C4graphGraph forms for C4 [ 360, 162 ] = PL(CSI(Pr_10(1,1,3,3)[10^6],3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 162 ] = PL(CSI(Pr_10(1,1,3,3)[10^6],3)).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {154, 218}, {155, 219}, {154, 219}, {155, 218}, {168, 234}, {168, 235}, {164, 224}, {165, 225}, {164, 225}, {165, 224}, {163, 235}, {163, 234}, {137, 219}, {136, 219}, {136, 220}, {173, 249}, {172, 248}, {161, 245}, {160, 244}, {137, 220}, {173, 248}, {172, 249}, {161, 244}, {160, 245}, {134, 230}, {159, 255}, {158, 254}, {135, 230}, {159, 254}, {158, 255}, {135, 229}, {134, 229}, {138, 239}, {133, 239}, {141, 253}, {167, 215}, {166, 214}, {140, 253}, {167, 214}, {166, 215}, {140, 254}, {156, 238}, {141, 254}, {156, 239}, {133, 240}, {130, 250}, {151, 239}, {131, 250}, {151, 238}, {131, 249}, {138, 240}, {142, 244}, {130, 249}, {143, 244}, {143, 243}, {153, 229}, {152, 228}, {142, 243}, {153, 228}, {152, 229}, {88, 216}, {89, 216}, {115, 240}, {58, 190}, {94, 218}, {59, 190}, {95, 218}, {57, 191}, {95, 217}, {56, 191}, {94, 217}, {53, 189}, {120, 240}, {52, 189}, {52, 190}, {53, 190}, {96, 237}, {59, 181}, {89, 215}, {96, 238}, {58, 181}, {88, 215}, {101, 245}, {121, 233}, {100, 245}, {41, 187}, {47, 189}, {46, 188}, {100, 246}, {116, 230}, {40, 187}, {47, 188}, {46, 189}, {101, 246}, {117, 230}, {121, 234}, {40, 188}, {65, 213}, {64, 212}, {115, 231}, {126, 234}, {41, 188}, {65, 212}, {64, 213}, {126, 233}, {34, 186}, {35, 187}, {34, 187}, {35, 186}, {122, 224}, {123, 224}, {99, 255}, {98, 255}, {120, 231}, {91, 248}, {29, 185}, {92, 248}, {119, 211}, {123, 223}, {28, 185}, {118, 211}, {122, 223}, {17, 183}, {28, 186}, {16, 183}, {29, 186}, {16, 184}, {117, 221}, {125, 213}, {17, 184}, {116, 221}, {124, 213}, {66, 232}, {118, 220}, {124, 214}, {66, 233}, {92, 247}, {119, 220}, {125, 214}, {91, 247}, {22, 184}, {23, 185}, {22, 185}, {23, 184}, {5, 181}, {4, 181}, {90, 235}, {4, 182}, {5, 182}, {86, 226}, {87, 226}, {91, 238}, {71, 241}, {87, 225}, {90, 236}, {91, 237}, {70, 241}, {86, 225}, {92, 228}, {85, 236}, {93, 228}, {3, 191}, {70, 250}, {65, 253}, {11, 183}, {10, 182}, {2, 191}, {71, 250}, {65, 252}, {11, 182}, {10, 183}, {66, 252}, {85, 235}, {69, 251}, {93, 227}, {66, 253}, {68, 251}, {92, 227}, {35, 227}, {13, 204}, {35, 226}, {2, 192}, {3, 192}, {12, 202}, {36, 226}, {31, 217}, {13, 203}, {12, 203}, {36, 227}, {31, 216}, {1, 201}, {9, 193}, {8, 192}, {8, 193}, {9, 192}, {1, 202}, {6, 202}, {62, 242}, {33, 237}, {14, 194}, {7, 203}, {7, 202}, {62, 243}, {33, 236}, {15, 194}, {15, 193}, {61, 243}, {34, 236}, {6, 201}, {61, 242}, {34, 237}, {14, 193}, {30, 206}, {38, 246}, {31, 207}, {2, 211}, {38, 247}, {31, 206}, {1, 211}, {37, 247}, {30, 205}, {37, 246}, {24, 204}, {61, 233}, {25, 205}, {1, 212}, {61, 232}, {24, 205}, {2, 212}, {21, 195}, {20, 194}, {20, 195}, {25, 206}, {21, 194}, {5, 221}, {27, 195}, {6, 222}, {18, 203}, {26, 195}, {5, 222}, {6, 221}, {18, 204}, {26, 196}, {19, 205}, {19, 204}, {27, 196}, {38, 198}, {63, 223}, {62, 222}, {49, 209}, {48, 208}, {39, 198}, {63, 222}, {62, 223}, {48, 209}, {39, 197}, {4, 231}, {49, 210}, {38, 197}, {3, 231}, {54, 210}, {33, 197}, {32, 196}, {32, 197}, {55, 210}, {42, 207}, {33, 196}, {54, 209}, {36, 206}, {45, 199}, {44, 198}, {37, 207}, {3, 232}, {45, 198}, {44, 199}, {36, 207}, {4, 232}, {60, 210}, {11, 251}, {56, 200}, {12, 252}, {57, 200}, {51, 199}, {7, 242}, {60, 201}, {50, 199}, {37, 208}, {7, 241}, {11, 252}, {12, 251}, {32, 216}, {8, 241}, {32, 217}, {8, 242}, {50, 200}, {43, 209}, {42, 208}, {43, 208}, {51, 200}, {55, 201}, {50, 306}, {14, 271}, {85, 340}, {50, 307}, {13, 271}, {86, 340}, {84, 342}, {79, 333}, {49, 307}, {49, 306}, {84, 343}, {79, 332}, {45, 297}, {83, 343}, {90, 350}, {45, 296}, {83, 342}, {79, 330}, {46, 296}, {46, 297}, {88, 351}, {89, 350}, {17, 281}, {87, 351}, {75, 323}, {53, 317}, {18, 282}, {53, 316}, {75, 322}, {111, 358}, {54, 316}, {111, 357}, {17, 282}, {54, 317}, {18, 281}, {9, 261}, {10, 262}, {89, 341}, {76, 322}, {79, 321}, {9, 262}, {76, 323}, {10, 261}, {90, 341}, {80, 320}, {81, 320}, {117, 356}, {118, 356}, {84, 321}, {112, 357}, {118, 355}, {112, 358}, {117, 355}, {80, 332}, {13, 272}, {86, 331}, {80, 333}, {14, 272}, {85, 331}, {84, 330}, {23, 311}, {24, 312}, {105, 328}, {120, 345}, {40, 266}, {106, 328}, {120, 346}, {40, 267}, {115, 336}, {116, 336}, {41, 257}, {109, 325}, {41, 256}, {114, 347}, {42, 256}, {113, 347}, {15, 292}, {42, 257}, {109, 326}, {15, 291}, {39, 267}, {127, 339}, {39, 266}, {106, 327}, {113, 348}, {119, 346}, {127, 338}, {48, 286}, {105, 327}, {114, 348}, {119, 345}, {23, 312}, {48, 287}, {24, 311}, {47, 287}, {81, 353}, {88, 360}, {47, 286}, {81, 352}, {82, 352}, {123, 329}, {16, 291}, {82, 353}, {123, 328}, {16, 292}, {114, 326}, {124, 328}, {124, 329}, {114, 325}, {44, 276}, {63, 263}, {20, 301}, {63, 262}, {44, 277}, {20, 302}, {116, 335}, {109, 337}, {110, 338}, {115, 335}, {19, 302}, {19, 301}, {43, 277}, {43, 276}, {87, 360}, {109, 338}, {110, 337}, {68, 260}, {103, 295}, {113, 305}, {126, 318}, {69, 260}, {112, 305}, {126, 319}, {77, 271}, {112, 306}, {125, 319}, {28, 351}, {76, 271}, {113, 306}, {125, 318}, {27, 351}, {108, 296}, {101, 288}, {64, 262}, {72, 270}, {67, 261}, {102, 288}, {64, 263}, {29, 341}, {30, 342}, {99, 298}, {99, 297}, {29, 342}, {30, 341}, {108, 295}, {121, 309}, {67, 270}, {72, 261}, {100, 297}, {121, 308}, {100, 298}, {122, 308}, {103, 296}, {122, 309}, {26, 331}, {93, 268}, {108, 317}, {25, 331}, {75, 281}, {72, 282}, {67, 273}, {94, 268}, {108, 318}, {110, 316}, {67, 272}, {74, 281}, {72, 283}, {103, 308}, {111, 316}, {21, 321}, {76, 280}, {68, 272}, {22, 322}, {103, 307}, {111, 315}, {25, 332}, {77, 280}, {68, 273}, {94, 267}, {107, 318}, {110, 315}, {26, 332}, {93, 267}, {107, 317}, {21, 322}, {22, 321}, {104, 307}, {57, 357}, {71, 283}, {104, 308}, {57, 356}, {71, 282}, {95, 258}, {58, 356}, {95, 257}, {58, 357}, {59, 347}, {69, 293}, {59, 346}, {69, 292}, {96, 257}, {70, 292}, {78, 300}, {96, 258}, {98, 256}, {70, 293}, {99, 256}, {74, 302}, {82, 310}, {73, 300}, {83, 310}, {74, 303}, {55, 337}, {81, 311}, {73, 303}, {60, 346}, {55, 336}, {80, 311}, {73, 302}, {60, 347}, {56, 336}, {74, 290}, {97, 265}, {56, 337}, {75, 290}, {73, 291}, {97, 266}, {102, 266}, {78, 291}, {102, 265}, {127, 270}, {52, 326}, {127, 269}, {52, 327}, {51, 327}, {77, 313}, {97, 277}, {98, 278}, {105, 285}, {51, 326}, {77, 312}, {104, 285}, {78, 312}, {104, 286}, {78, 313}, {97, 278}, {98, 277}, {105, 286}, {107, 275}, {102, 287}, {106, 275}, {101, 287}, {27, 352}, {28, 352}, {83, 301}, {106, 276}, {82, 301}, {107, 276}, {166, 294}, {166, 295}, {129, 259}, {165, 295}, {128, 259}, {165, 294}, {139, 264}, {128, 260}, {175, 299}, {149, 273}, {129, 260}, {175, 298}, {148, 273}, {148, 274}, {149, 274}, {147, 283}, {132, 269}, {146, 283}, {132, 270}, {139, 263}, {146, 284}, {147, 284}, {176, 288}, {177, 289}, {134, 279}, {177, 288}, {176, 289}, {133, 279}, {157, 265}, {174, 314}, {157, 264}, {174, 315}, {173, 315}, {144, 263}, {173, 314}, {144, 264}, {169, 305}, {169, 304}, {170, 304}, {170, 305}, {133, 280}, {134, 280}, {180, 298}, {180, 299}, {155, 314}, {155, 313}, {174, 268}, {136, 299}, {174, 269}, {136, 300}, {179, 279}, {178, 278}, {169, 269}, {156, 313}, {179, 278}, {178, 279}, {169, 268}, {156, 314}, {151, 304}, {137, 289}, {171, 259}, {170, 258}, {152, 304}, {138, 290}, {170, 259}, {171, 258}, {162, 264}, {135, 300}, {162, 265}, {137, 290}, {138, 289}, {135, 299}, {144, 319}, {143, 319}, {163, 275}, {150, 294}, {163, 274}, {150, 293}, {145, 293}, {168, 284}, {168, 285}, {164, 274}, {145, 294}, {164, 275}, {152, 303}, {151, 303}, {140, 309}, {140, 310}, {167, 285}, {167, 284}, {139, 310}, {139, 309}, {146, 339}, {160, 353}, {145, 339}, {160, 354}, {141, 329}, {142, 330}, {145, 340}, {146, 340}, {141, 330}, {142, 329}, {149, 349}, {150, 350}, {149, 350}, {150, 349}, {143, 320}, {144, 320}, {178, 354}, {158, 334}, {157, 333}, {178, 355}, {128, 338}, {177, 355}, {128, 339}, {177, 354}, {158, 333}, {157, 334}, {132, 348}, {132, 349}, {154, 323}, {153, 323}, {153, 324}, {131, 349}, {154, 324}, {131, 348}, {175, 335}, {175, 334}, {130, 358}, {130, 359}, {129, 359}, {129, 358}, {172, 324}, {172, 325}, {179, 345}, {179, 344}, {180, 344}, {180, 345}, {171, 325}, {171, 324}, {148, 359}, {147, 359}, {162, 343}, {161, 343}, {161, 344}, {162, 344}, {147, 360}, {148, 360}, {159, 354}, {159, 353}, {176, 334}, {176, 335} }>;

(II) A more general form is to represent the graph as the orbit of {154, 218} under the group generated by the following permutations:

a: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21, 24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40, 41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99, 102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115, 116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130, 131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(145, 146)(147, 150)(148, 149)(151, 152)(153, 156)(154, 155)(157, 158)(159, 162)(160, 161)(163, 164)(165, 168)(166, 167)(169, 170)(171, 174)(172, 173)(175, 176)(177, 180)(178, 179)(191, 201)(192, 202)(193, 203)(194, 204)(195, 205)(196, 206)(197, 207)(198, 208)(199, 209)(200, 210)(221, 231)(222, 232)(223, 233)(224, 234)(225, 235)(226, 236)(227, 237)(228, 238)(229, 239)(230, 240)(251, 261)(252, 262)(253, 263)(254, 264)(255, 265)(256, 266)(257, 267)(258, 268)(259, 269)(260, 270)(281, 291)(282, 292)(283, 293)(284, 294)(285, 295)(286, 296)(287, 297)(288, 298)(289, 299)(290, 300)(311, 321)(312, 322)(313, 323)(314, 324)(315, 325)(316, 326)(317, 327)(318, 328)(319, 329)(320, 330)(341, 351)(342, 352)(343, 353)(344, 354)(345, 355)(346, 356)(347, 357)(348, 358)(349, 359)(350, 360)
b: (7, 55)(8, 56)(9, 57)(10, 58)(11, 59)(12, 60)(13, 49)(14, 50)(15, 51)(16, 52)(17, 53)(18, 54)(19, 43)(20, 44)(21, 45)(22, 46)(23, 47)(24, 48)(25, 37)(26, 38)(27, 39)(28, 40)(29, 41)(30, 42)(61, 115)(62, 116)(63, 117)(64, 118)(65, 119)(66, 120)(67, 112)(68, 113)(69, 114)(70, 109)(71, 110)(72, 111)(73, 106)(74, 107)(75, 108)(76, 103)(77, 104)(78, 105)(79, 100)(80, 101)(81, 102)(82, 97)(83, 98)(84, 99)(85, 91)(86, 92)(87, 93)(88, 94)(89, 95)(90, 96)(121, 133)(122, 134)(123, 135)(124, 136)(125, 137)(126, 138)(127, 130)(128, 131)(129, 132)(139, 178)(140, 179)(141, 180)(142, 175)(143, 176)(144, 177)(145, 172)(146, 173)(147, 174)(148, 169)(149, 170)(150, 171)(151, 163)(152, 164)(153, 165)(154, 166)(155, 167)(156, 168)(157, 160)(158, 161)(159, 162)(181, 182)(183, 190)(184, 189)(185, 188)(186, 187)(191, 192)(193, 200)(194, 199)(195, 198)(196, 197)(201, 202)(203, 210)(204, 209)(205, 208)(206, 207)(211, 212)(213, 220)(214, 219)(215, 218)(216, 217)(221, 222)(223, 230)(224, 229)(225, 228)(226, 227)(231, 232)(233, 240)(234, 239)(235, 238)(236, 237)(241, 337)(242, 336)(243, 335)(244, 334)(245, 333)(246, 332)(247, 331)(248, 340)(249, 339)(250, 338)(251, 347)(252, 346)(253, 345)(254, 344)(255, 343)(256, 342)(257, 341)(258, 350)(259, 349)(260, 348)(261, 357)(262, 356)(263, 355)(264, 354)(265, 353)(266, 352)(267, 351)(268, 360)(269, 359)(270, 358)(271, 307)(272, 306)(273, 305)(274, 304)(275, 303)(276, 302)(277, 301)(278, 310)(279, 309)(280, 308)(281, 317)(282, 316)(283, 315)(284, 314)(285, 313)(286, 312)(287, 311)(288, 320)(289, 319)(290, 318)(291, 327)(292, 326)(293, 325)(294, 324)(295, 323)(296, 322)(297, 321)(298, 330)(299, 329)(300, 328)
c: (1, 7, 13, 19, 25, 31, 37, 43, 49, 55)(2, 8, 14, 20, 26, 32, 38, 44, 50, 56)(3, 9, 15, 21, 27, 33, 39, 45, 51, 57)(4, 10, 16, 22, 28, 34, 40, 46, 52, 58)(5, 11, 17, 23, 29, 35, 41, 47, 53, 59)(6, 12, 18, 24, 30, 36, 42, 48, 54, 60)(61, 67, 73, 79, 88, 91, 97, 103, 109, 118)(62, 68, 74, 80, 89, 92, 98, 104, 110, 119)(63, 69, 75, 81, 90, 93, 99, 105, 111, 120)(64, 70, 76, 82, 85, 94, 100, 106, 112, 115)(65, 71, 77, 83, 86, 95, 101, 107, 113, 116)(66, 72, 78, 84, 87, 96, 102, 108, 114, 117)(121, 127, 136, 142, 148, 151, 157, 166, 172, 178)(122, 128, 137, 143, 149, 152, 158, 167, 173, 179)(123, 129, 138, 144, 150, 153, 159, 168, 174, 180)(124, 130, 133, 139, 145, 154, 160, 163, 169, 175)(125, 131, 134, 140, 146, 155, 161, 164, 170, 176)(126, 132, 135, 141, 147, 156, 162, 165, 171, 177)(181, 182, 183, 184, 185, 186, 187, 188, 189, 190)(191, 192, 193, 194, 195, 196, 197, 198, 199, 200)(201, 202, 203, 204, 205, 206, 207, 208, 209, 210)(211, 242, 272, 302, 332, 216, 247, 277, 307, 337)(212, 241, 271, 301, 331, 217, 246, 276, 306, 336)(213, 250, 280, 310, 340, 218, 245, 275, 305, 335)(214, 249, 279, 309, 339, 219, 244, 274, 304, 334)(215, 248, 278, 308, 338, 220, 243, 273, 303, 333)(221, 252, 282, 312, 342, 226, 257, 287, 317, 347)(222, 251, 281, 311, 341, 227, 256, 286, 316, 346)(223, 260, 290, 320, 350, 228, 255, 285, 315, 345)(224, 259, 289, 319, 349, 229, 254, 284, 314, 344)(225, 258, 288, 318, 348, 230, 253, 283, 313, 343)(231, 262, 292, 322, 352, 236, 267, 297, 327, 357)(232, 261, 291, 321, 351, 237, 266, 296, 326, 356)(233, 270, 300, 330, 360, 238, 265, 295, 325, 355)(234, 269, 299, 329, 359, 239, 264, 294, 324, 354)(235, 268, 298, 328, 358, 240, 263, 293, 323, 353)
d: (2, 6)(3, 5)(7, 64)(8, 63)(9, 62)(10, 61)(11, 66)(12, 65)(13, 124)(14, 123)(15, 122)(16, 121)(17, 126)(18, 125)(19, 166)(20, 165)(21, 164)(22, 163)(23, 168)(24, 167)(25, 88)(26, 87)(27, 86)(28, 85)(29, 90)(30, 89)(32, 36)(33, 35)(37, 94)(38, 93)(39, 92)(40, 91)(41, 96)(42, 95)(43, 154)(44, 153)(45, 152)(46, 151)(47, 156)(48, 155)(49, 136)(50, 135)(51, 134)(52, 133)(53, 138)(54, 137)(55, 118)(56, 117)(57, 116)(58, 115)(59, 120)(60, 119)(67, 142)(68, 141)(69, 140)(70, 139)(71, 144)(72, 143)(73, 103)(74, 108)(75, 107)(76, 106)(77, 105)(78, 104)(79, 148)(80, 147)(81, 146)(82, 145)(83, 150)(84, 149)(97, 172)(98, 171)(99, 170)(100, 169)(101, 174)(102, 173)(109, 178)(110, 177)(111, 176)(112, 175)(113, 180)(114, 179)(127, 160)(128, 159)(129, 158)(130, 157)(131, 162)(132, 161)(181, 231)(182, 232)(183, 233)(184, 234)(185, 235)(186, 236)(187, 237)(188, 238)(189, 239)(190, 240)(191, 221)(192, 222)(193, 223)(194, 224)(195, 225)(196, 226)(197, 227)(198, 228)(199, 229)(200, 230)(201, 211)(202, 212)(203, 213)(204, 214)(205, 215)(206, 216)(207, 217)(208, 218)(209, 219)(210, 220)(241, 263)(242, 262)(243, 261)(244, 270)(245, 269)(246, 268)(247, 267)(248, 266)(249, 265)(250, 264)(251, 253)(254, 260)(255, 259)(256, 258)(271, 328)(272, 329)(273, 330)(274, 321)(275, 322)(276, 323)(277, 324)(278, 325)(279, 326)(280, 327)(281, 318)(282, 319)(283, 320)(284, 311)(285, 312)(286, 313)(287, 314)(288, 315)(289, 316)(290, 317)(291, 308)(292, 309)(293, 310)(294, 301)(295, 302)(296, 303)(297, 304)(298, 305)(299, 306)(300, 307)(331, 351)(332, 360)(333, 359)(334, 358)(335, 357)(336, 356)(337, 355)(338, 354)(339, 353)(340, 352)(342, 350)(343, 349)(344, 348)(345, 347)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 162 ]
360
-1 211 201 212 202
-2 211 212 191 192
-3 231 232 191 192
-4 231 232 181 182
-5 221 222 181 182
-6 221 222 201 202
-7 242 202 203 241
-8 242 192 193 241
-9 192 193 261 262
-10 182 183 261 262
-11 182 183 251 252
-12 202 203 251 252
-13 203 204 271 272
-14 193 194 271 272
-15 291 193 292 194
-16 291 292 183 184
-17 281 183 282 184
-18 203 204 281 282
-19 301 302 204 205
-20 301 302 194 195
-21 321 322 194 195
-22 321 322 184 185
-23 311 312 184 185
-24 311 312 204 205
-25 331 332 205 206
-26 331 332 195 196
-27 352 195 196 351
-28 352 185 186 351
-29 341 342 185 186
-30 341 342 205 206
-31 216 206 217 207
-32 216 217 196 197
-33 236 237 196 197
-34 187 236 237 186
-35 187 226 227 186
-36 226 227 206 207
-37 246 247 207 208
-38 198 246 247 197
-39 198 266 267 197
-40 187 188 266 267
-41 187 188 256 257
-42 256 257 207 208
-43 209 276 277 208
-44 198 199 276 277
-45 198 297 199 296
-46 297 188 189 296
-47 286 188 287 189
-48 209 286 287 208
-49 209 210 306 307
-50 199 200 306 307
-51 199 200 326 327
-52 189 190 326 327
-53 189 190 316 317
-54 209 210 316 317
-55 210 201 336 337
-56 200 191 336 337
-57 200 191 356 357
-58 190 356 181 357
-59 190 181 346 347
-60 210 201 346 347
-61 242 232 243 233
-62 242 243 222 223
-63 222 223 262 263
-64 212 213 262 263
-65 253 212 213 252
-66 253 232 233 252
-67 270 261 272 273
-68 260 272 251 273
-69 292 260 293 251
-70 292 293 250 241
-71 282 250 283 241
-72 270 282 261 283
-73 300 291 302 303
-74 290 302 281 303
-75 322 290 323 281
-76 322 323 280 271
-77 312 280 313 271
-78 300 312 291 313
-79 330 321 332 333
-80 320 332 311 333
-81 352 320 353 311
-82 352 353 310 301
-83 342 310 343 301
-84 330 342 321 343
-85 331 235 236 340
-86 331 225 226 340
-87 225 226 360 351
-88 215 216 360 351
-89 341 215 216 350
-90 341 235 236 350
-91 247 237 248 238
-92 247 248 227 228
-93 267 268 227 228
-94 267 268 217 218
-95 257 258 217 218
-96 257 258 237 238
-97 265 266 277 278
-98 255 277 256 278
-99 297 298 255 256
-100 297 298 245 246
-101 287 288 245 246
-102 265 287 266 288
-103 308 295 296 307
-104 286 308 285 307
-105 286 327 328 285
-106 275 276 327 328
-107 275 276 317 318
-108 295 317 296 318
-109 325 326 337 338
-110 315 337 316 338
-111 357 358 315 316
-112 357 358 305 306
-113 347 348 305 306
-114 325 347 326 348
-115 231 335 336 240
-116 221 335 336 230
-117 221 355 356 230
-118 220 211 355 356
-119 220 211 345 346
-120 231 345 346 240
-121 308 309 233 234
-122 308 309 223 224
-123 223 224 328 329
-124 213 214 328 329
-125 319 213 214 318
-126 319 233 234 318
-127 269 270 338 339
-128 259 260 338 339
-129 259 358 260 359
-130 358 249 359 250
-131 249 348 250 349
-132 269 270 348 349
-133 279 280 239 240
-134 279 280 229 230
-135 299 300 229 230
-136 220 299 300 219
-137 220 289 290 219
-138 289 290 239 240
-139 264 309 310 263
-140 253 254 309 310
-141 253 330 254 329
-142 330 243 244 329
-143 319 243 320 244
-144 264 319 320 263
-145 293 294 339 340
-146 283 284 339 340
-147 359 283 360 284
-148 359 360 273 274
-149 349 273 350 274
-150 293 294 349 350
-151 303 238 304 239
-152 303 304 228 229
-153 323 324 228 229
-154 323 324 218 219
-155 313 314 218 219
-156 313 314 238 239
-157 264 265 333 334
-158 254 255 333 334
-159 254 353 255 354
-160 353 244 354 245
-161 244 343 245 344
-162 264 265 343 344
-163 275 234 235 274
-164 275 224 225 274
-165 224 225 294 295
-166 214 215 294 295
-167 214 215 284 285
-168 234 235 284 285
-169 268 269 304 305
-170 258 259 304 305
-171 258 324 259 325
-172 324 248 325 249
-173 248 314 249 315
-174 268 269 314 315
-175 298 299 334 335
-176 288 289 334 335
-177 288 354 289 355
-178 354 278 355 279
-179 278 344 279 345
-180 298 299 344 345
-181 58 4 59 5
-182 11 4 5 10
-183 11 16 17 10
-184 22 23 16 17
-185 22 23 28 29
-186 34 35 28 29
-187 34 35 40 41
-188 46 47 40 41
-189 46 47 52 53
-190 58 59 52 53
-191 56 2 57 3
-192 2 3 8 9
-193 14 15 8 9
-194 14 15 20 21
-195 26 27 20 21
-196 33 26 27 32
-197 33 38 39 32
-198 44 45 38 39
-199 44 45 50 51
-200 56 57 50 51
-201 55 1 60 6
-202 1 12 6 7
-203 12 13 7 18
-204 13 24 18 19
-205 24 25 19 30
-206 25 36 30 31
-207 36 37 31 42
-208 37 48 42 43
-209 48 49 43 54
-210 55 49 60 54
-211 1 2 118 119
-212 1 2 64 65
-213 124 125 64 65
-214 166 167 124 125
-215 88 89 166 167
-216 88 89 31 32
-217 94 95 31 32
-218 154 155 94 95
-219 154 155 136 137
-220 136 137 118 119
-221 5 6 116 117
-222 5 6 62 63
-223 122 123 62 63
-224 165 122 123 164
-225 165 86 87 164
-226 35 36 86 87
-227 35 36 92 93
-228 92 93 152 153
-229 134 135 152 153
-230 134 135 116 117
-231 3 4 115 120
-232 66 3 4 61
-233 66 121 126 61
-234 121 168 126 163
-235 90 168 85 163
-236 33 34 90 85
-237 33 34 91 96
-238 156 91 96 151
-239 133 156 138 151
-240 133 115 138 120
-241 70 71 7 8
-242 61 7 62 8
-243 143 61 62 142
-244 143 160 161 142
-245 100 101 160 161
-246 100 101 37 38
-247 91 37 92 38
-248 91 92 172 173
-249 172 173 130 131
-250 70 71 130 131
-251 11 12 68 69
-252 11 66 12 65
-253 66 140 141 65
-254 158 159 140 141
-255 99 158 159 98
-256 99 41 42 98
-257 95 41 96 42
-258 170 171 95 96
-259 170 171 128 129
-260 68 69 128 129
-261 67 72 9 10
-262 63 9 64 10
-263 144 139 63 64
-264 144 157 139 162
-265 102 157 162 97
-266 102 39 40 97
-267 93 39 94 40
-268 169 93 94 174
-269 132 169 127 174
-270 132 67 72 127
-271 77 13 14 76
-272 67 13 68 14
-273 67 68 148 149
-274 148 149 163 164
-275 106 107 163 164
-276 44 106 107 43
-277 44 97 43 98
-278 178 179 97 98
-279 133 134 178 179
-280 77 133 134 76
-281 17 18 74 75
-282 71 17 72 18
-283 146 147 71 72
-284 167 146 168 147
-285 167 168 104 105
-286 47 48 104 105
-287 101 47 102 48
-288 176 177 101 102
-289 176 177 137 138
-290 137 138 74 75
-291 78 15 16 73
-292 69 15 70 16
-293 145 69 70 150
-294 165 166 145 150
-295 165 166 103 108
-296 45 46 103 108
-297 99 45 100 46
-298 99 100 180 175
-299 135 136 180 175
-300 78 135 136 73
-301 82 83 19 20
-302 73 19 74 20
-303 73 74 151 152
-304 169 170 151 152
-305 112 113 169 170
-306 112 113 49 50
-307 103 49 104 50
-308 121 122 103 104
-309 121 122 139 140
-310 82 83 139 140
-311 23 24 80 81
-312 77 23 78 24
-313 77 78 155 156
-314 155 156 173 174
-315 110 111 173 174
-316 110 111 53 54
-317 107 53 108 54
-318 125 126 107 108
-319 143 144 125 126
-320 143 144 80 81
-321 22 79 84 21
-322 22 75 21 76
-323 154 75 76 153
-324 154 171 172 153
-325 114 171 172 109
-326 114 51 52 109
-327 105 51 106 52
-328 123 124 105 106
-329 123 124 141 142
-330 79 84 141 142
-331 25 26 85 86
-332 79 25 80 26
-333 79 80 157 158
-334 176 157 158 175
-335 176 115 116 175
-336 55 56 115 116
-337 55 110 56 109
-338 110 127 128 109
-339 145 146 127 128
-340 145 146 85 86
-341 89 90 29 30
-342 83 29 84 30
-343 83 84 161 162
-344 179 180 161 162
-345 179 180 119 120
-346 59 60 119 120
-347 113 59 114 60
-348 132 113 114 131
-349 132 149 150 131
-350 89 90 149 150
-351 88 27 28 87
-352 81 27 82 28
-353 81 82 159 160
-354 177 178 159 160
-355 177 178 117 118
-356 57 58 117 118
-357 111 57 112 58
-358 111 112 129 130
-359 147 148 129 130
-360 88 147 148 87
0

**************