C4graphGraph forms for C4 [ 360, 160 ] = PL(CSI(Pr_10(1,4,3,2)[10^6],3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 160 ] = PL(CSI(Pr_10(1,4,3,2)[10^6],3)).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {174, 238}, {174, 239}, {169, 239}, {169, 238}, {178, 248}, {179, 249}, {178, 249}, {179, 248}, {162, 239}, {170, 228}, {171, 229}, {170, 229}, {171, 228}, {141, 223}, {162, 240}, {140, 223}, {130, 214}, {131, 215}, {130, 215}, {131, 214}, {142, 214}, {143, 214}, {143, 213}, {142, 213}, {166, 250}, {167, 250}, {167, 249}, {166, 249}, {128, 224}, {148, 244}, {129, 225}, {128, 225}, {149, 244}, {129, 224}, {139, 234}, {139, 233}, {149, 243}, {148, 243}, {140, 224}, {146, 254}, {141, 224}, {157, 240}, {147, 254}, {132, 234}, {147, 253}, {132, 235}, {146, 253}, {157, 239}, {172, 218}, {173, 219}, {172, 219}, {173, 218}, {134, 254}, {158, 230}, {135, 255}, {134, 255}, {159, 230}, {135, 254}, {144, 233}, {144, 234}, {161, 219}, {159, 229}, {158, 229}, {160, 219}, {136, 244}, {160, 220}, {137, 245}, {136, 245}, {161, 220}, {137, 244}, {102, 231}, {58, 190}, {94, 218}, {98, 230}, {59, 190}, {95, 218}, {99, 230}, {57, 191}, {95, 217}, {97, 231}, {56, 191}, {94, 217}, {53, 189}, {52, 189}, {52, 190}, {53, 190}, {96, 237}, {59, 181}, {96, 238}, {58, 181}, {71, 215}, {106, 250}, {70, 215}, {97, 240}, {107, 250}, {41, 187}, {47, 189}, {46, 188}, {105, 251}, {40, 187}, {47, 188}, {46, 189}, {104, 251}, {40, 188}, {65, 213}, {64, 212}, {127, 235}, {41, 188}, {65, 212}, {64, 213}, {98, 247}, {127, 234}, {97, 247}, {102, 240}, {34, 186}, {35, 187}, {34, 187}, {35, 186}, {97, 248}, {98, 248}, {107, 241}, {106, 241}, {70, 216}, {71, 216}, {72, 235}, {29, 185}, {72, 236}, {69, 225}, {28, 185}, {68, 225}, {17, 183}, {68, 226}, {28, 186}, {16, 183}, {69, 226}, {29, 186}, {16, 184}, {67, 235}, {17, 184}, {66, 232}, {66, 233}, {22, 184}, {23, 185}, {22, 185}, {67, 236}, {23, 184}, {5, 181}, {67, 243}, {4, 181}, {67, 242}, {4, 182}, {5, 182}, {72, 252}, {75, 255}, {72, 253}, {91, 238}, {74, 255}, {68, 242}, {91, 237}, {101, 211}, {68, 243}, {100, 211}, {77, 245}, {92, 228}, {100, 220}, {76, 245}, {93, 228}, {101, 220}, {71, 253}, {76, 246}, {71, 252}, {77, 246}, {3, 191}, {11, 183}, {10, 182}, {2, 191}, {11, 182}, {10, 183}, {93, 227}, {99, 221}, {92, 227}, {98, 221}, {35, 227}, {13, 204}, {35, 226}, {2, 192}, {3, 192}, {12, 202}, {36, 226}, {31, 217}, {13, 203}, {12, 203}, {36, 227}, {31, 216}, {1, 201}, {9, 193}, {8, 192}, {8, 193}, {9, 192}, {1, 202}, {6, 202}, {33, 237}, {14, 194}, {7, 203}, {7, 202}, {33, 236}, {15, 194}, {15, 193}, {34, 236}, {6, 201}, {34, 237}, {14, 193}, {30, 206}, {38, 246}, {31, 207}, {2, 211}, {38, 247}, {31, 206}, {1, 211}, {37, 247}, {30, 205}, {37, 246}, {24, 204}, {61, 233}, {25, 205}, {1, 212}, {61, 232}, {24, 205}, {2, 212}, {21, 195}, {20, 194}, {20, 195}, {25, 206}, {21, 194}, {5, 221}, {27, 195}, {6, 222}, {18, 203}, {26, 195}, {5, 222}, {6, 221}, {18, 204}, {26, 196}, {19, 205}, {19, 204}, {27, 196}, {38, 198}, {63, 223}, {62, 222}, {49, 209}, {48, 208}, {39, 198}, {63, 222}, {62, 223}, {48, 209}, {39, 197}, {4, 231}, {49, 210}, {38, 197}, {3, 231}, {54, 210}, {33, 197}, {32, 196}, {32, 197}, {55, 210}, {42, 207}, {33, 196}, {54, 209}, {36, 206}, {45, 199}, {44, 198}, {37, 207}, {3, 232}, {45, 198}, {44, 199}, {36, 207}, {4, 232}, {60, 210}, {11, 251}, {56, 200}, {12, 252}, {57, 200}, {51, 199}, {7, 242}, {60, 201}, {50, 199}, {37, 208}, {7, 241}, {11, 252}, {12, 251}, {32, 216}, {8, 241}, {32, 217}, {8, 242}, {50, 200}, {43, 209}, {42, 208}, {43, 208}, {51, 200}, {55, 201}, {50, 306}, {14, 271}, {85, 340}, {50, 307}, {13, 271}, {86, 340}, {49, 307}, {49, 306}, {95, 348}, {45, 297}, {90, 350}, {95, 347}, {45, 296}, {46, 296}, {46, 297}, {89, 350}, {88, 351}, {17, 281}, {87, 351}, {53, 317}, {18, 282}, {53, 316}, {91, 338}, {54, 316}, {91, 337}, {17, 282}, {54, 317}, {18, 281}, {9, 261}, {89, 341}, {10, 262}, {92, 337}, {92, 338}, {9, 262}, {90, 341}, {10, 261}, {82, 322}, {85, 325}, {82, 323}, {117, 356}, {81, 323}, {118, 356}, {81, 322}, {85, 326}, {66, 342}, {66, 343}, {118, 355}, {65, 343}, {117, 355}, {65, 342}, {123, 354}, {123, 353}, {90, 326}, {13, 272}, {86, 331}, {124, 353}, {14, 272}, {85, 331}, {124, 354}, {90, 325}, {23, 311}, {64, 352}, {24, 312}, {64, 353}, {120, 345}, {40, 266}, {120, 346}, {40, 267}, {115, 336}, {116, 336}, {125, 344}, {126, 344}, {111, 328}, {41, 257}, {111, 327}, {41, 256}, {126, 343}, {42, 256}, {125, 343}, {15, 292}, {42, 257}, {15, 291}, {39, 267}, {39, 266}, {119, 346}, {48, 286}, {119, 345}, {23, 312}, {48, 287}, {24, 311}, {47, 287}, {88, 360}, {47, 286}, {115, 321}, {120, 330}, {16, 291}, {16, 292}, {116, 320}, {121, 333}, {122, 334}, {117, 320}, {112, 327}, {121, 334}, {122, 333}, {44, 276}, {93, 357}, {94, 358}, {112, 328}, {20, 301}, {44, 277}, {115, 330}, {120, 321}, {20, 302}, {93, 358}, {94, 357}, {96, 347}, {116, 335}, {96, 348}, {115, 335}, {19, 302}, {19, 301}, {43, 277}, {43, 276}, {87, 360}, {70, 262}, {83, 275}, {73, 265}, {105, 297}, {106, 298}, {118, 310}, {70, 263}, {82, 275}, {109, 300}, {119, 310}, {69, 263}, {117, 311}, {28, 351}, {73, 266}, {69, 262}, {105, 298}, {106, 297}, {116, 311}, {27, 351}, {78, 266}, {82, 276}, {78, 265}, {83, 276}, {29, 341}, {30, 342}, {74, 256}, {127, 309}, {29, 342}, {75, 256}, {30, 341}, {107, 288}, {127, 308}, {81, 285}, {108, 288}, {110, 290}, {113, 317}, {114, 318}, {80, 285}, {111, 290}, {80, 286}, {109, 291}, {81, 286}, {113, 318}, {114, 317}, {26, 331}, {114, 291}, {25, 331}, {121, 299}, {121, 298}, {21, 321}, {78, 282}, {22, 322}, {126, 298}, {25, 332}, {78, 283}, {126, 299}, {26, 332}, {77, 283}, {21, 322}, {77, 282}, {22, 321}, {73, 273}, {73, 272}, {109, 308}, {74, 272}, {110, 308}, {119, 301}, {122, 288}, {123, 289}, {74, 273}, {118, 301}, {122, 289}, {123, 288}, {57, 357}, {57, 356}, {110, 307}, {58, 356}, {63, 353}, {109, 307}, {114, 300}, {58, 357}, {63, 352}, {59, 347}, {79, 303}, {59, 346}, {79, 302}, {103, 261}, {108, 270}, {101, 257}, {102, 258}, {55, 337}, {60, 346}, {55, 336}, {79, 296}, {60, 347}, {101, 258}, {102, 257}, {56, 336}, {89, 305}, {79, 295}, {76, 292}, {99, 267}, {100, 268}, {112, 280}, {56, 337}, {88, 305}, {76, 293}, {103, 270}, {108, 261}, {113, 280}, {83, 313}, {88, 306}, {86, 316}, {124, 278}, {125, 279}, {83, 312}, {89, 306}, {87, 316}, {124, 279}, {125, 278}, {84, 312}, {87, 315}, {104, 260}, {84, 313}, {86, 315}, {105, 260}, {75, 293}, {75, 292}, {99, 268}, {100, 267}, {61, 333}, {61, 332}, {103, 278}, {52, 326}, {62, 332}, {103, 277}, {52, 327}, {84, 295}, {62, 333}, {108, 287}, {51, 327}, {107, 287}, {51, 326}, {111, 281}, {110, 281}, {27, 352}, {28, 352}, {84, 296}, {104, 277}, {80, 302}, {104, 278}, {113, 271}, {80, 303}, {112, 271}, {171, 299}, {172, 300}, {138, 264}, {153, 283}, {138, 265}, {152, 283}, {152, 284}, {153, 284}, {176, 309}, {176, 310}, {171, 300}, {172, 299}, {154, 274}, {155, 274}, {155, 273}, {154, 273}, {180, 319}, {133, 265}, {179, 319}, {174, 290}, {173, 289}, {144, 284}, {133, 264}, {144, 285}, {173, 290}, {174, 289}, {150, 263}, {143, 285}, {143, 284}, {145, 263}, {139, 275}, {162, 314}, {161, 313}, {139, 274}, {175, 310}, {145, 264}, {175, 309}, {161, 314}, {162, 313}, {140, 274}, {150, 264}, {140, 275}, {145, 305}, {164, 260}, {145, 304}, {165, 260}, {146, 304}, {175, 269}, {146, 305}, {175, 268}, {168, 269}, {165, 259}, {168, 270}, {164, 259}, {142, 294}, {142, 295}, {141, 295}, {141, 294}, {150, 314}, {150, 315}, {163, 270}, {157, 304}, {149, 315}, {163, 269}, {158, 304}, {149, 314}, {151, 294}, {169, 280}, {158, 303}, {151, 293}, {177, 259}, {176, 258}, {170, 280}, {157, 303}, {176, 259}, {177, 258}, {128, 308}, {128, 309}, {180, 268}, {156, 293}, {180, 269}, {132, 318}, {156, 294}, {132, 319}, {131, 319}, {131, 318}, {170, 279}, {169, 279}, {156, 348}, {156, 349}, {166, 359}, {165, 359}, {151, 339}, {151, 338}, {155, 349}, {155, 348}, {129, 329}, {134, 334}, {129, 328}, {134, 335}, {130, 328}, {152, 338}, {133, 335}, {130, 329}, {152, 339}, {133, 334}, {165, 360}, {166, 360}, {137, 345}, {148, 324}, {137, 344}, {148, 325}, {138, 344}, {138, 345}, {147, 325}, {147, 324}, {159, 324}, {159, 323}, {160, 323}, {135, 355}, {160, 324}, {135, 354}, {136, 354}, {136, 355}, {163, 339}, {164, 340}, {179, 320}, {180, 320}, {168, 349}, {168, 350}, {163, 340}, {164, 339}, {177, 329}, {178, 330}, {167, 350}, {167, 349}, {177, 330}, {178, 329}, {154, 358}, {154, 359}, {153, 359}, {153, 358} }>;

(II) A more general form is to represent the graph as the orbit of {174, 238} under the group generated by the following permutations:

a: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21, 24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40, 41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99, 102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115, 116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130, 131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(145, 146)(147, 150)(148, 149)(151, 152)(153, 156)(154, 155)(157, 158)(159, 162)(160, 161)(163, 164)(165, 168)(166, 167)(169, 170)(171, 174)(172, 173)(175, 176)(177, 180)(178, 179)(191, 201)(192, 202)(193, 203)(194, 204)(195, 205)(196, 206)(197, 207)(198, 208)(199, 209)(200, 210)(221, 231)(222, 232)(223, 233)(224, 234)(225, 235)(226, 236)(227, 237)(228, 238)(229, 239)(230, 240)(251, 261)(252, 262)(253, 263)(254, 264)(255, 265)(256, 266)(257, 267)(258, 268)(259, 269)(260, 270)(281, 291)(282, 292)(283, 293)(284, 294)(285, 295)(286, 296)(287, 297)(288, 298)(289, 299)(290, 300)(311, 321)(312, 322)(313, 323)(314, 324)(315, 325)(316, 326)(317, 327)(318, 328)(319, 329)(320, 330)(341, 351)(342, 352)(343, 353)(344, 354)(345, 355)(346, 356)(347, 357)(348, 358)(349, 359)(350, 360)
b: (7, 55)(8, 56)(9, 57)(10, 58)(11, 59)(12, 60)(13, 49)(14, 50)(15, 51)(16, 52)(17, 53)(18, 54)(19, 43)(20, 44)(21, 45)(22, 46)(23, 47)(24, 48)(25, 37)(26, 38)(27, 39)(28, 40)(29, 41)(30, 42)(61, 97)(62, 98)(63, 99)(64, 100)(65, 101)(66, 102)(67, 91)(68, 92)(69, 93)(70, 94)(71, 95)(72, 96)(73, 88)(74, 89)(75, 90)(76, 85)(77, 86)(78, 87)(79, 82)(80, 83)(81, 84)(103, 118)(104, 119)(105, 120)(106, 115)(107, 116)(108, 117)(109, 112)(110, 113)(111, 114)(121, 178)(122, 179)(123, 180)(124, 175)(125, 176)(126, 177)(127, 169)(128, 170)(129, 171)(130, 172)(131, 173)(132, 174)(133, 166)(134, 167)(135, 168)(136, 163)(137, 164)(138, 165)(139, 157)(140, 158)(141, 159)(142, 160)(143, 161)(144, 162)(145, 154)(146, 155)(147, 156)(148, 151)(149, 152)(150, 153)(181, 182)(183, 190)(184, 189)(185, 188)(186, 187)(191, 192)(193, 200)(194, 199)(195, 198)(196, 197)(201, 202)(203, 210)(204, 209)(205, 208)(206, 207)(211, 212)(213, 220)(214, 219)(215, 218)(216, 217)(221, 222)(223, 230)(224, 229)(225, 228)(226, 227)(231, 232)(233, 240)(234, 239)(235, 238)(236, 237)(241, 336)(242, 337)(243, 338)(244, 339)(245, 340)(246, 331)(247, 332)(248, 333)(249, 334)(250, 335)(251, 346)(252, 347)(253, 348)(254, 349)(255, 350)(256, 341)(257, 342)(258, 343)(259, 344)(260, 345)(261, 356)(262, 357)(263, 358)(264, 359)(265, 360)(266, 351)(267, 352)(268, 353)(269, 354)(270, 355)(271, 307)(272, 306)(273, 305)(274, 304)(275, 303)(276, 302)(277, 301)(278, 310)(279, 309)(280, 308)(281, 317)(282, 316)(283, 315)(284, 314)(285, 313)(286, 312)(287, 311)(288, 320)(289, 319)(290, 318)(291, 327)(292, 326)(293, 325)(294, 324)(295, 323)(296, 322)(297, 321)(298, 330)(299, 329)(300, 328)
c: (1, 7, 13, 19, 25, 31, 37, 43, 49, 55)(2, 8, 14, 20, 26, 32, 38, 44, 50, 56)(3, 9, 15, 21, 27, 33, 39, 45, 51, 57)(4, 10, 16, 22, 28, 34, 40, 46, 52, 58)(5, 11, 17, 23, 29, 35, 41, 47, 53, 59)(6, 12, 18, 24, 30, 36, 42, 48, 54, 60)(61, 70, 76, 82, 88, 91, 100, 106, 112, 118)(62, 71, 77, 83, 89, 92, 101, 107, 113, 119)(63, 72, 78, 84, 90, 93, 102, 108, 114, 120)(64, 67, 73, 79, 85, 94, 97, 103, 109, 115)(65, 68, 74, 80, 86, 95, 98, 104, 110, 116)(66, 69, 75, 81, 87, 96, 99, 105, 111, 117)(121, 130, 136, 139, 145, 151, 160, 166, 169, 175)(122, 131, 137, 140, 146, 152, 161, 167, 170, 176)(123, 132, 138, 141, 147, 153, 162, 168, 171, 177)(124, 127, 133, 142, 148, 154, 157, 163, 172, 178)(125, 128, 134, 143, 149, 155, 158, 164, 173, 179)(126, 129, 135, 144, 150, 156, 159, 165, 174, 180)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190)(191, 192, 193, 194, 195, 196, 197, 198, 199, 200)(201, 202, 203, 204, 205, 206, 207, 208, 209, 210)(211, 241, 271, 301, 332, 216, 246, 276, 306, 337)(212, 242, 272, 302, 331, 217, 247, 277, 307, 336)(213, 243, 273, 303, 340, 218, 248, 278, 308, 335)(214, 244, 274, 304, 339, 219, 249, 279, 309, 334)(215, 245, 275, 305, 338, 220, 250, 280, 310, 333)(221, 251, 281, 311, 342, 226, 256, 286, 316, 347)(222, 252, 282, 312, 341, 227, 257, 287, 317, 346)(223, 253, 283, 313, 350, 228, 258, 288, 318, 345)(224, 254, 284, 314, 349, 229, 259, 289, 319, 344)(225, 255, 285, 315, 348, 230, 260, 290, 320, 343)(231, 261, 291, 321, 352, 236, 266, 296, 326, 357)(232, 262, 292, 322, 351, 237, 267, 297, 327, 356)(233, 263, 293, 323, 360, 238, 268, 298, 328, 355)(234, 264, 294, 324, 359, 239, 269, 299, 329, 354)(235, 265, 295, 325, 358, 240, 270, 300, 330, 353)
d: (2, 6)(3, 5)(7, 64)(8, 63)(9, 62)(10, 61)(11, 66)(12, 65)(13, 142)(14, 141)(15, 140)(16, 139)(17, 144)(18, 143)(19, 130)(20, 129)(21, 128)(22, 127)(23, 132)(24, 131)(25, 70)(26, 69)(27, 68)(28, 67)(29, 72)(30, 71)(32, 36)(33, 35)(37, 94)(38, 93)(39, 92)(40, 91)(41, 96)(42, 95)(43, 172)(44, 171)(45, 170)(46, 169)(47, 174)(48, 173)(49, 160)(50, 159)(51, 158)(52, 157)(53, 162)(54, 161)(55, 100)(56, 99)(57, 98)(58, 97)(59, 102)(60, 101)(73, 151)(74, 156)(75, 155)(76, 154)(77, 153)(78, 152)(79, 112)(80, 111)(81, 110)(82, 109)(83, 114)(84, 113)(85, 145)(86, 150)(87, 149)(88, 148)(89, 147)(90, 146)(103, 121)(104, 126)(105, 125)(106, 124)(107, 123)(108, 122)(115, 175)(116, 180)(117, 179)(118, 178)(119, 177)(120, 176)(133, 163)(134, 168)(135, 167)(136, 166)(137, 165)(138, 164)(181, 231)(182, 232)(183, 233)(184, 234)(185, 235)(186, 236)(187, 237)(188, 238)(189, 239)(190, 240)(191, 221)(192, 222)(193, 223)(194, 224)(195, 225)(196, 226)(197, 227)(198, 228)(199, 229)(200, 230)(201, 211)(202, 212)(203, 213)(204, 214)(205, 215)(206, 216)(207, 217)(208, 218)(209, 219)(210, 220)(241, 353)(242, 352)(243, 351)(244, 360)(245, 359)(246, 358)(247, 357)(248, 356)(249, 355)(250, 354)(251, 343)(252, 342)(253, 341)(254, 350)(255, 349)(256, 348)(257, 347)(258, 346)(259, 345)(260, 344)(261, 333)(262, 332)(263, 331)(264, 340)(265, 339)(266, 338)(267, 337)(268, 336)(269, 335)(270, 334)(271, 295)(272, 294)(273, 293)(274, 292)(275, 291)(276, 300)(277, 299)(278, 298)(279, 297)(280, 296)(281, 285)(282, 284)(286, 290)(287, 289)(301, 329)(302, 328)(303, 327)(304, 326)(305, 325)(306, 324)(307, 323)(308, 322)(309, 321)(310, 330)(311, 319)(312, 318)(313, 317)(314, 316)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 160 ]
360
-1 211 201 212 202
-2 211 212 191 192
-3 231 232 191 192
-4 231 232 181 182
-5 221 222 181 182
-6 221 222 201 202
-7 242 202 203 241
-8 242 192 193 241
-9 192 193 261 262
-10 182 183 261 262
-11 182 183 251 252
-12 202 203 251 252
-13 203 204 271 272
-14 193 194 271 272
-15 291 193 292 194
-16 291 292 183 184
-17 281 183 282 184
-18 203 204 281 282
-19 301 302 204 205
-20 301 302 194 195
-21 321 322 194 195
-22 321 322 184 185
-23 311 312 184 185
-24 311 312 204 205
-25 331 332 205 206
-26 331 332 195 196
-27 352 195 196 351
-28 352 185 186 351
-29 341 342 185 186
-30 341 342 205 206
-31 216 206 217 207
-32 216 217 196 197
-33 236 237 196 197
-34 187 236 237 186
-35 187 226 227 186
-36 226 227 206 207
-37 246 247 207 208
-38 198 246 247 197
-39 198 266 267 197
-40 187 188 266 267
-41 187 188 256 257
-42 256 257 207 208
-43 209 276 277 208
-44 198 199 276 277
-45 198 297 199 296
-46 297 188 189 296
-47 286 188 287 189
-48 209 286 287 208
-49 209 210 306 307
-50 199 200 306 307
-51 199 200 326 327
-52 189 190 326 327
-53 189 190 316 317
-54 209 210 316 317
-55 210 201 336 337
-56 200 191 336 337
-57 200 191 356 357
-58 190 356 181 357
-59 190 181 346 347
-60 210 201 346 347
-61 232 233 332 333
-62 222 332 223 333
-63 352 353 222 223
-64 352 353 212 213
-65 342 343 212 213
-66 232 342 233 343
-67 242 243 235 236
-68 242 243 225 226
-69 225 226 262 263
-70 215 216 262 263
-71 253 215 216 252
-72 253 235 236 252
-73 265 266 272 273
-74 255 256 272 273
-75 255 256 292 293
-76 245 246 292 293
-77 245 246 282 283
-78 265 266 282 283
-79 302 303 295 296
-80 286 302 303 285
-81 286 322 323 285
-82 275 276 322 323
-83 275 276 312 313
-84 312 313 295 296
-85 331 325 326 340
-86 331 315 316 340
-87 315 316 360 351
-88 305 360 306 351
-89 341 305 306 350
-90 341 325 326 350
-91 237 238 337 338
-92 227 337 228 338
-93 357 358 227 228
-94 357 358 217 218
-95 347 348 217 218
-96 237 347 238 348
-97 231 247 248 240
-98 221 247 248 230
-99 221 267 268 230
-100 220 211 267 268
-101 220 211 257 258
-102 231 257 258 240
-103 277 278 270 261
-104 277 278 260 251
-105 297 298 260 251
-106 297 298 250 241
-107 287 288 250 241
-108 287 288 270 261
-109 308 300 291 307
-110 308 290 281 307
-111 290 281 327 328
-112 280 271 327 328
-113 280 271 317 318
-114 300 291 317 318
-115 330 321 335 336
-116 320 311 335 336
-117 320 311 355 356
-118 310 355 301 356
-119 310 301 345 346
-120 330 321 345 346
-121 298 299 333 334
-122 288 289 333 334
-123 353 288 354 289
-124 353 354 278 279
-125 343 278 344 279
-126 298 299 343 344
-127 308 309 234 235
-128 308 309 224 225
-129 224 225 328 329
-130 214 215 328 329
-131 319 214 215 318
-132 319 234 235 318
-133 264 265 334 335
-134 254 255 334 335
-135 254 255 354 355
-136 244 354 245 355
-137 244 245 344 345
-138 264 265 344 345
-139 275 233 234 274
-140 275 223 224 274
-141 223 224 294 295
-142 213 214 294 295
-143 213 214 284 285
-144 233 234 284 285
-145 264 304 305 263
-146 253 254 304 305
-147 253 254 324 325
-148 243 244 324 325
-149 243 244 314 315
-150 264 314 315 263
-151 293 294 338 339
-152 283 338 284 339
-153 358 359 283 284
-154 358 359 273 274
-155 348 349 273 274
-156 293 348 294 349
-157 303 304 239 240
-158 303 304 229 230
-159 323 324 229 230
-160 220 323 324 219
-161 220 313 314 219
-162 313 314 239 240
-163 269 270 339 340
-164 259 260 339 340
-165 259 260 359 360
-166 249 359 250 360
-167 249 250 349 350
-168 269 270 349 350
-169 279 280 238 239
-170 279 280 228 229
-171 299 300 228 229
-172 299 300 218 219
-173 289 290 218 219
-174 289 290 238 239
-175 309 310 268 269
-176 309 310 258 259
-177 330 258 259 329
-178 330 248 249 329
-179 319 320 248 249
-180 319 320 268 269
-181 58 4 59 5
-182 11 4 5 10
-183 11 16 17 10
-184 22 23 16 17
-185 22 23 28 29
-186 34 35 28 29
-187 34 35 40 41
-188 46 47 40 41
-189 46 47 52 53
-190 58 59 52 53
-191 56 2 57 3
-192 2 3 8 9
-193 14 15 8 9
-194 14 15 20 21
-195 26 27 20 21
-196 33 26 27 32
-197 33 38 39 32
-198 44 45 38 39
-199 44 45 50 51
-200 56 57 50 51
-201 55 1 60 6
-202 1 12 6 7
-203 12 13 7 18
-204 13 24 18 19
-205 24 25 19 30
-206 25 36 30 31
-207 36 37 31 42
-208 37 48 42 43
-209 48 49 43 54
-210 55 49 60 54
-211 1 100 2 101
-212 1 2 64 65
-213 143 64 65 142
-214 143 130 131 142
-215 70 71 130 131
-216 70 71 31 32
-217 94 95 31 32
-218 94 95 172 173
-219 160 161 172 173
-220 100 101 160 161
-221 99 5 6 98
-222 5 6 62 63
-223 62 63 140 141
-224 128 129 140 141
-225 68 69 128 129
-226 35 68 36 69
-227 35 36 92 93
-228 92 93 170 171
-229 158 159 170 171
-230 99 158 159 98
-231 3 102 4 97
-232 66 3 4 61
-233 66 144 61 139
-234 132 144 127 139
-235 132 67 72 127
-236 33 34 67 72
-237 33 34 91 96
-238 91 169 96 174
-239 157 169 162 174
-240 102 157 162 97
-241 7 106 8 107
-242 67 68 7 8
-243 67 68 148 149
-244 136 137 148 149
-245 77 136 137 76
-246 77 37 38 76
-247 37 38 97 98
-248 178 179 97 98
-249 166 167 178 179
-250 166 167 106 107
-251 11 12 104 105
-252 11 12 71 72
-253 146 147 71 72
-254 134 135 146 147
-255 134 135 74 75
-256 41 74 42 75
-257 101 102 41 42
-258 176 177 101 102
-259 165 176 177 164
-260 165 104 105 164
-261 103 9 108 10
-262 69 70 9 10
-263 145 69 70 150
-264 133 145 138 150
-265 78 133 138 73
-266 78 39 40 73
-267 99 100 39 40
-268 99 100 180 175
-269 168 180 163 175
-270 168 103 108 163
-271 13 112 14 113
-272 13 14 73 74
-273 154 155 73 74
-274 154 155 139 140
-275 82 83 139 140
-276 44 82 83 43
-277 44 103 104 43
-278 124 103 125 104
-279 124 125 169 170
-280 112 113 169 170
-281 110 111 17 18
-282 77 78 17 18
-283 77 78 152 153
-284 143 144 152 153
-285 143 144 80 81
-286 47 80 48 81
-287 47 48 107 108
-288 122 123 107 108
-289 122 123 173 174
-290 110 111 173 174
-291 15 114 16 109
-292 15 16 75 76
-293 156 151 75 76
-294 156 151 141 142
-295 79 84 141 142
-296 45 46 79 84
-297 45 46 105 106
-298 121 126 105 106
-299 121 126 171 172
-300 114 171 172 109
-301 19 118 20 119
-302 79 80 19 20
-303 79 80 157 158
-304 145 146 157 158
-305 88 89 145 146
-306 88 89 49 50
-307 110 49 50 109
-308 110 127 128 109
-309 176 127 128 175
-310 176 118 119 175
-311 23 24 116 117
-312 23 24 83 84
-313 83 84 161 162
-314 149 150 161 162
-315 149 150 86 87
-316 53 86 54 87
-317 113 114 53 54
-318 132 113 114 131
-319 132 179 180 131
-320 179 180 116 117
-321 22 115 21 120
-322 22 81 82 21
-323 81 82 159 160
-324 147 148 159 160
-325 90 147 148 85
-326 90 51 52 85
-327 111 112 51 52
-328 111 112 129 130
-329 177 178 129 130
-330 177 178 115 120
-331 25 26 85 86
-332 25 26 61 62
-333 121 122 61 62
-334 121 122 133 134
-335 133 134 115 116
-336 55 56 115 116
-337 55 56 91 92
-338 91 92 151 152
-339 151 152 163 164
-340 85 86 163 164
-341 89 90 29 30
-342 66 29 30 65
-343 66 125 126 65
-344 125 126 137 138
-345 137 138 119 120
-346 59 60 119 120
-347 59 60 95 96
-348 155 156 95 96
-349 155 156 167 168
-350 89 90 167 168
-351 88 27 28 87
-352 27 28 63 64
-353 123 124 63 64
-354 123 124 135 136
-355 135 136 117 118
-356 57 58 117 118
-357 57 58 93 94
-358 154 93 94 153
-359 154 165 166 153
-360 88 165 166 87
0

**************