[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 360, 161 ] =
PL(CSI(Pr_10(1,4,3,2)[6^10],3)).
(I) Following is a form readable by MAGMA:
g:=Graph<360|{ {67, 195}, {112, 240}, {113, 240}, {103, 229}, {114, 247}, {65,
199}, {108, 234}, {64, 199}, {67, 196}, {108, 229}, {119, 253}, {72, 195}, {118,
253}, {64, 204}, {72, 196}, {92, 208}, {104, 228}, {65, 204}, {91, 214}, {93,
208}, {103, 234}, {105, 228}, {91, 213}, {114, 252}, {41, 185}, {76, 220}, {40,
185}, {77, 220}, {66, 211}, {109, 252}, {40, 186}, {93, 207}, {41, 186}, {92,
207}, {94, 202}, {95, 202}, {77, 219}, {95, 201}, {76, 219}, {94, 201}, {39,
191}, {110, 246}, {38, 191}, {111, 246}, {34, 184}, {66, 216}, {35, 185}, {109,
247}, {113, 235}, {34, 185}, {35, 184}, {112, 235}, {32, 190}, {33, 191}, {111,
241}, {32, 191}, {33, 190}, {110, 241}, {97, 193}, {102, 198}, {73, 232}, {81,
243}, {98, 192}, {80, 243}, {99, 192}, {80, 244}, {81, 244}, {78, 232}, {89,
255}, {88, 255}, {97, 198}, {102, 193}, {74, 226}, {75, 226}, {78, 231}, {75,
225}, {74, 225}, {84, 249}, {73, 231}, {84, 250}, {5, 181}, {4, 181}, {4, 182},
{107, 217}, {5, 182}, {106, 217}, {8, 188}, {9, 189}, {106, 222}, {8, 189}, {79,
250}, {9, 188}, {96, 213}, {107, 222}, {79, 249}, {96, 214}, {105, 223}, {104,
223}, {3, 187}, {2, 187}, {10, 182}, {82, 238}, {11, 183}, {10, 183}, {83, 238},
{11, 182}, {2, 188}, {83, 237}, {3, 188}, {82, 237}, {1, 193}, {40, 232}, {25,
216}, {43, 234}, {40, 233}, {43, 233}, {44, 238}, {1, 194}, {44, 239}, {6, 194},
{52, 240}, {50, 246}, {48, 244}, {43, 239}, {7, 195}, {2, 199}, {53, 240}, {51,
246}, {48, 245}, {43, 238}, {7, 194}, {1, 199}, {51, 245}, {30, 216}, {6, 193},
{50, 245}, {5, 205}, {44, 228}, {42, 226}, {26, 210}, {6, 206}, {1, 200}, {45,
228}, {42, 227}, {30, 215}, {27, 210}, {2, 200}, {54, 252}, {49, 251}, {41,
227}, {27, 209}, {17, 219}, {16, 218}, {5, 206}, {41, 226}, {26, 209}, {17,
218}, {16, 219}, {6, 205}, {49, 252}, {54, 251}, {12, 194}, {45, 227}, {39,
233}, {25, 215}, {12, 195}, {44, 227}, {39, 232}, {3, 211}, {28, 204}, {4, 212},
{101, 181}, {8, 217}, {29, 204}, {100, 181}, {8, 218}, {12, 223}, {11, 223},
{46, 250}, {31, 203}, {31, 202}, {46, 251}, {29, 203}, {45, 251}, {3, 212}, {45,
250}, {28, 203}, {4, 211}, {99, 187}, {48, 233}, {98, 187}, {31, 197}, {53,
239}, {48, 234}, {47, 245}, {31, 196}, {52, 239}, {47, 244}, {7, 218}, {7, 217},
{100, 186}, {101, 186}, {17, 241}, {37, 197}, {36, 196}, {24, 248}, {18, 242},
{13, 236}, {36, 197}, {24, 249}, {14, 236}, {55, 213}, {17, 242}, {55, 212},
{37, 198}, {18, 241}, {26, 254}, {14, 235}, {61, 216}, {26, 255}, {13, 235},
{38, 192}, {25, 255}, {21, 243}, {20, 242}, {16, 247}, {39, 192}, {25, 254},
{21, 242}, {20, 243}, {16, 248}, {60, 212}, {20, 253}, {60, 213}, {13, 231},
{32, 202}, {20, 254}, {19, 249}, {11, 224}, {32, 203}, {19, 248}, {13, 230}, {9,
229}, {62, 210}, {42, 198}, {12, 224}, {10, 230}, {19, 254}, {63, 210}, {14,
224}, {61, 211}, {19, 253}, {15, 225}, {9, 230}, {42, 197}, {15, 224}, {14,
225}, {10, 229}, {46, 222}, {71, 183}, {47, 222}, {70, 183}, {35, 209}, {63,
205}, {59, 201}, {58, 200}, {47, 221}, {35, 208}, {62, 205}, {59, 200}, {58,
201}, {46, 221}, {18, 230}, {36, 208}, {34, 214}, {18, 231}, {36, 209}, {34,
215}, {33, 215}, {57, 207}, {56, 206}, {15, 248}, {57, 206}, {56, 207}, {33,
214}, {15, 247}, {69, 189}, {37, 221}, {37, 220}, {68, 189}, {22, 236}, {68,
190}, {38, 220}, {23, 237}, {22, 237}, {69, 190}, {38, 221}, {23, 236}, {70,
184}, {71, 184}, {81, 337}, {82, 338}, {86, 343}, {85, 343}, {81, 338}, {82,
337}, {89, 349}, {90, 350}, {89, 350}, {90, 349}, {79, 326}, {79, 325}, {75,
320}, {76, 320}, {85, 344}, {86, 344}, {27, 267}, {118, 358}, {27, 266}, {118,
359}, {117, 359}, {23, 260}, {117, 358}, {23, 259}, {80, 325}, {28, 266}, {80,
326}, {119, 353}, {28, 267}, {119, 352}, {29, 261}, {83, 331}, {84, 332}, {120,
352}, {29, 260}, {120, 353}, {30, 260}, {24, 259}, {30, 261}, {21, 265}, {24,
260}, {22, 266}, {21, 266}, {83, 332}, {22, 265}, {84, 331}, {63, 284}, {63,
283}, {109, 329}, {112, 340}, {109, 328}, {112, 341}, {110, 328}, {110, 329},
{106, 322}, {115, 347}, {106, 323}, {115, 346}, {105, 323}, {105, 322}, {61,
272}, {62, 272}, {116, 346}, {116, 347}, {49, 257}, {54, 262}, {49, 256}, {62,
271}, {54, 263}, {50, 256}, {61, 271}, {53, 263}, {50, 257}, {59, 264}, {53,
262}, {87, 356}, {57, 269}, {60, 264}, {58, 270}, {87, 355}, {55, 258}, {55,
257}, {57, 270}, {58, 269}, {127, 328}, {52, 268}, {127, 327}, {52, 269}, {56,
257}, {123, 322}, {56, 258}, {111, 341}, {123, 321}, {60, 263}, {88, 355}, {111,
340}, {59, 263}, {88, 356}, {114, 334}, {114, 335}, {124, 321}, {51, 269}, {113,
335}, {124, 322}, {51, 268}, {113, 334}, {94, 286}, {94, 287}, {125, 316}, {93,
287}, {126, 316}, {93, 286}, {97, 293}, {97, 292}, {126, 315}, {95, 281}, {98,
292}, {125, 315}, {95, 280}, {98, 293}, {91, 275}, {91, 274}, {102, 298}, {121,
309}, {122, 310}, {102, 299}, {92, 274}, {101, 299}, {92, 275}, {101, 298},
{121, 310}, {122, 309}, {86, 262}, {103, 311}, {108, 316}, {127, 303}, {87,
262}, {90, 267}, {103, 310}, {108, 317}, {127, 302}, {87, 261}, {99, 305}, {86,
261}, {99, 304}, {65, 277}, {66, 278}, {100, 304}, {100, 305}, {90, 268}, {107,
317}, {65, 278}, {66, 277}, {107, 316}, {88, 256}, {85, 268}, {89, 256}, {64,
283}, {64, 284}, {85, 267}, {104, 310}, {104, 311}, {71, 295}, {72, 296}, {67,
290}, {67, 289}, {126, 284}, {126, 285}, {121, 285}, {68, 289}, {121, 284}, {68,
290}, {69, 301}, {70, 302}, {69, 302}, {70, 301}, {122, 278}, {123, 279}, {124,
272}, {125, 273}, {122, 279}, {123, 278}, {124, 273}, {125, 272}, {71, 296},
{72, 295}, {120, 265}, {76, 319}, {75, 319}, {78, 314}, {77, 313}, {118, 258},
{119, 258}, {117, 259}, {120, 270}, {77, 314}, {78, 313}, {116, 259}, {96, 280},
{74, 307}, {96, 281}, {73, 307}, {115, 265}, {116, 264}, {73, 308}, {115, 270},
{117, 264}, {74, 308}, {143, 271}, {175, 303}, {153, 281}, {142, 271}, {152,
281}, {152, 282}, {153, 282}, {156, 287}, {161, 293}, {180, 304}, {160, 293},
{160, 294}, {161, 294}, {151, 287}, {155, 275}, {154, 275}, {144, 283}, {154,
276}, {155, 276}, {139, 283}, {179, 291}, {167, 311}, {162, 306}, {166, 311},
{178, 291}, {162, 305}, {140, 282}, {178, 292}, {141, 282}, {179, 292}, {141,
277}, {177, 297}, {165, 317}, {140, 277}, {176, 297}, {164, 317}, {142, 276},
{176, 298}, {164, 318}, {143, 276}, {180, 303}, {177, 298}, {165, 318}, {166,
312}, {167, 312}, {175, 304}, {130, 290}, {152, 312}, {131, 291}, {130, 291},
{131, 290}, {155, 313}, {156, 318}, {145, 306}, {150, 306}, {151, 307}, {154,
319}, {156, 313}, {155, 318}, {153, 319}, {128, 296}, {129, 297}, {128, 297},
{129, 296}, {132, 302}, {132, 303}, {152, 307}, {139, 288}, {157, 305}, {151,
312}, {157, 306}, {144, 288}, {174, 286}, {148, 294}, {170, 280}, {158, 300},
{149, 294}, {174, 285}, {171, 280}, {159, 300}, {147, 295}, {169, 285}, {159,
299}, {149, 289}, {146, 295}, {158, 299}, {148, 289}, {151, 288}, {169, 286},
{150, 301}, {134, 314}, {173, 273}, {171, 279}, {156, 288}, {145, 301}, {135,
315}, {136, 308}, {137, 309}, {134, 315}, {172, 273}, {170, 279}, {135, 314},
{136, 309}, {137, 308}, {146, 300}, {172, 274}, {147, 300}, {173, 274}, {143,
333}, {143, 332}, {133, 321}, {133, 320}, {167, 354}, {166, 355}, {165, 355},
{128, 327}, {128, 328}, {150, 350}, {145, 345}, {132, 333}, {159, 342}, {150,
351}, {145, 344}, {132, 334}, {168, 354}, {149, 351}, {146, 344}, {138, 320},
{140, 326}, {138, 321}, {149, 350}, {146, 345}, {140, 327}, {139, 327}, {131,
334}, {165, 360}, {139, 326}, {131, 333}, {166, 360}, {159, 337}, {130, 339},
{179, 354}, {129, 339}, {179, 353}, {158, 330}, {129, 340}, {180, 353}, {178,
359}, {138, 351}, {130, 340}, {180, 354}, {177, 359}, {137, 351}, {157, 330},
{157, 325}, {177, 360}, {178, 360}, {158, 325}, {133, 345}, {144, 332}, {142,
338}, {134, 346}, {142, 339}, {153, 324}, {144, 333}, {141, 339}, {154, 324},
{133, 346}, {134, 345}, {141, 338}, {163, 323}, {170, 330}, {169, 329}, {135,
358}, {174, 335}, {135, 357}, {173, 335}, {169, 330}, {170, 329}, {163, 324},
{137, 352}, {162, 331}, {138, 352}, {161, 331}, {168, 323}, {176, 347}, {168,
324}, {176, 348}, {136, 357}, {136, 358}, {148, 356}, {148, 357}, {161, 336},
{160, 337}, {162, 336}, {164, 343}, {175, 348}, {163, 343}, {175, 347}, {168,
349}, {147, 357}, {160, 342}, {147, 356}, {164, 348}, {172, 341}, {167, 349},
{172, 342}, {171, 342}, {173, 336}, {171, 341}, {174, 336}, {163, 348} }>;
(II) A more general form is to represent the graph as the orbit of {67, 195}
under the group generated by the following permutations:
a: (2, 6)(3, 5)(7, 58)(8, 57)(9, 56)(10, 55)(11, 60)(12, 59)(13, 49)(14, 54)(15,
53)(16, 52)(17, 51)(18, 50)(19, 43)(20, 48)(21, 47)(22, 46)(23, 45)(24, 44)(25,
40)(26, 39)(27, 38)(28, 37)(29, 42)(30, 41)(32, 36)(33, 35)(61, 100)(62, 99)(63,
98)(64, 97)(65, 102)(66, 101)(67, 94)(68, 93)(69, 92)(70, 91)(71, 96)(72,
95)(73, 88)(74, 87)(75, 86)(76, 85)(77, 90)(78, 89)(79, 82)(80, 81)(83, 84)(103,
118)(104, 117)(105, 116)(106, 115)(107, 120)(108, 119)(109, 112)(110, 111)(113,
114)(121, 178)(122, 177)(123, 176)(124, 175)(125, 180)(126, 179)(127, 172)(128,
171)(129, 170)(130, 169)(131, 174)(132, 173)(133, 163)(134, 168)(135, 167)(136,
166)(137, 165)(138, 164)(139, 160)(140, 159)(141, 158)(142, 157)(143, 162)(144,
161)(145, 154)(146, 153)(147, 152)(148, 151)(149, 156)(150, 155)(181, 211)(182,
212)(183, 213)(184, 214)(185, 215)(186, 216)(187, 205)(188, 206)(189, 207)(190,
208)(191, 209)(192, 210)(193, 199)(194, 200)(195, 201)(196, 202)(197, 203)(198,
204)(217, 270)(218, 269)(219, 268)(220, 267)(221, 266)(222, 265)(223, 264)(224,
263)(225, 262)(226, 261)(227, 260)(228, 259)(229, 258)(230, 257)(231, 256)(232,
255)(233, 254)(234, 253)(235, 252)(236, 251)(237, 250)(238, 249)(239, 248)(240,
247)(241, 246)(242, 245)(243, 244)(271, 305)(272, 304)(273, 303)(274, 302)(275,
301)(276, 306)(277, 299)(278, 298)(279, 297)(280, 296)(281, 295)(282, 300)(283,
293)(284, 292)(285, 291)(286, 290)(287, 289)(288, 294)(307, 356)(308, 355)(309,
360)(310, 359)(311, 358)(312, 357)(313, 350)(314, 349)(315, 354)(316, 353)(317,
352)(318, 351)(319, 344)(320, 343)(321, 348)(322, 347)(323, 346)(324, 345)(325,
338)(326, 337)(327, 342)(328, 341)(329, 340)(330, 339)(331, 332)(333, 336)(334,
335) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 7, 16, 19, 25, 34, 40, 43, 52, 58)(2, 12, 17, 24, 26, 33, 41, 48, 53,
57)(3, 11, 18, 23, 27, 32, 42, 47, 54, 56)(4, 10, 13, 22, 28, 31, 37, 46, 49,
55)(5, 9, 14, 21, 29, 36, 38, 45, 50, 60)(6, 8, 15, 20, 30, 35, 39, 44, 51,
59)(61, 70, 73, 82, 85, 94, 97, 106, 109, 118)(62, 69, 74, 81, 86, 93, 98, 105,
110, 117)(63, 68, 75, 80, 87, 92, 99, 104, 111, 116)(64, 67, 76, 79, 88, 91,
100, 103, 112, 115)(65, 72, 77, 84, 89, 96, 101, 108, 113, 120)(66, 71, 78, 83,
90, 95, 102, 107, 114, 119)(121, 130, 133, 139, 148, 154, 157, 166, 172,
175)(122, 129, 134, 144, 149, 153, 158, 165, 173, 180)(123, 128, 135, 143, 150,
152, 159, 164, 174, 179)(124, 127, 136, 142, 145, 151, 160, 163, 169, 178)(125,
132, 137, 141, 146, 156, 161, 168, 170, 177)(126, 131, 138, 140, 147, 155, 162,
167, 171, 176)(181, 229, 235, 265, 204, 196, 220, 250, 256, 213)(182, 230, 236,
266, 203, 197, 221, 251, 257, 212)(183, 231, 237, 267, 202, 198, 222, 252, 258,
211)(184, 232, 238, 268, 201, 193, 217, 247, 253, 216)(185, 233, 239, 269, 200,
194, 218, 248, 254, 215)(186, 234, 240, 270, 199, 195, 219, 249, 255, 214)(187,
223, 241, 259, 210, 190, 226, 244, 262, 207)(188, 224, 242, 260, 209, 191, 227,
245, 263, 206)(189, 225, 243, 261, 208, 192, 228, 246, 264, 205)(271, 301, 307,
337, 343, 286, 292, 322, 328, 358)(272, 302, 308, 338, 344, 287, 293, 323, 329,
359)(273, 303, 309, 339, 345, 288, 294, 324, 330, 360)(274, 304, 310, 340, 346,
283, 289, 319, 325, 355)(275, 305, 311, 341, 347, 284, 290, 320, 326, 356)(276,
306, 312, 342, 348, 285, 291, 321, 327, 357)(277, 295, 313, 331, 349, 280, 298,
316, 334, 352)(278, 296, 314, 332, 350, 281, 299, 317, 335, 353)(279, 297, 315,
333, 351, 282, 300, 318, 336, 354)
c: (7, 97)(8, 98)(9, 99)(10, 100)(11, 101)(12, 102)(13, 157)(14, 158)(15,
159)(16, 160)(17, 161)(18, 162)(19, 172)(20, 173)(21, 174)(22, 169)(23, 170)(24,
171)(25, 91)(26, 92)(27, 93)(28, 94)(29, 95)(30, 96)(37, 67)(38, 68)(39, 69)(40,
70)(41, 71)(42, 72)(43, 127)(44, 128)(45, 129)(46, 130)(47, 131)(48, 132)(49,
142)(50, 143)(51, 144)(52, 139)(53, 140)(54, 141)(55, 61)(56, 62)(57, 63)(58,
64)(59, 65)(60, 66)(73, 145)(74, 146)(75, 147)(76, 148)(77, 149)(78, 150)(79,
112)(80, 113)(81, 114)(82, 109)(83, 110)(84, 111)(85, 151)(86, 152)(87, 153)(88,
154)(89, 155)(90, 156)(103, 175)(104, 176)(105, 177)(106, 178)(107, 179)(108,
180)(115, 121)(116, 122)(117, 123)(118, 124)(119, 125)(120, 126)(133, 136)(134,
137)(135, 138)(163, 166)(164, 167)(165, 168)(181, 182)(183, 186)(184, 185)(187,
188)(189, 192)(190, 191)(193, 194)(195, 198)(196, 197)(199, 200)(201, 204)(202,
203)(205, 206)(207, 210)(208, 209)(211, 212)(213, 216)(214, 215)(217, 292)(218,
293)(219, 294)(220, 289)(221, 290)(222, 291)(223, 298)(224, 299)(225, 300)(226,
295)(227, 296)(228, 297)(229, 304)(230, 305)(231, 306)(232, 301)(233, 302)(234,
303)(235, 325)(236, 330)(237, 329)(238, 328)(239, 327)(240, 326)(241, 331)(242,
336)(243, 335)(244, 334)(245, 333)(246, 332)(247, 337)(248, 342)(249, 341)(250,
340)(251, 339)(252, 338)(253, 273)(254, 274)(255, 275)(256, 276)(257, 271)(258,
272)(259, 279)(260, 280)(261, 281)(262, 282)(263, 277)(264, 278)(265, 285)(266,
286)(267, 287)(268, 288)(269, 283)(270, 284)(307, 344)(308, 345)(309, 346)(310,
347)(311, 348)(312, 343)(313, 350)(314, 351)(315, 352)(316, 353)(317, 354)(318,
349)(319, 356)(320, 357)(321, 358)(322, 359)(323, 360)(324, 355)
d: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21,
24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40,
41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61,
62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81,
84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99,
102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115,
116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130,
131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(145, 146)(147,
150)(148, 149)(151, 152)(153, 156)(154, 155)(157, 158)(159, 162)(160, 161)(163,
164)(165, 168)(166, 167)(169, 170)(171, 174)(172, 173)(175, 176)(177, 180)(178,
179)(187, 193)(188, 194)(189, 195)(190, 196)(191, 197)(192, 198)(205, 211)(206,
212)(207, 213)(208, 214)(209, 215)(210, 216)(223, 229)(224, 230)(225, 231)(226,
232)(227, 233)(228, 234)(241, 247)(242, 248)(243, 249)(244, 250)(245, 251)(246,
252)(259, 265)(260, 266)(261, 267)(262, 268)(263, 269)(264, 270)(277, 283)(278,
284)(279, 285)(280, 286)(281, 287)(282, 288)(295, 301)(296, 302)(297, 303)(298,
304)(299, 305)(300, 306)(313, 319)(314, 320)(315, 321)(316, 322)(317, 323)(318,
324)(331, 337)(332, 338)(333, 339)(334, 340)(335, 341)(336, 342)(349, 355)(350,
356)(351, 357)(352, 358)(353, 359)(354, 360)
C4[ 360, 161 ]
360
-1 199 200 193 194
-2 187 188 199 200
-3 187 188 211 212
-4 211 212 181 182
-5 181 182 205 206
-6 193 194 205 206
-7 194 195 217 218
-8 188 189 217 218
-9 188 189 229 230
-10 182 183 229 230
-11 223 224 182 183
-12 223 224 194 195
-13 231 235 236 230
-14 224 235 225 236
-15 224 225 247 248
-16 247 248 218 219
-17 242 218 219 241
-18 231 242 230 241
-19 253 254 248 249
-20 242 253 243 254
-21 242 243 265 266
-22 265 266 236 237
-23 236 237 259 260
-24 248 259 249 260
-25 254 255 215 216
-26 209 210 254 255
-27 209 210 266 267
-28 266 267 203 204
-29 203 204 260 261
-30 215 216 260 261
-31 202 203 196 197
-32 190 191 202 203
-33 190 191 214 215
-34 214 215 184 185
-35 209 184 185 208
-36 209 196 197 208
-37 198 220 221 197
-38 220 221 191 192
-39 232 233 191 192
-40 232 233 185 186
-41 226 227 185 186
-42 198 226 227 197
-43 233 234 238 239
-44 227 238 228 239
-45 227 228 250 251
-46 221 222 250 251
-47 221 222 244 245
-48 233 244 234 245
-49 256 257 251 252
-50 245 256 246 257
-51 245 246 268 269
-52 268 269 239 240
-53 239 240 262 263
-54 251 262 252 263
-55 212 213 257 258
-56 257 258 206 207
-57 269 270 206 207
-58 200 201 269 270
-59 264 200 201 263
-60 264 212 213 263
-61 211 216 271 272
-62 210 205 271 272
-63 210 205 283 284
-64 199 204 283 284
-65 199 277 278 204
-66 211 277 278 216
-67 289 290 195 196
-68 189 190 289 290
-69 189 190 301 302
-70 301 302 183 184
-71 183 184 295 296
-72 195 196 295 296
-73 231 308 232 307
-74 308 225 226 307
-75 319 320 225 226
-76 220 319 320 219
-77 220 313 314 219
-78 231 232 313 314
-79 325 249 326 250
-80 243 244 325 326
-81 243 244 337 338
-82 237 238 337 338
-83 331 332 237 238
-84 331 332 249 250
-85 343 267 344 268
-86 343 344 261 262
-87 355 356 261 262
-88 255 256 355 356
-89 255 256 349 350
-90 267 268 349 350
-91 275 213 214 274
-92 275 207 208 274
-93 286 287 207 208
-94 286 287 201 202
-95 201 202 280 281
-96 213 214 280 281
-97 198 193 292 293
-98 187 192 292 293
-99 187 192 304 305
-100 181 304 305 186
-101 298 299 181 186
-102 198 298 299 193
-103 310 234 311 229
-104 310 223 311 228
-105 223 322 323 228
-106 222 322 323 217
-107 222 217 316 317
-108 234 316 229 317
-109 247 328 252 329
-110 246 328 241 329
-111 341 246 241 340
-112 341 235 240 340
-113 235 334 335 240
-114 334 247 335 252
-115 265 346 270 347
-116 264 346 259 347
-117 264 259 358 359
-118 253 258 358 359
-119 253 352 353 258
-120 352 265 353 270
-121 309 310 284 285
-122 309 310 278 279
-123 321 278 322 279
-124 321 322 272 273
-125 315 272 316 273
-126 315 316 284 285
-127 302 303 327 328
-128 297 327 328 296
-129 297 339 296 340
-130 290 291 339 340
-131 333 290 334 291
-132 333 334 302 303
-133 320 321 345 346
-134 345 346 314 315
-135 357 314 358 315
-136 308 309 357 358
-137 308 352 309 351
-138 352 320 321 351
-139 288 326 283 327
-140 277 282 326 327
-141 277 282 338 339
-142 276 271 338 339
-143 276 332 333 271
-144 288 332 333 283
-145 344 301 345 306
-146 300 344 345 295
-147 300 356 357 295
-148 289 356 357 294
-149 289 294 350 351
-150 301 306 350 351
-151 287 288 312 307
-152 312 281 282 307
-153 319 324 281 282
-154 275 319 276 324
-155 275 276 313 318
-156 287 288 313 318
-157 330 325 305 306
-158 330 299 300 325
-159 342 299 300 337
-160 342 293 337 294
-161 331 336 293 294
-162 331 336 305 306
-163 343 323 324 348
-164 343 348 317 318
-165 355 360 317 318
-166 311 355 312 360
-167 354 311 312 349
-168 354 323 324 349
-169 286 330 285 329
-170 330 279 280 329
-171 341 342 279 280
-172 341 342 273 274
-173 335 336 273 274
-174 286 335 336 285
-175 303 347 304 348
-176 297 298 347 348
-177 297 298 359 360
-178 291 292 359 360
-179 353 354 291 292
-180 353 354 303 304
-181 100 101 4 5
-182 11 4 5 10
-183 11 70 71 10
-184 34 35 70 71
-185 34 35 40 41
-186 100 101 40 41
-187 99 2 3 98
-188 2 3 8 9
-189 68 69 8 9
-190 33 68 69 32
-191 33 38 39 32
-192 99 38 39 98
-193 1 102 6 97
-194 1 12 6 7
-195 12 67 72 7
-196 67 36 72 31
-197 36 37 31 42
-198 102 37 42 97
-199 1 2 64 65
-200 1 2 58 59
-201 58 59 94 95
-202 94 95 31 32
-203 28 29 31 32
-204 28 29 64 65
-205 5 6 62 63
-206 56 57 5 6
-207 56 57 92 93
-208 35 36 92 93
-209 35 36 26 27
-210 26 27 62 63
-211 66 3 4 61
-212 55 3 4 60
-213 55 91 60 96
-214 33 34 91 96
-215 33 34 25 30
-216 66 25 61 30
-217 7 106 8 107
-218 16 17 7 8
-219 77 16 17 76
-220 77 37 38 76
-221 46 47 37 38
-222 46 47 106 107
-223 11 12 104 105
-224 11 12 14 15
-225 14 15 74 75
-226 41 74 42 75
-227 44 45 41 42
-228 44 45 104 105
-229 103 9 108 10
-230 13 18 9 10
-231 78 13 18 73
-232 78 39 40 73
-233 48 39 40 43
-234 48 103 108 43
-235 13 112 14 113
-236 22 23 13 14
-237 22 23 82 83
-238 44 82 83 43
-239 44 52 53 43
-240 112 113 52 53
-241 110 111 17 18
-242 17 18 20 21
-243 80 81 20 21
-244 47 80 48 81
-245 47 48 50 51
-246 110 111 50 51
-247 15 114 16 109
-248 24 15 16 19
-249 24 79 84 19
-250 45 46 79 84
-251 45 46 49 54
-252 114 49 54 109
-253 19 118 20 119
-254 25 26 19 20
-255 88 89 25 26
-256 88 89 49 50
-257 55 56 49 50
-258 55 56 118 119
-259 23 24 116 117
-260 23 24 29 30
-261 29 30 86 87
-262 53 86 54 87
-263 59 60 53 54
-264 59 60 116 117
-265 22 115 21 120
-266 22 27 28 21
-267 90 27 28 85
-268 90 51 52 85
-269 57 58 51 52
-270 57 58 115 120
-271 143 61 62 142
-272 124 125 61 62
-273 124 125 172 173
-274 91 92 172 173
-275 154 155 91 92
-276 143 154 155 142
-277 66 140 141 65
-278 66 122 123 65
-279 122 123 170 171
-280 170 171 95 96
-281 95 96 152 153
-282 140 141 152 153
-283 144 139 63 64
-284 121 126 63 64
-285 121 169 126 174
-286 169 93 94 174
-287 156 93 94 151
-288 144 156 139 151
-289 67 68 148 149
-290 67 68 130 131
-291 178 179 130 131
-292 178 179 97 98
-293 160 161 97 98
-294 148 149 160 161
-295 146 147 71 72
-296 71 72 128 129
-297 176 177 128 129
-298 176 177 101 102
-299 101 102 158 159
-300 146 147 158 159
-301 145 69 70 150
-302 132 69 70 127
-303 132 180 127 175
-304 99 100 180 175
-305 99 100 157 162
-306 145 157 150 162
-307 73 74 151 152
-308 136 137 73 74
-309 121 122 136 137
-310 121 122 103 104
-311 166 167 103 104
-312 166 167 151 152
-313 77 78 155 156
-314 77 78 134 135
-315 134 135 125 126
-316 125 126 107 108
-317 165 107 108 164
-318 165 155 156 164
-319 154 75 76 153
-320 133 138 75 76
-321 133 123 124 138
-322 123 124 105 106
-323 168 105 106 163
-324 154 168 163 153
-325 79 80 157 158
-326 79 80 139 140
-327 127 128 139 140
-328 110 127 128 109
-329 110 169 170 109
-330 157 158 169 170
-331 83 84 161 162
-332 143 144 83 84
-333 132 143 144 131
-334 132 113 114 131
-335 113 114 173 174
-336 161 162 173 174
-337 81 82 159 160
-338 81 82 141 142
-339 129 130 141 142
-340 111 112 129 130
-341 111 112 171 172
-342 159 160 171 172
-343 85 86 163 164
-344 145 146 85 86
-345 133 134 145 146
-346 133 134 115 116
-347 176 115 116 175
-348 176 163 164 175
-349 89 90 167 168
-350 89 90 149 150
-351 137 138 149 150
-352 137 138 119 120
-353 179 180 119 120
-354 167 168 179 180
-355 88 165 166 87
-356 88 147 148 87
-357 135 136 147 148
-358 135 136 117 118
-359 177 178 117 118
-360 165 166 177 178
0