C4graphGraph forms for C4 [ 360, 159 ] = PL(CSI(Pr_10(1,1,2,2)[3^20],3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 159 ] = PL(CSI(Pr_10(1,1,2,2)[3^20],3)).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {61, 189}, {71, 199}, {70, 199}, {59, 191}, {62, 186}, {58, 191}, {63, 186}, {72, 205}, {61, 187}, {62, 184}, {63, 184}, {72, 207}, {68, 204}, {83, 219}, {69, 204}, {82, 219}, {83, 217}, {82, 217}, {84, 223}, {67, 207}, {80, 220}, {81, 220}, {67, 205}, {68, 202}, {71, 201}, {80, 222}, {69, 202}, {70, 201}, {81, 222}, {79, 223}, {100, 244}, {73, 216}, {96, 241}, {101, 244}, {100, 246}, {96, 243}, {101, 246}, {99, 247}, {107, 255}, {98, 247}, {106, 255}, {78, 216}, {107, 253}, {106, 253}, {75, 211}, {78, 214}, {74, 211}, {99, 249}, {102, 252}, {97, 250}, {98, 249}, {76, 208}, {102, 250}, {77, 208}, {97, 252}, {75, 213}, {76, 210}, {73, 214}, {74, 213}, {77, 210}, {91, 243}, {91, 241}, {92, 240}, {93, 240}, {79, 225}, {5, 181}, {12, 188}, {9, 185}, {87, 231}, {90, 234}, {4, 181}, {12, 189}, {8, 185}, {86, 231}, {4, 182}, {8, 186}, {87, 229}, {90, 232}, {92, 238}, {95, 237}, {5, 182}, {9, 186}, {86, 229}, {93, 238}, {94, 237}, {95, 235}, {117, 193}, {84, 225}, {94, 235}, {115, 198}, {116, 193}, {117, 195}, {118, 192}, {115, 196}, {116, 195}, {119, 192}, {1, 187}, {7, 189}, {6, 188}, {3, 185}, {2, 184}, {88, 226}, {2, 185}, {7, 188}, {3, 184}, {89, 226}, {2, 190}, {11, 183}, {10, 182}, {88, 228}, {120, 196}, {1, 188}, {11, 182}, {10, 183}, {6, 187}, {2, 191}, {85, 232}, {89, 228}, {1, 191}, {120, 198}, {1, 190}, {85, 234}, {4, 196}, {35, 227}, {24, 216}, {21, 213}, {20, 212}, {11, 203}, {8, 200}, {7, 199}, {4, 197}, {34, 227}, {21, 212}, {20, 213}, {18, 211}, {11, 202}, {13, 207}, {17, 211}, {14, 204}, {13, 206}, {15, 204}, {5, 193}, {41, 237}, {40, 236}, {26, 222}, {24, 220}, {22, 210}, {19, 215}, {15, 203}, {10, 206}, {9, 205}, {6, 194}, {14, 203}, {41, 236}, {40, 237}, {27, 222}, {24, 221}, {23, 210}, {17, 212}, {3, 197}, {34, 228}, {33, 231}, {32, 230}, {29, 219}, {28, 218}, {27, 221}, {23, 209}, {18, 212}, {16, 214}, {12, 202}, {3, 196}, {35, 228}, {33, 230}, {32, 231}, {29, 218}, {28, 219}, {26, 221}, {22, 209}, {16, 215}, {12, 203}, {10, 205}, {9, 206}, {6, 193}, {5, 194}, {39, 239}, {118, 190}, {19, 218}, {38, 239}, {22, 223}, {119, 190}, {19, 217}, {53, 255}, {52, 254}, {36, 238}, {23, 221}, {21, 223}, {19, 216}, {53, 254}, {52, 255}, {48, 251}, {36, 239}, {32, 235}, {23, 220}, {32, 236}, {48, 252}, {35, 239}, {20, 217}, {36, 233}, {35, 238}, {20, 218}, {36, 234}, {7, 200}, {24, 215}, {8, 199}, {33, 241}, {43, 251}, {37, 245}, {34, 242}, {37, 244}, {44, 253}, {41, 248}, {38, 244}, {44, 254}, {42, 248}, {40, 250}, {33, 242}, {40, 251}, {38, 245}, {34, 241}, {44, 248}, {45, 249}, {43, 254}, {45, 248}, {44, 249}, {37, 243}, {43, 253}, {38, 240}, {37, 242}, {43, 252}, {39, 240}, {15, 215}, {46, 246}, {42, 242}, {17, 201}, {16, 200}, {15, 214}, {47, 246}, {42, 243}, {17, 200}, {16, 201}, {47, 245}, {46, 245}, {13, 209}, {39, 251}, {18, 206}, {13, 208}, {42, 247}, {39, 250}, {18, 207}, {14, 208}, {41, 247}, {14, 209}, {55, 198}, {27, 233}, {55, 197}, {27, 232}, {31, 236}, {28, 232}, {31, 235}, {65, 181}, {21, 224}, {31, 234}, {28, 233}, {64, 181}, {22, 224}, {31, 233}, {65, 183}, {64, 183}, {25, 225}, {30, 230}, {29, 229}, {26, 226}, {25, 224}, {60, 197}, {26, 227}, {66, 187}, {25, 227}, {60, 198}, {58, 192}, {57, 195}, {56, 194}, {25, 226}, {59, 192}, {57, 194}, {56, 195}, {30, 229}, {29, 230}, {30, 224}, {30, 225}, {66, 189}, {118, 358}, {118, 359}, {115, 353}, {117, 359}, {115, 352}, {117, 358}, {119, 356}, {116, 352}, {119, 355}, {116, 353}, {120, 355}, {94, 322}, {120, 356}, {94, 323}, {127, 354}, {93, 323}, {127, 353}, {93, 322}, {95, 320}, {96, 320}, {121, 345}, {121, 344}, {125, 348}, {122, 344}, {126, 348}, {124, 350}, {122, 345}, {124, 351}, {97, 325}, {123, 351}, {98, 326}, {123, 350}, {126, 347}, {104, 334}, {125, 347}, {97, 326}, {98, 325}, {104, 335}, {99, 331}, {100, 332}, {103, 335}, {114, 346}, {45, 260}, {63, 278}, {103, 334}, {114, 347}, {46, 260}, {63, 277}, {113, 347}, {113, 346}, {101, 329}, {46, 259}, {61, 272}, {101, 328}, {112, 349}, {45, 259}, {62, 272}, {47, 257}, {102, 328}, {112, 350}, {47, 256}, {99, 332}, {100, 331}, {102, 329}, {48, 256}, {59, 267}, {56, 264}, {55, 263}, {50, 258}, {48, 257}, {62, 271}, {59, 266}, {51, 258}, {111, 350}, {51, 257}, {61, 271}, {54, 260}, {111, 349}, {50, 257}, {54, 261}, {49, 261}, {58, 270}, {57, 269}, {50, 262}, {49, 260}, {50, 263}, {109, 344}, {49, 263}, {60, 266}, {110, 344}, {49, 262}, {60, 267}, {58, 269}, {57, 270}, {52, 268}, {52, 269}, {107, 338}, {110, 343}, {107, 337}, {109, 343}, {53, 265}, {54, 266}, {105, 341}, {105, 340}, {108, 337}, {51, 269}, {106, 340}, {108, 338}, {51, 268}, {56, 263}, {55, 264}, {54, 265}, {53, 266}, {106, 341}, {66, 274}, {66, 275}, {65, 275}, {65, 274}, {72, 283}, {72, 284}, {64, 277}, {64, 278}, {70, 286}, {70, 287}, {67, 281}, {69, 287}, {67, 280}, {69, 286}, {71, 284}, {68, 280}, {71, 283}, {68, 281}, {96, 319}, {127, 288}, {81, 305}, {127, 287}, {92, 316}, {95, 319}, {81, 304}, {85, 308}, {88, 313}, {92, 317}, {109, 268}, {82, 304}, {86, 308}, {88, 314}, {103, 261}, {75, 296}, {82, 305}, {109, 270}, {76, 296}, {79, 299}, {103, 259}, {111, 267}, {79, 298}, {86, 307}, {110, 267}, {85, 307}, {91, 317}, {111, 265}, {91, 316}, {110, 265}, {73, 289}, {126, 278}, {123, 275}, {74, 290}, {77, 293}, {104, 256}, {77, 292}, {126, 279}, {122, 275}, {105, 256}, {108, 261}, {78, 292}, {104, 258}, {73, 290}, {74, 289}, {76, 295}, {78, 293}, {105, 258}, {75, 295}, {125, 273}, {124, 272}, {90, 310}, {87, 314}, {125, 272}, {124, 273}, {90, 311}, {87, 313}, {122, 276}, {121, 279}, {89, 311}, {89, 310}, {123, 276}, {121, 278}, {108, 259}, {112, 262}, {113, 262}, {112, 264}, {84, 301}, {113, 264}, {80, 298}, {84, 302}, {80, 299}, {114, 270}, {83, 302}, {83, 301}, {114, 268}, {137, 271}, {136, 271}, {144, 286}, {133, 277}, {141, 285}, {140, 285}, {133, 279}, {161, 307}, {134, 276}, {135, 276}, {160, 307}, {134, 274}, {161, 309}, {142, 282}, {135, 274}, {160, 309}, {143, 282}, {139, 286}, {141, 283}, {142, 280}, {140, 283}, {143, 280}, {130, 282}, {166, 318}, {137, 273}, {131, 282}, {167, 318}, {162, 315}, {136, 273}, {131, 281}, {166, 316}, {165, 319}, {130, 281}, {167, 316}, {164, 319}, {162, 313}, {132, 287}, {128, 284}, {129, 285}, {128, 285}, {138, 279}, {129, 284}, {138, 277}, {136, 296}, {143, 303}, {140, 300}, {139, 299}, {136, 297}, {150, 311}, {143, 302}, {149, 311}, {132, 288}, {157, 313}, {145, 309}, {134, 290}, {134, 291}, {152, 317}, {151, 306}, {145, 308}, {133, 291}, {158, 312}, {157, 315}, {152, 318}, {146, 308}, {133, 290}, {159, 312}, {151, 304}, {146, 309}, {140, 299}, {139, 300}, {147, 315}, {158, 310}, {147, 314}, {159, 310}, {151, 318}, {151, 317}, {139, 288}, {137, 293}, {156, 304}, {138, 294}, {149, 312}, {135, 297}, {156, 306}, {150, 312}, {148, 314}, {135, 296}, {148, 315}, {138, 293}, {137, 294}, {144, 288}, {154, 298}, {150, 295}, {155, 298}, {146, 294}, {153, 301}, {149, 289}, {147, 294}, {152, 301}, {148, 289}, {145, 295}, {154, 300}, {153, 303}, {149, 291}, {146, 292}, {147, 292}, {155, 300}, {152, 303}, {148, 291}, {145, 297}, {141, 305}, {142, 306}, {144, 302}, {141, 306}, {150, 297}, {144, 303}, {142, 305}, {175, 354}, {175, 352}, {176, 352}, {179, 355}, {180, 357}, {159, 333}, {176, 354}, {159, 332}, {178, 358}, {179, 357}, {177, 358}, {180, 355}, {158, 326}, {154, 323}, {177, 360}, {158, 327}, {153, 323}, {178, 360}, {157, 327}, {155, 321}, {155, 320}, {157, 326}, {156, 320}, {153, 324}, {156, 321}, {154, 324}, {132, 356}, {180, 340}, {177, 337}, {170, 330}, {128, 353}, {176, 337}, {171, 330}, {163, 322}, {132, 357}, {128, 354}, {180, 342}, {178, 336}, {177, 339}, {170, 328}, {169, 331}, {171, 328}, {179, 336}, {176, 339}, {174, 333}, {165, 321}, {169, 333}, {130, 359}, {174, 331}, {164, 321}, {129, 359}, {131, 357}, {131, 356}, {163, 324}, {161, 329}, {173, 325}, {162, 330}, {129, 360}, {172, 325}, {130, 360}, {173, 327}, {168, 322}, {161, 330}, {172, 327}, {164, 335}, {162, 329}, {160, 332}, {168, 324}, {163, 335}, {160, 333}, {165, 341}, {169, 345}, {166, 342}, {172, 349}, {173, 348}, {174, 348}, {163, 336}, {172, 351}, {170, 345}, {166, 341}, {165, 342}, {164, 336}, {174, 346}, {171, 351}, {167, 339}, {167, 338}, {171, 349}, {173, 346}, {175, 342}, {168, 338}, {168, 339}, {175, 340}, {178, 334}, {170, 343}, {179, 334}, {169, 343} }>;

(II) A more general form is to represent the graph as the orbit of {61, 189} under the group generated by the following permutations:

a: (7, 61)(8, 62)(9, 63)(10, 64)(11, 65)(12, 66)(13, 133)(14, 134)(15, 135)(16, 136)(17, 137)(18, 138)(19, 145)(20, 146)(21, 147)(22, 148)(23, 149)(24, 150)(25, 88)(26, 89)(27, 90)(28, 85)(29, 86)(30, 87)(37, 91)(38, 92)(39, 93)(40, 94)(41, 95)(42, 96)(43, 163)(44, 164)(45, 165)(46, 166)(47, 167)(48, 168)(49, 175)(50, 176)(51, 177)(52, 178)(53, 179)(54, 180)(55, 115)(56, 116)(57, 117)(58, 118)(59, 119)(60, 120)(67, 121)(68, 122)(69, 123)(70, 124)(71, 125)(72, 126)(73, 76)(74, 77)(75, 78)(79, 157)(80, 158)(81, 159)(82, 160)(83, 161)(84, 162)(97, 154)(98, 155)(99, 156)(100, 151)(101, 152)(102, 153)(103, 106)(104, 107)(105, 108)(109, 130)(110, 131)(111, 132)(112, 127)(113, 128)(114, 129)(139, 172)(140, 173)(141, 174)(142, 169)(143, 170)(144, 171)(181, 182)(184, 185)(187, 188)(190, 191)(193, 194)(196, 197)(199, 272)(200, 271)(201, 273)(202, 275)(203, 274)(204, 276)(205, 278)(206, 277)(207, 279)(208, 290)(209, 291)(210, 289)(211, 293)(212, 294)(213, 292)(214, 296)(215, 297)(216, 295)(217, 309)(218, 308)(219, 307)(220, 312)(221, 311)(222, 310)(223, 315)(224, 314)(225, 313)(227, 228)(230, 231)(233, 234)(235, 236)(238, 239)(241, 242)(244, 317)(245, 316)(246, 318)(247, 320)(248, 319)(249, 321)(250, 323)(251, 322)(252, 324)(253, 335)(254, 336)(255, 334)(256, 338)(257, 339)(258, 337)(259, 341)(260, 342)(261, 340)(262, 354)(263, 352)(264, 353)(265, 357)(266, 355)(267, 356)(268, 360)(269, 358)(270, 359)(280, 345)(281, 344)(282, 343)(283, 348)(284, 347)(285, 346)(286, 351)(287, 350)(288, 349)(298, 326)(299, 327)(300, 325)(301, 329)(302, 330)(303, 328)(304, 332)(305, 333)(306, 331)
b: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21, 24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40, 41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99, 102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115, 116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130, 131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(145, 146)(147, 150)(148, 149)(151, 152)(153, 156)(154, 155)(157, 158)(159, 162)(160, 161)(163, 164)(165, 168)(166, 167)(169, 170)(171, 174)(172, 173)(175, 176)(177, 180)(178, 179)(184, 187)(185, 188)(186, 189)(193, 196)(194, 197)(195, 198)(202, 205)(203, 206)(204, 207)(211, 214)(212, 215)(213, 216)(220, 223)(221, 224)(222, 225)(229, 232)(230, 233)(231, 234)(238, 241)(239, 242)(240, 243)(247, 250)(248, 251)(249, 252)(256, 259)(257, 260)(258, 261)(265, 268)(266, 269)(267, 270)(274, 277)(275, 278)(276, 279)(283, 286)(284, 287)(285, 288)(292, 295)(293, 296)(294, 297)(301, 304)(302, 305)(303, 306)(310, 313)(311, 314)(312, 315)(319, 322)(320, 323)(321, 324)(328, 331)(329, 332)(330, 333)(337, 340)(338, 341)(339, 342)(346, 349)(347, 350)(348, 351)(355, 358)(356, 359)(357, 360)
c: (1, 7, 61)(2, 8, 62)(3, 9, 63)(4, 10, 64)(5, 11, 65)(6, 12, 66)(13, 121, 115)(14, 122, 116)(15, 123, 117)(16, 124, 118)(17, 125, 119)(18, 126, 120)(19, 172, 178)(20, 173, 179)(21, 174, 180)(22, 169, 175)(23, 170, 176)(24, 171, 177)(25, 100, 166)(26, 101, 167)(27, 102, 168)(28, 97, 163)(29, 98, 164)(30, 99, 165)(31, 40, 94)(32, 41, 95)(33, 42, 96)(34, 37, 91)(35, 38, 92)(36, 39, 93)(43, 154, 85)(44, 155, 86)(45, 156, 87)(46, 151, 88)(47, 152, 89)(48, 153, 90)(49, 142, 148)(50, 143, 149)(51, 144, 150)(52, 139, 145)(53, 140, 146)(54, 141, 147)(55, 67, 133)(56, 68, 134)(57, 69, 135)(58, 70, 136)(59, 71, 137)(60, 72, 138)(73, 112, 130)(74, 113, 131)(75, 114, 132)(76, 109, 127)(77, 110, 128)(78, 111, 129)(79, 160, 106)(80, 161, 107)(81, 162, 108)(82, 157, 103)(83, 158, 104)(84, 159, 105)(181, 182, 183)(184, 185, 186)(187, 188, 189)(190, 200, 272)(191, 199, 271)(192, 201, 273)(193, 203, 275)(194, 202, 274)(195, 204, 276)(196, 206, 278)(197, 205, 277)(198, 207, 279)(208, 344, 353)(209, 345, 352)(210, 343, 354)(211, 347, 356)(212, 348, 355)(213, 346, 357)(214, 350, 359)(215, 351, 358)(216, 349, 360)(217, 327, 334)(218, 325, 336)(219, 326, 335)(220, 330, 337)(221, 328, 339)(222, 329, 338)(223, 333, 340)(224, 331, 342)(225, 332, 341)(226, 246, 318)(227, 244, 316)(228, 245, 317)(229, 249, 321)(230, 247, 319)(231, 248, 320)(232, 252, 324)(233, 250, 322)(234, 251, 323)(235, 236, 237)(238, 239, 240)(241, 242, 243)(253, 298, 307)(254, 300, 308)(255, 299, 309)(256, 301, 310)(257, 303, 311)(258, 302, 312)(259, 304, 313)(260, 306, 314)(261, 305, 315)(262, 282, 289)(263, 280, 291)(264, 281, 290)(265, 285, 292)(266, 283, 294)(267, 284, 293)(268, 288, 295)(269, 286, 297)(270, 287, 296)
d: (2, 6)(3, 5)(7, 58)(8, 57)(9, 56)(10, 55)(11, 60)(12, 59)(13, 49)(14, 54)(15, 53)(16, 52)(17, 51)(18, 50)(19, 43)(20, 48)(21, 47)(22, 46)(23, 45)(24, 44)(25, 37)(26, 42)(27, 41)(28, 40)(29, 39)(30, 38)(32, 36)(33, 35)(61, 118)(62, 117)(63, 116)(64, 115)(65, 120)(66, 119)(67, 112)(68, 111)(69, 110)(70, 109)(71, 114)(72, 113)(73, 106)(74, 105)(75, 104)(76, 103)(77, 108)(78, 107)(79, 100)(80, 99)(81, 98)(82, 97)(83, 102)(84, 101)(85, 94)(86, 93)(87, 92)(88, 91)(89, 96)(90, 95)(121, 127)(122, 132)(123, 131)(124, 130)(125, 129)(126, 128)(133, 175)(134, 180)(135, 179)(136, 178)(137, 177)(138, 176)(139, 169)(140, 174)(141, 173)(142, 172)(143, 171)(144, 170)(145, 163)(146, 168)(147, 167)(148, 166)(149, 165)(150, 164)(151, 157)(152, 162)(153, 161)(154, 160)(155, 159)(156, 158)(181, 196)(182, 197)(183, 198)(184, 193)(185, 194)(186, 195)(187, 190)(188, 191)(189, 192)(199, 270)(200, 269)(201, 268)(202, 267)(203, 266)(204, 265)(205, 264)(206, 263)(207, 262)(208, 261)(209, 260)(210, 259)(211, 258)(212, 257)(213, 256)(214, 255)(215, 254)(216, 253)(217, 252)(218, 251)(219, 250)(220, 249)(221, 248)(222, 247)(223, 246)(224, 245)(225, 244)(226, 243)(227, 242)(228, 241)(229, 240)(230, 239)(231, 238)(232, 237)(233, 236)(234, 235)(271, 358)(272, 359)(273, 360)(274, 355)(275, 356)(276, 357)(277, 352)(278, 353)(279, 354)(280, 349)(281, 350)(282, 351)(283, 346)(284, 347)(285, 348)(286, 343)(287, 344)(288, 345)(289, 341)(290, 340)(291, 342)(292, 338)(293, 337)(294, 339)(295, 335)(296, 334)(297, 336)(298, 332)(299, 331)(300, 333)(301, 329)(302, 328)(303, 330)(304, 326)(305, 325)(306, 327)(307, 323)(308, 322)(309, 324)(310, 320)(311, 319)(312, 321)(313, 317)(314, 316)(315, 318)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 159 ]
360
-1 187 188 190 191
-2 190 191 184 185
-3 184 185 196 197
-4 181 182 196 197
-5 181 182 193 194
-6 187 188 193 194
-7 188 199 189 200
-8 199 200 185 186
-9 205 206 185 186
-10 182 183 205 206
-11 202 203 182 183
-12 188 189 202 203
-13 209 206 207 208
-14 209 203 204 208
-15 203 214 204 215
-16 200 201 214 215
-17 200 211 201 212
-18 211 212 206 207
-19 215 216 217 218
-20 212 213 217 218
-21 212 223 213 224
-22 209 210 223 224
-23 209 220 210 221
-24 220 221 215 216
-25 224 225 226 227
-26 221 222 226 227
-27 221 232 222 233
-28 232 233 218 219
-29 218 229 219 230
-30 224 225 229 230
-31 233 234 235 236
-32 231 235 236 230
-33 231 242 230 241
-34 242 227 228 241
-35 227 238 228 239
-36 233 234 238 239
-37 242 243 244 245
-38 244 245 239 240
-39 239 250 240 251
-40 236 237 250 251
-41 236 247 237 248
-42 242 243 247 248
-43 253 254 251 252
-44 253 254 248 249
-45 248 259 249 260
-46 245 246 259 260
-47 245 256 246 257
-48 256 257 251 252
-49 260 261 262 263
-50 257 258 262 263
-51 257 268 258 269
-52 254 255 268 269
-53 254 265 255 266
-54 265 266 260 261
-55 198 264 197 263
-56 264 194 195 263
-57 269 270 194 195
-58 191 192 269 270
-59 266 267 191 192
-60 198 266 267 197
-61 187 189 271 272
-62 271 184 272 186
-63 277 278 184 186
-64 277 278 181 183
-65 275 181 183 274
-66 187 275 189 274
-67 280 281 205 207
-68 202 280 204 281
-69 286 287 202 204
-70 286 199 287 201
-71 199 201 283 284
-72 205 283 207 284
-73 289 290 214 216
-74 211 289 213 290
-75 211 213 295 296
-76 210 295 208 296
-77 210 292 293 208
-78 214 292 216 293
-79 298 299 223 225
-80 220 298 222 299
-81 220 222 304 305
-82 304 217 305 219
-83 301 302 217 219
-84 223 301 225 302
-85 308 232 234 307
-86 231 308 229 307
-87 231 313 314 229
-88 313 226 314 228
-89 310 311 226 228
-90 232 310 234 311
-91 243 316 317 241
-92 238 316 240 317
-93 322 323 238 240
-94 322 235 323 237
-95 319 320 235 237
-96 319 243 320 241
-97 325 326 250 252
-98 247 325 249 326
-99 331 332 247 249
-100 331 244 332 246
-101 244 246 328 329
-102 250 328 252 329
-103 334 335 259 261
-104 256 334 258 335
-105 341 256 258 340
-106 253 341 255 340
-107 253 255 337 338
-108 259 337 261 338
-109 343 344 268 270
-110 265 343 267 344
-111 265 267 349 350
-112 264 349 262 350
-113 264 346 347 262
-114 268 346 270 347
-115 198 352 353 196
-116 352 353 193 195
-117 193 358 359 195
-118 190 192 358 359
-119 190 355 356 192
-120 198 355 356 196
-121 278 344 279 345
-122 275 276 344 345
-123 275 276 350 351
-124 272 273 350 351
-125 347 348 272 273
-126 278 279 347 348
-127 287 353 288 354
-128 353 354 284 285
-129 359 360 284 285
-130 281 282 359 360
-131 356 357 281 282
-132 287 288 356 357
-133 277 279 290 291
-134 276 290 291 274
-135 297 276 274 296
-136 297 271 273 296
-137 271 293 294 273
-138 277 279 293 294
-139 286 288 299 300
-140 299 300 283 285
-141 283 305 306 285
-142 280 282 305 306
-143 280 302 303 282
-144 286 288 302 303
-145 297 308 309 295
-146 308 309 292 294
-147 292 314 315 294
-148 289 291 314 315
-149 289 311 312 291
-150 297 311 312 295
-151 304 306 317 318
-152 301 303 317 318
-153 301 323 324 303
-154 298 300 323 324
-155 298 320 321 300
-156 320 321 304 306
-157 313 315 326 327
-158 310 312 326 327
-159 310 332 333 312
-160 309 332 333 307
-161 330 309 307 329
-162 330 313 315 329
-163 322 324 335 336
-164 319 321 335 336
-165 319 341 342 321
-166 341 342 316 318
-167 316 338 339 318
-168 322 324 338 339
-169 331 343 333 345
-170 330 343 345 328
-171 330 349 328 351
-172 325 327 349 351
-173 346 325 348 327
-174 331 333 346 348
-175 352 342 354 340
-176 352 354 337 339
-177 358 337 360 339
-178 334 336 358 360
-179 355 334 357 336
-180 342 355 357 340
-181 4 5 64 65
-182 11 4 5 10
-183 11 64 10 65
-184 2 3 62 63
-185 2 3 8 9
-186 62 8 63 9
-187 66 1 6 61
-188 1 12 6 7
-189 66 12 61 7
-190 1 2 118 119
-191 1 2 58 59
-192 58 59 118 119
-193 5 6 116 117
-194 56 57 5 6
-195 56 57 116 117
-196 3 4 115 120
-197 55 3 4 60
-198 55 60 115 120
-199 70 71 7 8
-200 16 17 7 8
-201 70 16 71 17
-202 11 12 68 69
-203 11 12 14 15
-204 68 14 69 15
-205 67 72 9 10
-206 13 18 9 10
-207 67 13 72 18
-208 77 13 14 76
-209 22 23 13 14
-210 22 77 23 76
-211 17 18 74 75
-212 17 18 20 21
-213 74 20 75 21
-214 78 15 16 73
-215 24 15 16 19
-216 78 24 73 19
-217 82 83 19 20
-218 28 29 19 20
-219 82 28 83 29
-220 23 24 80 81
-221 23 24 26 27
-222 80 26 81 27
-223 22 79 84 21
-224 22 25 30 21
-225 79 25 84 30
-226 88 89 25 26
-227 34 35 25 26
-228 88 34 89 35
-229 29 30 86 87
-230 33 29 30 32
-231 33 86 32 87
-232 90 27 28 85
-233 36 27 28 31
-234 90 36 85 31
-235 94 95 31 32
-236 40 41 31 32
-237 94 40 95 41
-238 35 36 92 93
-239 35 36 38 39
-240 92 38 93 39
-241 33 34 91 96
-242 33 34 37 42
-243 91 37 96 42
-244 100 101 37 38
-245 46 47 37 38
-246 100 46 101 47
-247 99 41 42 98
-248 44 45 41 42
-249 44 99 45 98
-250 102 39 40 97
-251 48 39 40 43
-252 102 48 97 43
-253 44 106 107 43
-254 44 52 53 43
-255 106 52 107 53
-256 47 48 104 105
-257 47 48 50 51
-258 104 50 105 51
-259 45 46 103 108
-260 45 46 49 54
-261 103 49 108 54
-262 112 113 49 50
-263 55 56 49 50
-264 55 56 112 113
-265 110 111 53 54
-266 59 60 53 54
-267 110 111 59 60
-268 114 51 52 109
-269 57 58 51 52
-270 57 58 114 109
-271 136 137 61 62
-272 124 125 61 62
-273 124 125 136 137
-274 66 134 135 65
-275 66 122 123 65
-276 122 123 134 135
-277 133 138 63 64
-278 121 126 63 64
-279 121 133 126 138
-280 143 67 68 142
-281 67 68 130 131
-282 143 130 131 142
-283 71 72 140 141
-284 71 72 128 129
-285 128 129 140 141
-286 144 69 70 139
-287 132 69 70 127
-288 132 144 127 139
-289 148 149 73 74
-290 133 134 73 74
-291 133 134 148 149
-292 77 78 146 147
-293 77 78 137 138
-294 146 147 137 138
-295 145 150 75 76
-296 135 136 75 76
-297 145 135 136 150
-298 154 155 79 80
-299 79 80 139 140
-300 154 155 139 140
-301 83 84 152 153
-302 143 144 83 84
-303 143 144 152 153
-304 156 81 82 151
-305 81 82 141 142
-306 156 151 141 142
-307 160 161 85 86
-308 145 146 85 86
-309 145 146 160 161
-310 89 90 158 159
-311 89 90 149 150
-312 158 159 149 150
-313 88 157 162 87
-314 88 147 148 87
-315 157 147 148 162
-316 166 167 91 92
-317 91 92 151 152
-318 166 167 151 152
-319 165 95 96 164
-320 155 156 95 96
-321 165 155 156 164
-322 168 93 94 163
-323 154 93 94 153
-324 154 168 163 153
-325 172 173 97 98
-326 157 158 97 98
-327 157 158 172 173
-328 101 102 170 171
-329 101 102 161 162
-330 170 171 161 162
-331 99 100 169 174
-332 99 100 159 160
-333 169 159 160 174
-334 178 179 103 104
-335 103 104 163 164
-336 178 179 163 164
-337 176 177 107 108
-338 167 168 107 108
-339 176 177 167 168
-340 180 105 106 175
-341 165 166 105 106
-342 165 166 180 175
-343 110 169 170 109
-344 110 121 122 109
-345 121 122 169 170
-346 113 114 173 174
-347 113 114 125 126
-348 125 126 173 174
-349 111 112 171 172
-350 111 112 123 124
-351 123 124 171 172
-352 176 115 116 175
-353 115 116 127 128
-354 176 127 128 175
-355 179 180 119 120
-356 132 119 120 131
-357 132 179 180 131
-358 177 178 117 118
-359 117 118 129 130
-360 177 178 129 130
0

**************