 201}, {21, 209}, {3, 198}, {29, 216}, {22, 211}, {20, 209}, {4, 194}, {52, 242}, {51, 245}, {49, 247}, {48, 246}, {19, 213}, {9, 207}, {8, 206}, {5, 195}, {2, 197}, {30, 217}, {21, 210}, {11, 195}, {9, 192}, {60, 245}, {45, 228}, {26, 211}, {18, 219}, {11, 194}, {6, 204}, {61, 247}, {60, 246}, {57, 243}, {53, 255}, {23, 221}, {7, 205}, {10, 193}, {28, 215}, {25, 212}, {60, 241}, {33, 236}, {27, 214}, {4, 202}, {59, 245}, {58, 244}, {21, 219}, {5, 203}, {8, 199}, {61, 242}, {26, 213}, {17, 192}, {57, 232}, {23, 198}, {6, 212}, {31, 205}, {21, 199}, {19, 193}, {18, 192}, {11, 217}, {43, 248}, {62, 237}, {58, 233}, {14, 218}, {59, 239}, {10, 223}, {63, 234}, {25, 204}, {12, 217}, {8, 222}, {5, 220}, {47, 246}, {17, 200}, {7, 221}, {47, 245}, {38, 252}, {10, 208}, {20, 207}, {54, 237}, {31, 196}, {30, 194}, {51, 239}, {36, 248}, {24, 197}, {30, 195}, {25, 196}, {4, 218}, {47, 241}, {17, 207}, {37, 197}, {18, 243}, {62, 223}, {42, 200}, {57, 219}, {50, 208}, {43, 201}, {89, 189}, {32, 197}, {46, 203}, {34, 199}, {40, 206}, {19, 244}, {48, 215}, {33, 198}, {13, 228}, {54, 223}, {49, 216}, {15, 230}, {13, 231}, {60, 214}, {44, 198}, {32, 202}, {14, 229}, {53, 222}, {39, 204}, {35, 200}, {20, 255}, {29, 240}, {55, 218}, {50, 223}, {46, 195}, {38, 203}, {36, 201}, {63, 209}, {12, 227}, {58, 213}, {37, 202}, {12, 252}, {63, 207}, {34, 210}, {15, 254}, {35, 210}, {26, 235}, {46, 220}, {14, 253}, {73, 186}, {50, 193}, {34, 209}, {28, 239}, {16, 228}, {27, 238}, {55, 194}, {16, 231}, {36, 211}, {26, 237}, {42, 210}, {71, 191}, {43, 211}, {34, 219}, {57, 192}, {47, 214}, {45, 212}, {41, 208}, {18, 232}, {19, 233}, {22, 237}, {58, 193}, {50, 201}, {27, 224}, {23, 236}, {28, 224}, {33, 221}, {22, 235}, {55, 202}, {28, 225}, {20, 234}, {29, 226}, {67, 188}, {82, 336}, {83, 337}, {40, 299}, {77, 334}, {41, 300}, {39, 298}, {78, 320}, {38, 297}, {49, 288}, {88, 331}, {23, 256}, {53, 301}, {27, 257}, {87, 332}, {122, 358}, {81, 335}, {29, 258}, {48, 272}, {49, 273}, {101, 325}, {102, 326}, {33, 256}, {53, 276}, {51, 274}, {37, 263}, {45, 271}, {42, 264}, {52, 279}, {125, 350}, {54, 277}, {96, 323}, {112, 339}, {123, 344}, {124, 351}, {40, 268}, {42, 270}, {41, 269}, {100, 320}, {101, 321}, {102, 322}, {114, 342}, {51, 278}, {126, 347}, {124, 345}, {62, 280}, {98, 324}, {32, 263}, {125, 346}, {52, 275}, {36, 259}, {111, 328}, {114, 341}, {43, 259}, {32, 265}, {59, 274}, {108, 325}, {110, 327}, {61, 279}, {126, 340}, {105, 323}, {35, 264}, {62, 277}, {109, 326}, {37, 265}, {39, 267}, {38, 266}, {35, 270}, {59, 278}, {108, 321}, {120, 341}, {122, 343}, {54, 280}, {61, 275}, {120, 342}, {48, 287}, {107, 324}, {109, 322}, {45, 286}, {121, 335}, {123, 333}, {112, 329}, {110, 338}, {115, 332}, {116, 331}, {82, 274}, {83, 275}, {79, 270}, {96, 289}, {98, 291}, {117, 308}, {121, 315}, {72, 267}, {97, 290}, {64, 260}, {77, 265}, {66, 262}, {65, 261}, {112, 308}, {116, 307}, {118, 305}, {119, 304}, {99, 299}, {104, 288}, {105, 289}, {106, 290}, {107, 291}, {110, 294}, {111, 295}, {111, 294}, {69, 271}, {91, 273}, {92, 272}, {117, 313}, {122, 310}, {78, 256}, {124, 301}, {70, 276}, {95, 269}, {107, 319}, {126, 298}, {118, 288}, {105, 318}, {66, 282}, {112, 296}, {113, 297}, {64, 281}, {127, 293}, {69, 286}, {88, 259}, {115, 296}, {93, 257}, {94, 258}, {100, 312}, {110, 306}, {111, 307}, {98, 319}, {127, 290}, {96, 318}, {87, 264}, {65, 289}, {90, 314}, {72, 298}, {100, 256}, {101, 257}, {102, 258}, {85, 304}, {97, 260}, {123, 286}, {125, 280}, {86, 305}, {119, 287}, {80, 314}, {81, 315}, {118, 284}, {119, 285}, {70, 301}, {88, 307}, {66, 303}, {108, 257}, {64, 302}, {127, 273}, {75, 293}, {74, 292}, {82, 316}, {83, 317}, {106, 260}, {99, 268}, {109, 258}, {122, 266}, {123, 267}, {124, 268}, {125, 269}, {68, 309}, {126, 271}, {85, 292}, {102, 279}, {106, 283}, {119, 262}, {68, 310}, {105, 283}, {86, 293}, {95, 300}, {101, 278}, {118, 261}, {114, 263}, {78, 312}, {79, 313}, {106, 284}, {107, 285}, {80, 295}, {103, 272}, {116, 259}, {92, 292}, {103, 287}, {76, 309}, {91, 290}, {104, 273}, {74, 304}, {76, 310}, {75, 305}, {77, 311}, {97, 283}, {108, 278}, {109, 279}, {79, 308}, {96, 283}, {113, 266}, {115, 264}, {117, 270}, {90, 295}, {97, 284}, {91, 293}, {87, 296}, {92, 291}, {98, 285}, {120, 263}, {133, 261}, {134, 262}, {177, 311}, {160, 297}, {140, 262}, {172, 294}, {161, 299}, {135, 267}, {152, 277}, {138, 260}, {139, 261}, {130, 269}, {167, 296}, {174, 319}, {138, 281}, {173, 318}, {167, 308}, {156, 271}, {128, 276}, {129, 277}, {160, 309}, {169, 316}, {162, 311}, {140, 282}, {157, 266}, {170, 317}, {158, 265}, {136, 272}, {163, 315}, {133, 284}, {165, 316}, {135, 286}, {134, 287}, {130, 280}, {131, 281}, {134, 285}, {166, 317}, {163, 312}, {164, 312}, {142, 275}, {132, 282}, {172, 306}, {146, 268}, {141, 274}, {164, 315}, {144, 306}, {140, 303}, {138, 302}, {150, 306}, {133, 288}, {145, 313}, {158, 311}, {139, 289}, {159, 309}, {144, 314}, {128, 299}, {157, 310}, {136, 291}, {136, 292}, {150, 314}, {129, 300}, {137, 295}, {151, 313}, {137, 294}, {141, 316}, {142, 317}, {133, 305}, {174, 282}, {173, 281}, {152, 300}, {154, 303}, {161, 276}, {134, 304}, {159, 297}, {156, 298}, {153, 302}, {137, 307}, {132, 319}, {148, 303}, {131, 318}, {147, 302}, {146, 301}, {137, 328}, {163, 354}, {162, 355}, {154, 345}, {143, 330}, {160, 357}, {152, 349}, {154, 348}, {164, 354}, {161, 359}, {143, 328}, {175, 360}, {156, 347}, {153, 350}, {148, 348}, {168, 352}, {160, 360}, {156, 340}, {174, 359}, {175, 358}, {135, 333}, {171, 353}, {157, 343}, {146, 345}, {155, 343}, {146, 351}, {148, 345}, {147, 350}, {155, 340}, {147, 323}, {158, 334}, {148, 324}, {180, 357}, {177, 355}, {179, 353}, {178, 352}, {155, 333}, {176, 358}, {130, 346}, {176, 360}, {131, 346}, {144, 330}, {153, 323}, {132, 351}, {151, 332}, {144, 331}, {128, 348}, {150, 330}, {130, 350}, {129, 349}, {141, 336}, {150, 331}, {149, 328}, {145, 332}, {131, 349}, {154, 324}, {135, 344}, {149, 330}, {142, 337}, {165, 325}, {180, 340}, {166, 326}, {171, 329}, {177, 339}, {132, 359}, {180, 343}, {129, 356}, {171, 334}, {179, 341}, {128, 359}, {177, 342}, {168, 335}, {166, 321}, {165, 322}, {168, 320}, {176, 344}, {169, 322}, {176, 347}, {172, 327}, {170, 321}, {169, 325}, {170, 326}, {143, 354}, {167, 329}, {143, 352}, {168, 327}, {145, 353}, {173, 349}, {162, 339}, {174, 351}, {163, 338}, {145, 355}, {178, 320}, {151, 355}, {175, 347}, {167, 339}, {165, 337}, {162, 342}, {149, 352}, {178, 327}, {151, 353}, {166, 336}, {164, 338}, {147, 356}, {175, 344}, {173, 346}, {159, 360}, {149, 354}, {169, 337}, {180, 333}, {159, 357}, {179, 329}, {170, 336}, {157, 358}, {152, 356}, {153, 356}, {179, 334}, {178, 335}, {161, 348}, {155, 357}, {172, 338}, {171, 341} }>;

(II) A more general form is to represent the graph as the orbit of {141, 238} under the group generated by the following permutations:

a: (53, 70)
b: (112, 145)(151, 167)(296, 332)(308, 313)(329, 353)(339, 355)
c: (7, 31)
d: (102, 109)
e: (5, 12)(46, 73)(183, 186)(195, 217)(203, 252)(220, 227)
f: (14, 32)(37, 67)(188, 197)(202, 218)(229, 265)(253, 263)
g: (1, 2)(3, 8)(4, 11)(5, 14)(6, 9)(7, 20)(10, 27)(12, 32)(13, 21)(15, 40)(16, 34)(17, 25)(18, 39)(19, 28)(22, 51)(23, 53)(24, 56)(26, 59)(29, 64)(30, 55)(31, 63)(33, 70)(35, 45)(36, 47)(37, 73)(38, 77)(41, 82)(42, 69)(43, 60)(44, 71)(46, 67)(48, 80)(49, 65)(50, 93)(52, 96)(54, 101)(57, 72)(58, 84)(61, 105)(62, 108)(66, 110)(68, 114)(74, 88)(75, 97)(76, 120)(78, 124)(79, 123)(81, 128)(83, 131)(85, 116)(86, 106)(87, 126)(89, 99)(90, 103)(92, 111)(94, 138)(95, 141)(98, 143)(100, 146)(102, 147)(104, 139)(107, 149)(109, 153)(112, 155)(113, 158)(115, 156)(117, 135)(119, 144)(121, 161)(122, 162)(125, 165)(129, 166)(130, 169)(132, 163)(134, 150)(136, 137)(140, 172)(142, 173)(145, 175)(148, 168)(151, 176)(152, 170)(154, 178)(157, 177)(159, 171)(160, 179)(164, 174)(167, 180)(182, 185)(183, 188)(184, 191)(186, 197)(187, 199)(189, 206)(190, 209)(192, 204)(193, 224)(195, 218)(196, 207)(198, 222)(200, 212)(201, 214)(202, 217)(203, 229)(205, 234)(208, 238)(210, 228)(211, 245)(213, 239)(215, 233)(216, 249)(219, 231)(220, 253)(221, 255)(223, 257)(225, 244)(226, 260)(227, 263)(230, 268)(232, 267)(235, 274)(236, 276)(237, 278)(240, 281)(241, 259)(242, 283)(243, 298)(246, 248)(247, 289)(250, 273)(251, 294)(252, 265)(254, 299)(256, 301)(258, 302)(261, 288)(262, 306)(264, 271)(266, 311)(269, 316)(270, 286)(272, 295)(275, 318)(277, 321)(279, 323)(280, 325)(282, 338)(284, 305)(285, 330)(287, 314)(290, 293)(291, 328)(292, 307)(296, 340)(297, 334)(300, 336)(303, 327)(304, 331)(308, 333)(309, 341)(310, 342)(312, 351)(313, 344)(315, 359)(317, 349)(319, 354)(320, 345)(322, 350)(324, 352)(326, 356)(329, 357)(332, 347)(335, 348)(337, 346)(339, 343)(353, 360)(355, 358)
h: (128, 161)
m: (96, 105)
n1: (168, 178)
a1: (22, 26)
b1: (81, 121)
c1: (91, 118)(127, 133)(250, 261)(273, 288)(284, 290)(293, 305)
d1: (159, 160)
e1: (131, 147)(153, 173)(281, 302)(318, 323)(346, 350)(349, 356)
f1: (165, 166)(169, 170)(316, 336)(317, 337)(321, 325)(322, 326)
g1: (68, 76)
h1: (35, 42)
m1: (82, 101)(108, 141)(238, 257)(274, 278)(316, 325)(321, 336)
n2: (47, 60)
a2: (163, 164)
b2: (175, 176)
c2: (2, 5)(3, 9)(4, 12)(6, 18)(7, 21)(8, 15)(10, 28)(13, 35)(14, 38)(16, 42)(17, 44)(19, 48)(20, 23)(22, 47)(24, 46)(25, 57)(26, 60)(27, 41)(29, 65)(31, 34)(32, 68)(33, 63)(36, 74)(37, 76)(39, 79)(40, 78)(43, 85)(45, 87)(49, 91)(50, 84)(51, 54)(52, 97)(53, 81)(55, 73)(58, 103)(59, 62)(61, 106)(64, 83)(66, 111)(67, 113)(69, 115)(70, 121)(71, 89)(72, 117)(75, 118)(77, 122)(80, 92)(82, 125)(86, 133)(88, 119)(90, 136)(93, 95)(94, 139)(96, 102)(98, 144)(99, 100)(101, 129)(104, 127)(105, 109)(107, 150)(108, 152)(110, 132)(112, 123)(114, 159)(116, 134)(120, 160)(124, 163)(126, 145)(128, 168)(130, 141)(131, 165)(135, 167)(137, 140)(138, 142)(143, 148)(146, 164)(147, 166)(149, 154)(151, 156)(153, 170)(155, 162)(157, 158)(161, 178)(169, 173)(171, 175)(172, 174)(176, 179)(177, 180)(181, 183)(182, 186)(184, 192)(185, 195)(187, 200)(188, 203)(189, 191)(190, 210)(193, 215)(194, 217)(196, 219)(197, 220)(198, 207)(199, 205)(201, 225)(202, 227)(204, 232)(206, 230)(208, 224)(209, 221)(211, 241)(212, 243)(213, 246)(214, 235)(216, 250)(218, 252)(222, 254)(223, 239)(226, 261)(228, 264)(229, 266)(231, 270)(233, 272)(234, 256)(236, 255)(237, 245)(238, 269)(240, 249)(242, 284)(244, 287)(247, 290)(248, 292)(251, 295)(253, 297)(257, 300)(258, 289)(259, 304)(260, 275)(262, 307)(263, 309)(265, 310)(267, 308)(268, 312)(271, 332)(274, 280)(276, 335)(277, 278)(279, 283)(281, 337)(282, 294)(285, 331)(286, 296)(288, 293)(291, 314)(298, 313)(299, 320)(301, 315)(302, 317)(303, 328)(306, 319)(311, 343)(316, 346)(318, 322)(321, 356)(323, 326)(324, 330)(325, 349)(327, 359)(329, 344)(333, 339)(334, 358)(336, 350)(338, 351)(340, 355)(341, 360)(342, 357)(345, 354)(347, 353)(348, 352)
d2: (27, 51)(59, 93)(214, 245)(224, 239)(238, 274)(257, 278)
e2: (97, 106)
f2: (124, 128)(146, 161)(268, 299)(276, 301)(345, 348)(351, 359)
g2: (163, 168)(164, 178)(312, 320)(315, 335)(327, 338)(352, 354)
h2: (12, 73)
m2: (54, 62)
n3: (9, 21)(17, 34)(191, 199)(192, 219)(200, 210)(207, 209)
a3: (77, 114)(120, 158)(229, 253)(263, 265)(311, 342)(334, 341)
b3: (4, 55)
c3: (38, 68)(76, 113)(203, 220)(227, 252)(266, 310)(297, 309)
d3: (148, 154)
e3: (51, 59)
f3: (18, 35)(42, 57)(192, 200)(210, 219)(232, 270)(243, 264)
g3: (123, 126)(135, 156)(267, 298)(271, 286)(333, 340)(344, 347)
h3: (20, 63)
m3: (114, 120)
n4: (145, 151)
a4: (147, 153)
b4: (29, 52)(61, 94)(216, 247)(226, 242)(240, 275)(258, 279)
c4: (129, 152)
d4: (48, 74)(85, 103)(215, 225)(241, 246)(272, 292)(287, 304)
e4: (122, 157)
f4: (21, 34)
g4: (119, 134)
h4: (36, 43)
m4: (39, 45)(69, 72)(204, 212)(228, 231)(267, 286)(271, 298)
n5: (132, 148)(154, 174)(282, 303)(319, 324)(345, 351)(348, 359)
a5: (79, 87)(115, 117)(232, 243)(264, 270)(296, 308)(313, 332)
b5: (118, 133)
c5: (125, 129)(130, 152)(269, 300)(277, 280)(346, 349)(350, 356)
d5: (122, 159)(157, 160)(266, 297)(309, 310)(343, 357)(358, 360)
e5: (11, 30)
f5: (88, 116)
g5: (15, 23)(33, 89)(189, 198)(205, 221)(230, 256)(236, 254)
h5: (66, 98)(107, 140)(251, 291)(262, 285)(282, 319)(303, 324)
m5: (28, 47)(60, 84)(214, 224)(215, 246)(225, 241)(239, 245)
n6: (166, 170)
a6: (144, 150)
b6: (80, 88)(90, 116)(233, 244)(248, 259)(295, 307)(314, 331)
c6: (87, 115)
d6: (2, 4)(24, 55)(181, 182)(185, 194)(188, 218)(197, 202)
e6: (83, 102)(109, 142)(240, 258)(275, 279)(317, 326)(322, 337)
f6: (8, 20)(63, 71)(191, 207)(199, 209)(206, 234)(222, 255)
g6: (45, 69)
h6: (143, 149)
m6: (92, 119)(134, 136)(251, 262)(272, 287)(285, 291)(292, 304)
n7: (49, 75)(86, 104)(216, 226)(242, 247)(273, 293)(288, 305)
a7: (23, 33)
b7: (111, 137)
c7: (6, 13)(16, 25)(184, 187)(190, 196)(204, 231)(212, 228)
d7: (9, 17)
e7: (78, 81)(100, 121)(230, 254)(236, 256)(312, 315)(320, 335)
f7: (65, 97)(106, 139)(249, 260)(250, 290)(261, 284)(283, 289)
g7: (75, 86)
h7: (13, 16)
m7: (52, 61)
n8: (64, 96)(105, 138)(249, 289)(260, 283)(281, 318)(302, 323)
a8: (3, 7)(31, 44)(184, 196)(187, 190)(189, 205)(198, 221)
b8: (19, 36)(43, 58)(193, 201)(211, 213)(233, 248)(244, 259)
c8: (126, 156)
d8: (41, 54)(62, 95)(208, 223)(235, 237)(269, 280)(277, 300)
e8: (74, 85)
f8: (98, 107)
g8: (110, 143)(149, 172)(294, 328)(306, 330)(327, 352)(338, 354)
h8: (155, 175)(176, 180)(333, 344)(340, 347)(343, 358)(357, 360)
m8: (162, 171)(177, 179)(311, 334)(329, 339)(341, 342)(353, 355)
n9: (10, 22)(26, 50)(193, 213)(201, 211)(208, 235)(223, 237)
a9: (32, 37)
b9: (171, 179)
c9: (111, 144)(137, 150)(294, 306)(295, 314)(307, 331)(328, 330)
d9: (40, 53)(70, 99)(206, 222)(234, 255)(268, 301)(276, 299)
e9: (101, 108)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 151 ]
360
-1 181 182 183 186
-2 188 181 185 197
-3 187 198 189 184
-4 202 182 194 218
-5 220 203 183 195
-6 212 204 184 196
-7 221 190 205 196
-8 199 222 191 206
-9 200 191 192 207
-10 201 223 193 208
-11 194 195 217 185
-12 227 217 186 252
-13 187 231 190 228
-14 253 188 218 229
-15 254 189 205 230
-16 187 231 190 228
-17 200 191 192 207
-18 232 243 192 219
-19 233 244 213 193
-20 209 255 234 207
-21 209 199 210 219
-22 211 213 235 237
-23 198 221 256 236
-24 188 181 185 197
-25 212 204 184 196
-26 211 213 235 237
-27 224 257 214 238
-28 224 225 215 239
-29 258 226 216 240
-30 194 195 217 185
-31 221 190 205 196
-32 265 202 197 263
-33 198 221 256 236
-34 209 199 210 219
-35 264 210 200 270
-36 211 201 248 259
-37 265 202 197 263
-38 297 266 203 252
-39 231 298 267 204
-40 299 234 268 206
-41 300 235 269 208
-42 264 210 200 270
-43 211 201 248 259
-44 187 198 189 184
-45 286 212 271 228
-46 220 203 183 195
-47 245 246 214 241
-48 287 246 215 272
-49 288 247 216 273
-50 201 223 193 208
-51 245 278 239 274
-52 242 275 279 247
-53 276 222 255 301
-54 277 223 280 237
-55 202 182 194 218
-56 181 182 183 186
-57 232 243 192 219
-58 233 244 213 193
-59 245 278 239 274
-60 245 246 214 241
-61 242 275 279 247
-62 277 223 280 237
-63 209 255 234 207
-64 302 281 249 260
-65 289 249 250 261
-66 303 282 251 262
-67 253 188 218 229
-68 220 309 310 227
-69 286 212 271 228
-70 276 222 255 301
-71 199 222 191 206
-72 231 298 267 204
-73 227 217 186 252
-74 225 292 304 241
-75 242 226 293 305
-76 220 309 310 227
-77 265 311 334 229
-78 320 256 312 230
-79 308 232 313 270
-80 233 248 314 295
-81 254 236 335 315
-82 336 238 316 274
-83 275 337 240 317
-84 224 225 215 239
-85 225 292 304 241
-86 242 226 293 305
-87 264 243 332 296
-88 331 244 259 307
-89 254 189 205 230
-90 233 248 314 295
-91 290 293 250 273
-92 291 292 272 251
-93 224 257 214 238
-94 258 226 216 240
-95 300 235 269 208
-96 289 323 283 318
-97 290 260 283 284
-98 319 291 324 285
-99 299 234 268 206
-100 320 256 312 230
-101 321 278 257 325
-102 322 279 258 326
-103 287 246 215 272
-104 288 247 216 273
-105 289 323 283 318
-106 290 260 283 284
-107 319 291 324 285
-108 321 278 257 325
-109 322 279 258 326
-110 294 327 338 306
-111 294 295 328 307
-112 308 339 296 329
-113 297 266 203 252
-114 253 341 342 263
-115 264 243 332 296
-116 331 244 259 307
-117 308 232 313 270
-118 288 261 305 284
-119 287 304 262 285
-120 253 341 342 263
-121 254 236 335 315
-122 266 310 343 358
-123 286 267 333 344
-124 268 301 345 351
-125 269 280 346 350
-126 298 347 271 340
-127 290 293 250 273
-128 276 299 348 359
-129 277 300 356 349
-130 269 280 346 350
-131 346 281 349 318
-132 319 282 359 351
-133 288 261 305 284
-134 287 304 262 285
-135 286 267 333 344
-136 291 292 272 251
-137 294 295 328 307
-138 302 281 249 260
-139 289 249 250 261
-140 303 282 251 262
-141 336 238 316 274
-142 275 337 240 317
-143 330 352 354 328
-144 330 331 314 306
-145 353 332 355 313
-146 268 301 345 351
-147 323 356 302 350
-148 345 324 303 348
-149 330 352 354 328
-150 330 331 314 306
-151 353 332 355 313
-152 277 300 356 349
-153 323 356 302 350
-154 345 324 303 348
-155 343 333 357 340
-156 298 347 271 340
-157 266 310 343 358
-158 265 311 334 229
-159 297 309 357 360
-160 297 309 357 360
-161 276 299 348 359
-162 342 311 355 339
-163 354 312 315 338
-164 354 312 315 338
-165 322 325 337 316
-166 321 336 326 317
-167 308 339 296 329
-168 352 320 335 327
-169 322 325 337 316
-170 321 336 326 317
-171 341 353 334 329
-172 294 327 338 306
-173 346 281 349 318
-174 319 282 359 351
-175 344 347 358 360
-176 344 347 358 360
-177 342 311 355 339
-178 352 320 335 327
-179 341 353 334 329
-180 343 333 357 340
-181 1 56 2 24
-182 55 1 56 4
-183 1 56 46 5
-184 44 3 25 6
-185 11 2 24 30
-186 1 12 56 73
-187 44 13 3 16
-188 67 2 24 14
-189 44 89 3 15
-190 13 16 7 31
-191 71 17 8 9
-192 57 17 18 9
-193 58 50 19 10
-194 11 55 4 30
-195 11 46 5 30
-196 25 6 7 31
-197 2 24 37 32
-198 33 44 23 3
-199 34 71 8 21
-200 35 17 9 42
-201 36 50 10 43
-202 55 4 37 32
-203 46 113 5 38
-204 25 6 39 72
-205 89 15 7 31
-206 99 71 40 8
-207 17 63 9 20
-208 50 95 41 10
-209 34 63 20 21
-210 34 35 42 21
-211 22 36 26 43
-212 45 25 69 6
-213 22 58 26 19
-214 47 27 60 93
-215 48 103 28 84
-216 49 104 94 29
-217 11 12 73 30
-218 55 67 14 4
-219 34 57 18 21
-220 46 68 5 76
-221 33 23 7 31
-222 70 71 8 53
-223 50 62 10 54
-224 27 93 28 84
-225 28 84 74 85
-226 94 29 75 86
-227 12 68 73 76
-228 45 13 69 16
-229 77 67 14 158
-230 78 89 100 15
-231 13 16 39 72
-232 57 79 18 117
-233 90 58 80 19
-234 99 40 63 20
-235 22 26 95 41
-236 33 121 23 81
-237 22 26 62 54
-238 27 82 93 141
-239 59 28 51 84
-240 83 94 29 142
-241 47 60 74 85
-242 61 52 75 86
-243 57 115 18 87
-244 88 58 116 19
-245 47 59 60 51
-246 47 48 103 60
-247 49 104 61 52
-248 90 36 80 43
-249 138 139 64 65
-250 91 127 139 65
-251 66 92 136 140
-252 12 113 38 73
-253 67 14 114 120
-254 121 89 15 81
-255 70 63 20 53
-256 33 23 78 100
-257 101 27 93 108
-258 102 94 29 109
-259 88 36 116 43
-260 138 106 64 97
-261 133 139 118 65
-262 66 134 140 119
-263 37 114 32 120
-264 35 115 42 87
-265 77 37 158 32
-266 122 113 157 38
-267 123 135 39 72
-268 99 124 146 40
-269 125 95 41 130
-270 35 79 117 42
-271 45 156 69 126
-272 136 103 92 48
-273 91 49 104 127
-274 59 82 51 141
-275 61 83 52 142
-276 70 128 161 53
-277 62 129 152 54
-278 101 59 51 108
-279 102 61 52 109
-280 125 62 130 54
-281 138 173 64 131
-282 66 132 140 174
-283 105 106 96 97
-284 133 106 118 97
-285 134 107 119 98
-286 45 123 69 135
-287 134 48 103 119
-288 133 49 104 118
-289 105 139 96 65
-290 91 127 106 97
-291 92 136 107 98
-292 92 136 74 85
-293 91 127 75 86
-294 110 111 137 172
-295 111 90 80 137
-296 112 167 115 87
-297 113 38 159 160
-298 156 126 39 72
-299 99 40 128 161
-300 95 41 129 152
-301 124 146 70 53
-302 147 138 64 153
-303 66 154 148 140
-304 134 74 85 119
-305 133 118 75 86
-306 110 144 150 172
-307 88 111 137 116
-308 79 112 167 117
-309 68 159 160 76
-310 122 68 157 76
-311 77 177 158 162
-312 78 100 163 164
-313 79 145 117 151
-314 144 90 80 150
-315 121 81 163 164
-316 165 169 82 141
-317 166 170 83 142
-318 105 96 173 131
-319 132 107 174 98
-320 78 100 178 168
-321 166 101 170 108
-322 165 102 169 109
-323 147 105 96 153
-324 154 148 107 98
-325 165 101 169 108
-326 166 102 170 109
-327 110 178 168 172
-328 143 111 137 149
-329 112 167 179 171
-330 143 144 149 150
-331 88 144 116 150
-332 145 115 151 87
-333 155 123 135 180
-334 77 179 158 171
-335 121 178 168 81
-336 166 82 170 141
-337 165 169 83 142
-338 110 172 163 164
-339 177 112 167 162
-340 155 156 180 126
-341 179 114 171 120
-342 177 114 162 120
-343 122 155 157 180
-344 176 123 135 175
-345 154 124 146 148
-346 125 173 130 131
-347 176 156 126 175
-348 154 148 128 161
-349 129 173 152 131
-350 125 147 130 153
-351 132 124 146 174
-352 143 178 168 149
-353 145 179 171 151
-354 143 149 163 164
-355 177 145 151 162
-356 147 129 152 153
-357 155 180 159 160
-358 176 122 157 175
-359 132 128 161 174
-360 176 159 160 175
0

**************