[Home] [Table] [Glossary]
[Families]
On this page are all graphs related to C4[ 360, 155 ].
Graphs which this one covers
36-fold cover of
C4[ 10, 2 ]
= C_ 10(1, 3)
18-fold cover of
C4[ 20, 4 ]
= SDD(K5)
12-fold cover of
C4[ 30, 3 ]
= PS( 6, 5; 2)
6-fold cover of
C4[ 60, 15 ]
= UG(ATD[60,22])
6-fold cover of
C4[ 60, 16 ]
= HC(F 10)
6-fold cover of
C4[ 60, 20 ]
= SDD(Pr_ 5( 1, 1, 2, 2))
3-fold cover of
C4[ 120, 63 ]
= SDD(Pr_ 10( 1, 4, 3, 2))
2-fold cover of
C4[ 180, 46 ]
= XI(Rmap(90,27){3,10|10}_15)
BGCG dissections of this graph
Base Graph:
C4[ 18, 2 ]
= DW( 6, 3)
connection graph: [Petersen]
Base Graph:
C4[ 30, 2 ]
= C_ 30(1, 11)
connection graph: [K_6]
Base Graph:
C4[ 30, 5 ]
= Pr_ 10( 1, 4, 3, 2)
connection graph: [C_6]
Base Graph:
C4[ 180, 31 ]
= UG(ATD[180,50])
connection graph: [K_1]
Aut-Orbital graphs of this one:
C4[ 8, 1 ] = K_4,4
C4[ 24, 1 ] = W( 12, 2)
C4[ 30, 4 ] = Pr_ 10( 1, 1, 2, 2)
C4[ 30, 5 ] = Pr_ 10( 1, 4, 3, 2)
C4[ 30, 6 ] = Pr_ 10( 1, 1, 3, 3)
C4[ 30, 7 ] = Pr_ 10( 2, 3, 1, 4)
C4[ 60, 11 ] = UG(ATD[60,16])
C4[ 60, 15 ] = UG(ATD[60,22])
C4[ 90, 7 ] = UG(ATD[90,11])
C4[ 90, 8 ] = UG(ATD[90,12])
C4[ 120, 63 ] = SDD(Pr_ 10( 1, 4, 3, 2))
C4[ 120, 64 ] = SDD(Pr_ 10( 1, 1, 3, 3))
C4[ 180, 28 ] = UG(ATD[180,45])
C4[ 180, 31 ] = UG(ATD[180,50])
C4[ 360, 143 ] = XI(Rmap(180,23){6,12|3}_10)
C4[ 360, 155 ] = PL(CSI(Pr_ 5( 1, 1, 2, 2)[ 5^ 6], 6))