[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 360, 154 ] =
XI(Rmap(180,168){20,18|4}_45).
(I) Following is a form readable by MAGMA:
g:=Graph<360|{ {171, 186}, {174, 191}, {150, 182}, {149, 183}, {155, 190}, {150,
190}, {149, 191}, {147, 188}, {128, 193}, {147, 209}, {155, 211}, {151, 221},
{174, 228}, {148, 217}, {156, 209}, {170, 229}, {160, 240}, {180, 230}, {156,
202}, {161, 247}, {148, 204}, {151, 207}, {172, 246}, {129, 218}, {163, 255},
{153, 198}, {128, 224}, {128, 225}, {148, 245}, {156, 250}, {157, 250}, {180,
211}, {147, 251}, {151, 255}, {148, 252}, {152, 244}, {171, 199}, {172, 222},
{129, 242}, {180, 199}, {146, 230}, {155, 237}, {157, 235}, {129, 246}, {154,
227}, {174, 212}, {153, 229}, {170, 212}, {111, 239}, {65, 192}, {83, 210}, {95,
222}, {106, 235}, {58, 185}, {105, 237}, {59, 188}, {114, 245}, {90, 208}, {117,
254}, {58, 182}, {94, 208}, {111, 225}, {124, 243}, {114, 227}, {96, 242}, {95,
204}, {77, 216}, {87, 194}, {64, 214}, {66, 213}, {37, 189}, {67, 219}, {87,
207}, {78, 215}, {82, 203}, {84, 206}, {123, 224}, {37, 184}, {65, 223}, {112,
238}, {122, 228}, {91, 249}, {94, 252}, {122, 216}, {87, 241}, {116, 210}, {82,
251}, {66, 232}, {84, 254}, {112, 218}, {119, 221}, {23, 187}, {92, 240}, {119,
219}, {123, 215}, {111, 194}, {73, 231}, {115, 220}, {67, 243}, {71, 247}, {70,
246}, {69, 245}, {68, 244}, {72, 249}, {4, 183}, {76, 255}, {73, 250}, {12,
191}, {8, 187}, {1, 181}, {67, 247}, {3, 182}, {75, 254}, {11, 190}, {9, 188},
{92, 233}, {1, 183}, {74, 252}, {90, 236}, {114, 196}, {1, 182}, {10, 189}, {2,
181}, {85, 226}, {93, 234}, {113, 198}, {1, 185}, {4, 188}, {3, 187}, {2, 186},
{77, 244}, {2, 184}, {127, 197}, {4, 191}, {119, 203}, {3, 190}, {78, 243}, {7,
186}, {5, 184}, {2, 189}, {6, 185}, {122, 197}, {3, 195}, {12, 204}, {11, 203},
{10, 202}, {9, 201}, {8, 200}, {7, 199}, {6, 198}, {5, 197}, {4, 196}, {8, 201},
{9, 200}, {63, 253}, {14, 205}, {118, 181}, {57, 253}, {5, 192}, {7, 194}, {47,
233}, {6, 193}, {16, 215}, {127, 184}, {5, 205}, {39, 239}, {7, 207}, {6, 206},
{113, 185}, {17, 216}, {39, 238}, {19, 218}, {34, 232}, {49, 251}, {18, 217},
{34, 238}, {118, 186}, {13, 192}, {63, 242}, {61, 240}, {31, 210}, {29, 208},
{15, 194}, {14, 192}, {14, 193}, {62, 241}, {30, 209}, {20, 219}, {48, 224},
{55, 231}, {54, 230}, {53, 229}, {52, 228}, {51, 227}, {50, 226}, {49, 225},
{32, 241}, {60, 237}, {58, 235}, {41, 248}, {12, 222}, {13, 223}, {16, 195},
{57, 234}, {43, 248}, {42, 249}, {33, 242}, {28, 207}, {24, 203}, {20, 199},
{23, 195}, {17, 196}, {27, 206}, {25, 204}, {19, 198}, {10, 220}, {11, 221},
{18, 197}, {59, 236}, {26, 205}, {8, 208}, {55, 239}, {52, 236}, {13, 213}, {12,
212}, {11, 211}, {10, 210}, {9, 209}, {15, 214}, {15, 213}, {56, 226}, {13,
214}, {36, 248}, {21, 200}, {44, 241}, {23, 202}, {35, 253}, {22, 201}, {60,
220}, {62, 223}, {86, 183}, {16, 243}, {43, 200}, {42, 201}, {28, 255}, {24,
251}, {20, 247}, {86, 181}, {17, 244}, {27, 254}, {25, 252}, {19, 246}, {94,
187}, {18, 245}, {38, 193}, {26, 253}, {38, 206}, {21, 248}, {23, 250}, {14,
224}, {83, 189}, {55, 217}, {35, 205}, {15, 225}, {22, 249}, {31, 240}, {44,
220}, {47, 223}, {46, 222}, {45, 221}, {24, 233}, {30, 239}, {28, 237}, {26,
235}, {25, 232}, {16, 226}, {41, 219}, {40, 218}, {37, 215}, {36, 214}, {21,
231}, {20, 230}, {17, 227}, {25, 234}, {32, 211}, {29, 238}, {33, 212}, {18,
228}, {60, 202}, {19, 229}, {27, 236}, {34, 213}, {56, 195}, {21, 233}, {22,
234}, {22, 232}, {39, 217}, {38, 216}, {24, 231}, {59, 196}, {61, 319}, {103,
357}, {57, 317}, {71, 323}, {70, 322}, {69, 321}, {68, 320}, {59, 318}, {98,
356}, {79, 328}, {99, 356}, {49, 313}, {27, 274}, {80, 345}, {51, 314}, {31,
278}, {29, 276}, {54, 316}, {26, 273}, {76, 327}, {62, 309}, {30, 277}, {72,
324}, {75, 326}, {46, 288}, {53, 315}, {47, 289}, {28, 275}, {74, 325}, {63,
304}, {56, 297}, {48, 290}, {57, 299}, {56, 298}, {53, 295}, {52, 294}, {49,
291}, {88, 330}, {89, 331}, {71, 340}, {115, 352}, {61, 297}, {63, 299}, {117,
353}, {70, 339}, {89, 332}, {50, 292}, {81, 327}, {51, 293}, {47, 312}, {79,
344}, {61, 298}, {85, 333}, {46, 311}, {80, 329}, {48, 297}, {83, 330}, {121,
352}, {42, 304}, {45, 310}, {76, 343}, {94, 325}, {74, 342}, {29, 256}, {72,
341}, {31, 258}, {43, 309}, {60, 290}, {54, 296}, {30, 257}, {62, 289}, {84,
331}, {91, 324}, {99, 323}, {124, 348}, {41, 264}, {43, 266}, {39, 261}, {50,
272}, {46, 268}, {32, 259}, {42, 265}, {35, 263}, {109, 329}, {33, 260}, {35,
262}, {45, 267}, {54, 272}, {52, 274}, {34, 261}, {103, 335}, {125, 341}, {127,
342}, {100, 335}, {36, 264}, {99, 334}, {40, 262}, {40, 263}, {98, 333}, {58,
266}, {55, 262}, {96, 337}, {125, 332}, {44, 286}, {45, 287}, {101, 342}, {109,
350}, {114, 321}, {117, 326}, {118, 325}, {121, 330}, {126, 333}, {40, 284},
{41, 285}, {102, 338}, {107, 351}, {108, 344}, {120, 332}, {48, 261}, {107,
349}, {32, 279}, {100, 348}, {104, 336}, {33, 280}, {97, 344}, {98, 347}, {103,
350}, {53, 271}, {44, 279}, {97, 346}, {102, 349}, {110, 338}, {36, 281}, {51,
270}, {38, 283}, {108, 337}, {113, 332}, {108, 338}, {37, 282}, {50, 269}, {104,
343}, {84, 276}, {77, 268}, {120, 313}, {121, 312}, {106, 302}, {78, 267}, {80,
278}, {83, 277}, {105, 303}, {110, 296}, {101, 301}, {104, 288}, {105, 289},
{113, 313}, {120, 304}, {126, 310}, {106, 291}, {108, 293}, {91, 273}, {109,
295}, {68, 271}, {110, 293}, {115, 312}, {121, 306}, {64, 269}, {79, 258}, {77,
256}, {88, 277}, {89, 276}, {95, 273}, {100, 298}, {72, 263}, {78, 257}, {73,
262}, {107, 292}, {124, 307}, {95, 271}, {102, 310}, {73, 283}, {97, 307}, {80,
259}, {91, 271}, {104, 316}, {81, 260}, {88, 269}, {116, 289}, {74, 284}, {82,
261}, {89, 270}, {109, 314}, {66, 282}, {64, 281}, {123, 290}, {90, 256}, {101,
319}, {118, 300}, {116, 303}, {65, 285}, {85, 264}, {117, 299}, {86, 265}, {70,
294}, {93, 317}, {122, 283}, {123, 282}, {87, 309}, {92, 319}, {127, 284}, {90,
318}, {92, 312}, {112, 276}, {81, 308}, {124, 281}, {71, 303}, {110, 260}, {119,
285}, {69, 302}, {64, 300}, {65, 301}, {93, 305}, {112, 284}, {115, 286}, {67,
307}, {85, 292}, {120, 265}, {96, 274}, {97, 275}, {93, 302}, {125, 270}, {69,
305}, {88, 300}, {98, 279}, {107, 286}, {126, 267}, {116, 258}, {126, 264}, {96,
280}, {101, 285}, {102, 286}, {103, 287}, {81, 296}, {75, 305}, {105, 275},
{111, 277}, {125, 263}, {82, 297}, {86, 301}, {99, 280}, {106, 273}, {66, 318},
{79, 307}, {100, 281}, {76, 306}, {68, 315}, {75, 308}, {141, 268}, {176, 305},
{136, 266}, {176, 308}, {157, 283}, {151, 287}, {174, 294}, {165, 301}, {166,
303}, {176, 314}, {172, 288}, {169, 292}, {170, 295}, {146, 258}, {167, 311},
{130, 272}, {140, 280}, {130, 279}, {153, 268}, {132, 274}, {157, 266}, {153,
256}, {168, 306}, {165, 318}, {156, 257}, {168, 310}, {171, 267}, {128, 291},
{136, 300}, {134, 288}, {150, 319}, {147, 313}, {171, 257}, {169, 259}, {158,
306}, {165, 265}, {160, 269}, {170, 260}, {177, 287}, {160, 272}, {129, 304},
{131, 311}, {159, 299}, {158, 298}, {143, 315}, {140, 314}, {160, 278}, {149,
291}, {145, 295}, {161, 278}, {180, 259}, {132, 317}, {159, 294}, {155, 290},
{134, 316}, {146, 296}, {141, 311}, {135, 317}, {143, 308}, {149, 302}, {136,
309}, {130, 316}, {176, 270}, {173, 275}, {133, 315}, {154, 293}, {165, 282},
{144, 336}, {164, 356}, {150, 342}, {137, 328}, {163, 354}, {167, 357}, {141,
334}, {144, 339}, {164, 352}, {167, 355}, {166, 354}, {162, 359}, {144, 343},
{142, 326}, {173, 357}, {143, 327}, {137, 320}, {141, 324}, {139, 322}, {162,
360}, {138, 321}, {145, 346}, {135, 331}, {175, 355}, {164, 360}, {159, 339},
{136, 325}, {152, 341}, {142, 320}, {140, 323}, {133, 340}, {179, 354}, {177,
352}, {158, 335}, {131, 337}, {139, 345}, {140, 350}, {142, 349}, {178, 353},
{137, 349}, {158, 330}, {154, 334}, {143, 347}, {142, 346}, {132, 337}, {179,
358}, {178, 359}, {145, 326}, {179, 356}, {144, 328}, {152, 320}, {145, 329},
{130, 347}, {177, 360}, {137, 339}, {178, 360}, {146, 328}, {138, 336}, {131,
344}, {131, 351}, {133, 347}, {154, 324}, {138, 341}, {134, 358}, {169, 329},
{162, 322}, {135, 358}, {132, 358}, {173, 335}, {161, 323}, {133, 353}, {175,
331}, {163, 327}, {134, 354}, {135, 355}, {178, 340}, {139, 355}, {164, 333},
{138, 359}, {139, 357}, {175, 321}, {172, 322}, {177, 350}, {166, 340}, {169,
351}, {173, 346}, {161, 345}, {167, 351}, {166, 348}, {168, 338}, {162, 345},
{179, 334}, {159, 353}, {152, 359}, {175, 336}, {168, 343}, {163, 348} }>;
(II) A more general form is to represent the graph as the orbit of {171, 186}
under the group generated by the following permutations:
a: (1, 2)(3, 5)(4, 7)(6, 10)(8, 13)(9, 15)(11, 18)(12, 20)(14, 23)(16, 26)(17,
28)(19, 31)(21, 34)(22, 36)(24, 39)(25, 41)(27, 44)(29, 47)(30, 49)(32, 52)(33,
54)(35, 56)(37, 58)(38, 60)(40, 61)(42, 64)(43, 66)(45, 69)(46, 71)(48, 73)(50,
63)(51, 76)(53, 79)(55, 82)(57, 85)(59, 87)(62, 90)(65, 94)(67, 95)(68, 97)(70,
80)(72, 100)(74, 101)(75, 102)(77, 105)(78, 106)(81, 110)(83, 113)(84, 115)(86,
118)(88, 120)(89, 121)(91, 124)(92, 112)(93, 126)(96, 130)(98, 132)(99,
134)(103, 138)(104, 140)(107, 117)(108, 143)(109, 144)(111, 147)(114, 151)(116,
153)(119, 148)(122, 155)(123, 157)(125, 158)(127, 150)(128, 156)(129, 160)(131,
133)(135, 164)(136, 165)(137, 145)(139, 162)(141, 166)(146, 170)(149, 171)(152,
173)(154, 163)(159, 169)(161, 172)(167, 178)(168, 176)(174, 180)(175, 177)(182,
184)(183, 186)(185, 189)(187, 192)(188, 194)(190, 197)(191, 199)(193, 202)(195,
205)(196, 207)(198, 210)(200, 213)(201, 214)(203, 217)(204, 219)(206, 220)(208,
223)(209, 225)(211, 228)(212, 230)(215, 235)(216, 237)(218, 240)(221, 245)(222,
247)(224, 250)(226, 253)(227, 255)(229, 258)(231, 261)(232, 248)(233, 238)(234,
264)(236, 241)(239, 251)(242, 272)(243, 273)(244, 275)(246, 278)(249, 281)(252,
285)(254, 286)(256, 289)(257, 291)(259, 294)(260, 296)(262, 297)(263, 298)(265,
300)(266, 282)(267, 302)(268, 303)(269, 304)(270, 306)(271, 307)(274, 279)(276,
312)(277, 313)(280, 316)(283, 290)(284, 319)(287, 321)(288, 323)(292, 299)(293,
327)(295, 328)(301, 325)(305, 310)(308, 338)(309, 318)(311, 340)(314, 343)(315,
344)(317, 333)(320, 346)(322, 345)(324, 348)(326, 349)(329, 339)(330, 332)(331,
352)(334, 354)(335, 341)(336, 350)(337, 347)(351, 353)(355, 360)(356, 358)(357,
359) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 27)(18,
29)(20, 32)(22, 35)(23, 37)(25, 40)(26, 42)(28, 45)(30, 48)(31, 50)(33, 53)(34,
55)(36, 47)(38, 59)(41, 62)(43, 65)(44, 67)(46, 70)(51, 75)(52, 77)(54, 80)(56,
83)(57, 72)(58, 86)(60, 78)(61, 88)(63, 91)(64, 92)(66, 73)(68, 96)(69, 89)(71,
98)(76, 103)(79, 107)(81, 109)(82, 111)(84, 114)(85, 116)(87, 119)(90, 122)(93,
125)(94, 127)(95, 129)(97, 102)(99, 133)(100, 121)(101, 136)(104, 139)(105,
126)(106, 120)(108, 142)(110, 145)(112, 148)(113, 149)(115, 124)(117, 154)(118,
150)(123, 156)(128, 147)(130, 161)(131, 137)(132, 152)(134, 162)(135, 138)(140,
143)(141, 159)(144, 167)(146, 169)(153, 174)(155, 171)(157, 165)(163, 177)(164,
166)(168, 173)(178, 179)(181, 182)(183, 185)(184, 187)(186, 190)(188, 193)(189,
195)(191, 198)(192, 200)(194, 203)(196, 206)(197, 208)(199, 211)(201, 205)(202,
215)(204, 218)(207, 221)(209, 224)(210, 226)(212, 229)(213, 231)(214, 233)(216,
236)(217, 238)(219, 241)(220, 243)(222, 246)(223, 248)(225, 251)(227, 254)(228,
256)(230, 259)(232, 262)(234, 263)(235, 265)(237, 267)(239, 261)(240, 269)(242,
271)(244, 274)(245, 276)(247, 279)(249, 253)(250, 282)(252, 284)(255, 287)(257,
290)(258, 292)(260, 295)(264, 289)(266, 301)(268, 294)(270, 305)(272, 278)(273,
304)(275, 310)(277, 297)(280, 315)(281, 312)(283, 318)(285, 309)(286, 307)(288,
322)(291, 313)(293, 326)(296, 329)(298, 330)(299, 324)(300, 319)(302, 332)(303,
333)(306, 335)(308, 314)(311, 339)(316, 345)(317, 341)(320, 337)(321, 331)(323,
347)(325, 342)(327, 350)(328, 351)(334, 353)(336, 355)(338, 346)(340, 356)(343,
357)(344, 349)(348, 352)(354, 360)(358, 359)
c: (2, 4)(3, 6)(5, 9)(7, 12)(8, 14)(10, 17)(11, 19)(13, 22)(15, 25)(16, 27)(18,
30)(20, 33)(21, 35)(23, 38)(24, 40)(26, 43)(28, 46)(29, 48)(31, 51)(32, 53)(36,
57)(37, 59)(41, 63)(42, 65)(44, 68)(45, 70)(47, 72)(49, 74)(50, 75)(52, 78)(54,
81)(56, 84)(60, 77)(61, 89)(62, 91)(64, 93)(67, 96)(69, 88)(71, 99)(76, 104)(79,
108)(80, 109)(82, 112)(83, 114)(85, 117)(87, 95)(90, 123)(92, 125)(94, 128)(97,
131)(98, 133)(100, 135)(101, 120)(102, 137)(103, 139)(105, 141)(106, 136)(107,
142)(110, 146)(111, 148)(113, 150)(115, 152)(116, 154)(118, 149)(119, 129)(121,
138)(122, 156)(124, 132)(126, 159)(127, 147)(130, 143)(134, 163)(140, 161)(144,
168)(145, 169)(151, 172)(153, 155)(158, 175)(160, 176)(162, 177)(164, 178)(166,
179)(167, 173)(170, 180)(171, 174)(181, 183)(182, 185)(184, 188)(186, 191)(187,
193)(189, 196)(190, 198)(192, 201)(194, 204)(195, 206)(197, 209)(199, 212)(200,
205)(202, 216)(203, 218)(207, 222)(208, 224)(210, 227)(211, 229)(213, 232)(214,
234)(215, 236)(217, 239)(219, 242)(220, 244)(221, 246)(223, 249)(225, 252)(226,
254)(228, 257)(230, 260)(231, 262)(233, 263)(235, 266)(237, 268)(238, 261)(240,
270)(241, 271)(243, 274)(245, 277)(247, 280)(248, 253)(250, 283)(251, 284)(255,
288)(256, 290)(258, 293)(259, 295)(264, 299)(265, 301)(267, 294)(269, 305)(272,
308)(273, 309)(275, 311)(276, 297)(278, 314)(279, 315)(281, 317)(282, 318)(285,
304)(286, 320)(287, 322)(289, 324)(291, 325)(292, 326)(298, 331)(300, 302)(303,
334)(306, 336)(307, 337)(310, 339)(312, 341)(313, 342)(316, 327)(319, 332)(321,
330)(328, 338)(333, 353)(335, 355)(340, 356)(345, 350)(346, 351)(348, 358)(352,
359)
C4[ 360, 154 ]
360
-1 181 182 183 185
-2 189 181 184 186
-3 187 190 182 195
-4 188 191 183 196
-5 192 205 184 197
-6 198 193 206 185
-7 199 194 207 186
-8 187 200 201 208
-9 209 188 200 201
-10 220 210 189 202
-11 221 211 190 203
-12 222 212 191 204
-13 223 213 192 214
-14 224 192 193 205
-15 213 214 225 194
-16 243 215 226 195
-17 244 216 227 196
-18 245 217 228 197
-19 198 246 218 229
-20 199 247 219 230
-21 231 200 233 248
-22 232 201 234 249
-23 187 202 195 250
-24 231 233 203 251
-25 232 234 204 252
-26 253 235 205 273
-27 254 236 206 274
-28 275 255 237 207
-29 276 256 238 208
-30 209 277 257 239
-31 210 278 258 240
-32 211 279 259 241
-33 242 212 280 260
-34 232 213 238 261
-35 253 205 262 263
-36 264 214 248 281
-37 189 215 282 184
-38 193 216 206 283
-39 238 217 239 261
-40 218 262 284 263
-41 264 248 219 285
-42 265 201 249 304
-43 309 200 266 248
-44 220 286 279 241
-45 221 287 310 267
-46 222 288 311 268
-47 233 223 289 312
-48 297 224 290 261
-49 225 291 313 251
-50 269 226 292 272
-51 270 314 227 293
-52 236 228 294 274
-53 271 315 229 295
-54 272 316 230 296
-55 231 217 239 262
-56 297 298 226 195
-57 253 299 234 317
-58 266 235 182 185
-59 188 236 196 318
-60 220 202 290 237
-61 297 319 298 240
-62 309 223 289 241
-63 242 253 299 304
-64 300 214 269 281
-65 223 301 192 285
-66 232 213 282 318
-67 243 247 219 307
-68 320 244 271 315
-69 321 245 302 305
-70 322 246 294 339
-71 323 247 303 340
-72 341 324 249 263
-73 231 250 283 262
-74 342 325 284 252
-75 308 254 326 305
-76 255 343 327 306
-77 244 256 268 216
-78 243 267 257 215
-79 344 258 328 307
-80 278 345 259 329
-81 308 260 327 296
-82 297 203 261 251
-83 330 210 189 277
-84 254 276 331 206
-85 264 333 226 292
-86 265 301 181 183
-87 309 194 207 241
-88 330 277 300 269
-89 276 331 332 270
-90 256 236 208 318
-91 324 249 271 273
-92 319 233 312 240
-93 234 302 305 317
-94 187 325 208 252
-95 222 204 271 273
-96 242 280 337 274
-97 275 344 346 307
-98 333 279 356 347
-99 323 334 356 280
-100 298 335 281 348
-101 319 342 301 285
-102 286 310 338 349
-103 287 335 357 350
-104 288 343 336 316
-105 275 289 237 303
-106 235 291 302 273
-107 286 292 349 351
-108 344 293 337 338
-109 314 295 350 329
-110 260 293 338 296
-111 277 225 194 239
-112 276 238 218 284
-113 198 332 313 185
-114 321 245 227 196
-115 220 286 352 312
-116 210 289 258 303
-117 254 353 299 326
-118 300 181 325 186
-119 221 203 219 285
-120 265 332 313 304
-121 330 352 312 306
-122 216 228 283 197
-123 224 290 215 282
-124 243 281 348 307
-125 341 332 270 263
-126 264 310 267 333
-127 342 184 284 197
-128 224 225 291 193
-129 242 246 304 218
-130 279 347 272 316
-131 311 344 337 351
-132 358 337 317 274
-133 353 347 315 340
-134 288 354 358 316
-135 331 355 358 317
-136 309 266 300 325
-137 320 349 328 339
-138 341 321 336 359
-139 322 355 345 357
-140 323 280 314 350
-141 311 268 334 324
-142 320 346 326 349
-143 308 347 315 327
-144 343 336 328 339
-145 346 326 295 329
-146 258 328 230 296
-147 209 188 313 251
-148 245 204 217 252
-149 191 291 302 183
-150 319 342 190 182
-151 221 287 255 207
-152 341 320 244 359
-153 198 256 268 229
-154 334 324 227 293
-155 211 190 290 237
-156 209 202 257 250
-157 266 235 250 283
-158 330 298 335 306
-159 353 299 294 339
-160 278 269 272 240
-161 278 323 345 247
-162 322 345 359 360
-163 255 354 348 327
-164 352 333 356 360
-165 265 301 282 318
-166 354 303 348 340
-167 311 355 357 351
-168 310 343 338 306
-169 259 292 329 351
-170 212 260 229 295
-171 199 267 257 186
-172 222 288 322 246
-173 275 335 346 357
-174 212 191 228 294
-175 331 321 355 336
-176 308 270 314 305
-177 352 287 360 350
-178 353 359 360 340
-179 354 334 356 358
-180 199 211 259 230
-181 1 2 118 86
-182 1 3 58 150
-183 1 4 149 86
-184 2 37 5 127
-185 1 58 113 6
-186 2 171 7 118
-187 23 3 94 8
-188 4 59 147 9
-189 2 37 83 10
-190 11 155 3 150
-191 12 4 149 174
-192 13 14 5 65
-193 14 38 6 128
-194 111 15 7 87
-195 23 56 3 16
-196 4 59 114 17
-197 122 5 127 18
-198 113 6 19 153
-199 180 171 7 20
-200 8 9 21 43
-201 22 8 9 42
-202 23 156 60 10
-203 11 24 82 119
-204 12 25 148 95
-205 35 14 26 5
-206 27 38 6 84
-207 28 7 151 87
-208 90 94 29 8
-209 156 147 30 9
-210 83 116 31 10
-211 11 155 180 32
-212 33 12 170 174
-213 66 34 13 15
-214 13 36 15 64
-215 78 123 37 16
-216 77 122 38 17
-217 55 148 39 18
-218 112 40 19 129
-219 67 41 20 119
-220 44 60 115 10
-221 11 45 151 119
-222 12 46 95 172
-223 13 47 62 65
-224 123 14 48 128
-225 111 15 49 128
-226 56 16 50 85
-227 154 114 17 51
-228 122 18 52 174
-229 170 19 53 153
-230 146 180 20 54
-231 55 24 73 21
-232 22 66 34 25
-233 24 47 92 21
-234 22 57 25 93
-235 58 157 26 106
-236 90 59 27 52
-237 155 60 28 105
-238 34 112 39 29
-239 55 111 39 30
-240 92 61 160 31
-241 44 62 32 87
-242 33 63 96 129
-243 67 78 124 16
-244 77 68 17 152
-245 69 114 148 18
-246 70 172 19 129
-247 67 71 161 20
-248 36 41 21 43
-249 22 91 72 42
-250 23 156 157 73
-251 24 147 49 82
-252 25 148 94 74
-253 35 57 26 63
-254 27 84 117 75
-255 28 151 163 76
-256 77 90 29 153
-257 78 156 171 30
-258 79 146 116 31
-259 80 169 180 32
-260 33 110 81 170
-261 34 48 82 39
-262 55 35 40 73
-263 35 125 72 40
-264 36 126 41 85
-265 165 42 86 120
-266 58 157 136 43
-267 45 78 126 171
-268 77 46 141 153
-269 88 50 160 64
-270 176 89 125 51
-271 68 91 95 53
-272 50 160 130 54
-273 91 26 95 106
-274 132 27 52 96
-275 28 105 173 97
-276 89 112 29 84
-277 88 111 83 30
-278 80 160 161 31
-279 44 130 32 98
-280 33 99 96 140
-281 100 36 124 64
-282 66 165 123 37
-283 122 157 38 73
-284 112 127 40 74
-285 101 41 119 65
-286 44 102 115 107
-287 45 177 103 151
-288 46 134 104 172
-289 47 105 116 62
-290 155 123 48 60
-291 49 149 106 128
-292 169 50 85 107
-293 110 154 51 108
-294 70 159 52 174
-295 145 170 53 109
-296 110 146 81 54
-297 56 48 82 61
-298 56 100 158 61
-299 57 159 117 63
-300 88 136 118 64
-301 165 101 86 65
-302 69 93 149 106
-303 166 71 105 116
-304 63 129 42 120
-305 176 69 93 75
-306 121 168 158 76
-307 67 79 124 97
-308 143 176 81 75
-309 136 62 43 87
-310 45 102 168 126
-311 46 167 141 131
-312 121 47 92 115
-313 113 147 49 120
-314 176 51 140 109
-315 143 133 68 53
-316 134 104 130 54
-317 132 57 135 93
-318 66 165 90 59
-319 101 92 61 150
-320 68 137 152 142
-321 69 114 138 175
-322 70 139 172 162
-323 99 71 161 140
-324 154 91 72 141
-325 136 94 74 118
-326 145 117 75 142
-327 143 81 163 76
-328 144 79 146 137
-329 145 80 169 109
-330 88 121 158 83
-331 89 135 84 175
-332 89 113 125 120
-333 126 85 98 164
-334 99 154 179 141
-335 100 103 158 173
-336 144 104 138 175
-337 132 96 108 131
-338 110 102 168 108
-339 144 70 137 159
-340 133 166 178 71
-341 125 72 138 152
-342 101 127 150 74
-343 144 168 104 76
-344 79 97 108 131
-345 80 139 161 162
-346 145 173 97 142
-347 143 133 130 98
-348 100 166 124 163
-349 102 137 107 142
-350 177 103 140 109
-351 167 169 107 131
-352 121 177 115 164
-353 133 178 159 117
-354 166 134 179 163
-355 167 135 139 175
-356 99 179 98 164
-357 167 103 139 173
-358 132 134 135 179
-359 178 138 162 152
-360 177 178 162 164
0