C4graphGraph forms for C4 [ 360, 163 ] = PL(CSI(Pr_10(2,3,1,4)[5^12],3))

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 163 ] = PL(CSI(Pr_10(2,3,1,4)[5^12],3)).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {175, 239}, {180, 240}, {130, 214}, {178, 230}, {131, 215}, {130, 215}, {179, 230}, {131, 214}, {179, 229}, {178, 229}, {129, 219}, {177, 235}, {176, 234}, {128, 219}, {180, 239}, {177, 234}, {176, 235}, {128, 220}, {129, 220}, {175, 240}, {132, 224}, {172, 200}, {132, 225}, {173, 200}, {170, 204}, {171, 205}, {170, 205}, {171, 204}, {173, 199}, {172, 199}, {138, 254}, {138, 255}, {169, 209}, {133, 255}, {133, 254}, {169, 210}, {134, 250}, {174, 210}, {136, 244}, {137, 245}, {135, 250}, {136, 245}, {137, 244}, {135, 249}, {134, 249}, {174, 209}, {62, 190}, {112, 240}, {63, 190}, {66, 195}, {61, 191}, {111, 236}, {62, 186}, {63, 186}, {110, 230}, {109, 230}, {110, 226}, {109, 226}, {71, 215}, {116, 228}, {70, 215}, {116, 229}, {120, 233}, {120, 234}, {71, 211}, {70, 211}, {72, 221}, {114, 231}, {113, 231}, {115, 229}, {115, 228}, {66, 218}, {68, 220}, {118, 238}, {66, 219}, {69, 220}, {114, 235}, {118, 239}, {65, 219}, {113, 235}, {117, 239}, {65, 218}, {117, 238}, {68, 216}, {112, 236}, {69, 216}, {119, 234}, {67, 221}, {119, 233}, {127, 225}, {64, 223}, {111, 240}, {127, 224}, {64, 224}, {105, 201}, {104, 201}, {67, 225}, {106, 200}, {108, 206}, {110, 204}, {114, 208}, {107, 200}, {111, 204}, {114, 209}, {105, 205}, {111, 203}, {104, 205}, {110, 203}, {16, 182}, {17, 183}, {16, 183}, {17, 182}, {72, 225}, {103, 206}, {106, 196}, {107, 196}, {5, 181}, {74, 250}, {72, 248}, {68, 244}, {67, 243}, {4, 181}, {78, 255}, {75, 250}, {72, 249}, {115, 194}, {4, 182}, {73, 251}, {14, 188}, {115, 193}, {5, 182}, {15, 188}, {15, 187}, {14, 187}, {78, 251}, {103, 210}, {73, 255}, {112, 198}, {113, 199}, {67, 244}, {68, 243}, {112, 199}, {113, 198}, {2, 186}, {77, 245}, {70, 254}, {69, 253}, {3, 187}, {2, 187}, {76, 245}, {6, 191}, {3, 186}, {120, 193}, {120, 194}, {121, 195}, {69, 254}, {70, 253}, {121, 194}, {74, 246}, {77, 241}, {109, 209}, {126, 194}, {75, 246}, {76, 241}, {109, 208}, {126, 195}, {1, 191}, {71, 249}, {108, 210}, {71, 248}, {119, 183}, {1, 192}, {118, 183}, {22, 212}, {23, 213}, {22, 213}, {23, 212}, {1, 197}, {122, 190}, {124, 184}, {125, 185}, {1, 196}, {123, 190}, {124, 185}, {125, 184}, {2, 196}, {24, 222}, {6, 192}, {123, 189}, {2, 197}, {24, 223}, {122, 189}, {116, 188}, {117, 189}, {116, 189}, {117, 188}, {4, 206}, {4, 207}, {3, 207}, {21, 217}, {19, 223}, {13, 193}, {6, 202}, {5, 201}, {3, 206}, {20, 217}, {19, 222}, {13, 192}, {20, 218}, {118, 184}, {5, 202}, {21, 218}, {6, 201}, {119, 184}, {8, 216}, {57, 233}, {56, 232}, {9, 217}, {8, 217}, {60, 237}, {57, 232}, {56, 233}, {12, 221}, {9, 216}, {12, 222}, {60, 238}, {18, 192}, {18, 193}, {11, 211}, {59, 227}, {7, 222}, {58, 227}, {55, 238}, {10, 211}, {7, 221}, {55, 237}, {10, 212}, {58, 228}, {11, 212}, {63, 224}, {59, 228}, {63, 223}, {49, 208}, {26, 248}, {30, 252}, {11, 232}, {30, 253}, {27, 248}, {7, 227}, {25, 253}, {18, 246}, {12, 232}, {9, 237}, {7, 226}, {25, 252}, {18, 247}, {9, 236}, {10, 236}, {54, 208}, {17, 247}, {10, 237}, {17, 246}, {61, 213}, {62, 214}, {8, 226}, {8, 227}, {62, 213}, {61, 214}, {16, 251}, {12, 231}, {11, 231}, {27, 247}, {16, 252}, {26, 247}, {28, 242}, {29, 243}, {28, 243}, {29, 242}, {53, 197}, {52, 197}, {52, 198}, {15, 252}, {53, 198}, {15, 251}, {65, 181}, {64, 181}, {50, 202}, {65, 185}, {51, 203}, {50, 203}, {64, 185}, {54, 207}, {51, 202}, {13, 241}, {14, 242}, {66, 191}, {49, 207}, {61, 195}, {13, 242}, {14, 241}, {31, 287}, {36, 292}, {35, 291}, {27, 282}, {53, 308}, {43, 298}, {31, 286}, {27, 281}, {54, 308}, {43, 297}, {28, 281}, {56, 317}, {54, 307}, {28, 282}, {56, 318}, {53, 307}, {35, 292}, {36, 291}, {29, 277}, {45, 293}, {44, 292}, {38, 302}, {37, 301}, {33, 297}, {25, 272}, {55, 318}, {45, 292}, {44, 293}, {33, 296}, {29, 276}, {26, 272}, {55, 317}, {51, 313}, {34, 296}, {30, 276}, {30, 277}, {51, 312}, {38, 301}, {37, 302}, {34, 297}, {52, 312}, {52, 313}, {46, 288}, {47, 288}, {39, 311}, {44, 316}, {40, 312}, {23, 262}, {44, 317}, {19, 257}, {23, 261}, {19, 256}, {31, 268}, {20, 256}, {31, 267}, {20, 257}, {26, 271}, {25, 271}, {43, 317}, {43, 316}, {42, 306}, {42, 307}, {48, 297}, {41, 307}, {48, 298}, {41, 306}, {22, 266}, {50, 302}, {22, 267}, {50, 303}, {24, 261}, {21, 267}, {49, 303}, {24, 262}, {21, 266}, {49, 302}, {40, 311}, {39, 312}, {34, 258}, {106, 330}, {35, 258}, {101, 324}, {35, 257}, {102, 324}, {34, 257}, {105, 330}, {127, 347}, {102, 323}, {127, 346}, {32, 262}, {33, 263}, {101, 323}, {32, 263}, {33, 262}, {103, 320}, {36, 268}, {104, 320}, {108, 325}, {124, 341}, {99, 329}, {107, 321}, {124, 342}, {99, 328}, {100, 328}, {106, 326}, {125, 337}, {100, 329}, {108, 321}, {123, 342}, {125, 336}, {107, 325}, {123, 341}, {126, 336}, {36, 267}, {105, 326}, {126, 337}, {38, 278}, {47, 287}, {42, 282}, {39, 278}, {46, 287}, {42, 283}, {122, 331}, {39, 277}, {121, 331}, {38, 277}, {121, 332}, {122, 332}, {40, 272}, {41, 273}, {40, 273}, {41, 272}, {32, 286}, {37, 283}, {32, 287}, {37, 282}, {76, 268}, {94, 286}, {76, 269}, {80, 273}, {79, 270}, {95, 286}, {80, 274}, {86, 276}, {84, 278}, {84, 279}, {87, 276}, {90, 281}, {83, 279}, {77, 264}, {83, 278}, {79, 266}, {75, 269}, {78, 264}, {75, 268}, {90, 285}, {74, 258}, {85, 285}, {96, 296}, {101, 301}, {74, 259}, {82, 283}, {78, 263}, {100, 301}, {73, 259}, {81, 283}, {77, 263}, {89, 275}, {73, 258}, {88, 275}, {85, 281}, {96, 300}, {81, 284}, {82, 284}, {86, 280}, {87, 280}, {98, 306}, {99, 306}, {102, 311}, {82, 256}, {83, 256}, {81, 261}, {96, 308}, {98, 310}, {101, 305}, {104, 316}, {80, 261}, {96, 309}, {99, 310}, {100, 305}, {82, 260}, {89, 271}, {97, 311}, {83, 260}, {88, 271}, {81, 265}, {80, 265}, {84, 270}, {97, 315}, {103, 316}, {98, 318}, {79, 274}, {98, 319}, {102, 315}, {79, 273}, {84, 266}, {97, 319}, {97, 318}, {93, 313}, {94, 314}, {93, 314}, {94, 313}, {46, 326}, {46, 327}, {45, 327}, {95, 309}, {45, 326}, {91, 304}, {95, 308}, {92, 304}, {47, 322}, {47, 321}, {48, 321}, {57, 328}, {48, 322}, {88, 298}, {58, 328}, {88, 299}, {91, 296}, {92, 303}, {85, 289}, {91, 303}, {85, 288}, {86, 288}, {86, 289}, {91, 300}, {59, 323}, {59, 322}, {93, 295}, {92, 295}, {87, 299}, {89, 293}, {90, 294}, {94, 290}, {58, 327}, {87, 298}, {95, 290}, {57, 327}, {60, 322}, {93, 291}, {60, 323}, {89, 294}, {90, 293}, {92, 291}, {140, 264}, {147, 279}, {141, 265}, {139, 270}, {146, 279}, {140, 265}, {141, 264}, {139, 269}, {149, 275}, {148, 274}, {148, 275}, {149, 274}, {142, 260}, {150, 284}, {146, 280}, {143, 260}, {150, 285}, {147, 280}, {143, 259}, {145, 285}, {142, 259}, {145, 284}, {160, 304}, {161, 305}, {160, 305}, {161, 304}, {162, 314}, {167, 319}, {162, 315}, {166, 319}, {144, 269}, {144, 270}, {157, 315}, {157, 314}, {158, 310}, {159, 310}, {159, 309}, {158, 309}, {156, 300}, {156, 299}, {154, 290}, {155, 290}, {155, 289}, {151, 300}, {154, 289}, {151, 299}, {152, 294}, {153, 295}, {152, 295}, {153, 294}, {165, 356}, {148, 342}, {166, 356}, {148, 343}, {152, 347}, {147, 343}, {167, 355}, {152, 348}, {150, 338}, {149, 337}, {147, 342}, {159, 345}, {149, 338}, {150, 337}, {134, 334}, {134, 335}, {133, 335}, {159, 341}, {133, 334}, {168, 355}, {151, 348}, {151, 347}, {165, 360}, {166, 360}, {136, 344}, {136, 345}, {179, 354}, {158, 335}, {140, 349}, {140, 350}, {179, 353}, {157, 335}, {178, 358}, {139, 350}, {180, 353}, {178, 359}, {158, 331}, {139, 349}, {180, 354}, {177, 359}, {157, 331}, {177, 358}, {138, 339}, {128, 346}, {137, 339}, {128, 347}, {132, 351}, {131, 351}, {145, 333}, {137, 340}, {145, 332}, {135, 345}, {146, 332}, {138, 340}, {135, 344}, {146, 333}, {164, 324}, {165, 325}, {164, 325}, {168, 329}, {165, 324}, {168, 330}, {131, 352}, {129, 357}, {170, 334}, {169, 333}, {132, 352}, {129, 356}, {141, 360}, {130, 356}, {166, 320}, {142, 360}, {130, 357}, {170, 333}, {169, 334}, {167, 320}, {142, 359}, {163, 330}, {141, 359}, {163, 329}, {143, 355}, {176, 348}, {143, 354}, {176, 349}, {161, 336}, {144, 354}, {175, 349}, {162, 336}, {144, 355}, {175, 348}, {171, 344}, {172, 344}, {160, 341}, {161, 340}, {162, 340}, {168, 351}, {167, 351}, {160, 345}, {163, 346}, {155, 353}, {164, 350}, {155, 352}, {172, 343}, {153, 357}, {174, 338}, {171, 343}, {156, 352}, {154, 358}, {156, 353}, {174, 339}, {163, 350}, {164, 346}, {173, 339}, {153, 358}, {173, 338}, {154, 357} }>;

(II) A more general form is to represent the graph as the orbit of {175, 239} under the group generated by the following permutations:

a: (7, 133)(8, 134)(9, 135)(10, 136)(11, 137)(12, 138)(13, 61)(14, 62)(15, 63)(16, 64)(17, 65)(18, 66)(19, 73)(20, 74)(21, 75)(22, 76)(23, 77)(24, 78)(25, 127)(26, 128)(27, 129)(28, 130)(29, 131)(30, 132)(37, 166)(38, 167)(39, 168)(40, 163)(41, 164)(42, 165)(43, 91)(44, 92)(45, 93)(46, 94)(47, 95)(48, 96)(49, 103)(50, 104)(51, 105)(52, 106)(53, 107)(54, 108)(55, 160)(56, 161)(57, 162)(58, 157)(59, 158)(60, 159)(67, 70)(68, 71)(69, 72)(79, 139)(80, 140)(81, 141)(82, 142)(83, 143)(84, 144)(85, 154)(86, 155)(87, 156)(88, 151)(89, 152)(90, 153)(97, 100)(98, 101)(99, 102)(109, 169)(110, 170)(111, 171)(112, 172)(113, 173)(114, 174)(115, 121)(116, 122)(117, 123)(118, 124)(119, 125)(120, 126)(145, 178)(146, 179)(147, 180)(148, 175)(149, 176)(150, 177)(181, 182)(183, 185)(186, 187)(188, 190)(191, 192)(193, 195)(196, 197)(198, 200)(201, 202)(203, 205)(206, 207)(208, 210)(211, 244)(212, 245)(213, 241)(214, 242)(215, 243)(216, 249)(217, 250)(218, 246)(219, 247)(220, 248)(221, 254)(222, 255)(223, 251)(224, 252)(225, 253)(226, 334)(227, 335)(228, 331)(229, 332)(230, 333)(231, 339)(232, 340)(233, 336)(234, 337)(235, 338)(236, 344)(237, 345)(238, 341)(239, 342)(240, 343)(256, 259)(257, 258)(261, 264)(262, 263)(266, 269)(267, 268)(271, 347)(272, 346)(273, 350)(274, 349)(275, 348)(276, 352)(277, 351)(278, 355)(279, 354)(280, 353)(281, 357)(282, 356)(283, 360)(284, 359)(285, 358)(286, 287)(288, 290)(291, 292)(293, 295)(296, 297)(298, 300)(301, 319)(302, 320)(303, 316)(304, 317)(305, 318)(306, 324)(307, 325)(308, 321)(309, 322)(310, 323)(311, 329)(312, 330)(313, 326)(314, 327)(315, 328)
b: (2, 6)(3, 5)(7, 55)(8, 60)(9, 59)(10, 58)(11, 57)(12, 56)(13, 52)(14, 51)(15, 50)(16, 49)(17, 54)(18, 53)(19, 43)(20, 48)(21, 47)(22, 46)(23, 45)(24, 44)(25, 37)(26, 42)(27, 41)(28, 40)(29, 39)(30, 38)(32, 36)(33, 35)(61, 106)(62, 105)(63, 104)(64, 103)(65, 108)(66, 107)(67, 97)(68, 102)(69, 101)(70, 100)(71, 99)(72, 98)(73, 91)(74, 96)(75, 95)(76, 94)(77, 93)(78, 92)(79, 85)(80, 90)(81, 89)(82, 88)(83, 87)(84, 86)(109, 118)(110, 117)(111, 116)(112, 115)(113, 120)(114, 119)(121, 172)(122, 171)(123, 170)(124, 169)(125, 174)(126, 173)(127, 166)(128, 165)(129, 164)(130, 163)(131, 168)(132, 167)(133, 160)(134, 159)(135, 158)(136, 157)(137, 162)(138, 161)(139, 154)(140, 153)(141, 152)(142, 151)(143, 156)(144, 155)(145, 148)(146, 147)(149, 150)(175, 178)(176, 177)(179, 180)(181, 206)(182, 207)(183, 208)(184, 209)(185, 210)(186, 201)(187, 202)(188, 203)(189, 204)(190, 205)(191, 196)(192, 197)(193, 198)(194, 199)(195, 200)(211, 328)(212, 327)(213, 326)(214, 330)(215, 329)(216, 323)(217, 322)(218, 321)(219, 325)(220, 324)(221, 318)(222, 317)(223, 316)(224, 320)(225, 319)(226, 238)(227, 237)(228, 236)(229, 240)(230, 239)(231, 233)(234, 235)(241, 313)(242, 312)(243, 311)(244, 315)(245, 314)(246, 308)(247, 307)(248, 306)(249, 310)(250, 309)(251, 303)(252, 302)(253, 301)(254, 305)(255, 304)(256, 298)(257, 297)(258, 296)(259, 300)(260, 299)(261, 293)(262, 292)(263, 291)(264, 295)(265, 294)(266, 288)(267, 287)(268, 286)(269, 290)(270, 289)(271, 283)(272, 282)(273, 281)(274, 285)(275, 284)(276, 278)(279, 280)(331, 344)(332, 343)(333, 342)(334, 341)(335, 345)(336, 339)(337, 338)(346, 356)(347, 360)(348, 359)(349, 358)(350, 357)(352, 355)(353, 354)
c: (1, 2)(3, 6)(4, 5)(7, 8)(9, 12)(10, 11)(13, 14)(15, 18)(16, 17)(19, 20)(21, 24)(22, 23)(25, 26)(27, 30)(28, 29)(31, 32)(33, 36)(34, 35)(37, 38)(39, 42)(40, 41)(43, 44)(45, 48)(46, 47)(49, 50)(51, 54)(52, 53)(55, 56)(57, 60)(58, 59)(61, 62)(63, 66)(64, 65)(67, 68)(69, 72)(70, 71)(73, 74)(75, 78)(76, 77)(79, 80)(81, 84)(82, 83)(85, 86)(87, 90)(88, 89)(91, 92)(93, 96)(94, 95)(97, 98)(99, 102)(100, 101)(103, 104)(105, 108)(106, 107)(109, 110)(111, 114)(112, 113)(115, 116)(117, 120)(118, 119)(121, 122)(123, 126)(124, 125)(127, 128)(129, 132)(130, 131)(133, 134)(135, 138)(136, 137)(139, 140)(141, 144)(142, 143)(145, 146)(147, 150)(148, 149)(151, 152)(153, 156)(154, 155)(157, 158)(159, 162)(160, 161)(163, 164)(165, 168)(166, 167)(169, 170)(171, 174)(172, 173)(175, 176)(177, 180)(178, 179)(186, 191)(187, 192)(188, 193)(189, 194)(190, 195)(201, 206)(202, 207)(203, 208)(204, 209)(205, 210)(216, 221)(217, 222)(218, 223)(219, 224)(220, 225)(231, 236)(232, 237)(233, 238)(234, 239)(235, 240)(246, 251)(247, 252)(248, 253)(249, 254)(250, 255)(261, 266)(262, 267)(263, 268)(264, 269)(265, 270)(276, 281)(277, 282)(278, 283)(279, 284)(280, 285)(291, 296)(292, 297)(293, 298)(294, 299)(295, 300)(306, 311)(307, 312)(308, 313)(309, 314)(310, 315)(321, 326)(322, 327)(323, 328)(324, 329)(325, 330)(336, 341)(337, 342)(338, 343)(339, 344)(340, 345)(351, 356)(352, 357)(353, 358)(354, 359)(355, 360)
d: (1, 7, 16, 22, 28, 34, 40, 46, 49, 55)(2, 8, 17, 23, 29, 35, 41, 47, 50, 56)(3, 9, 18, 24, 30, 36, 42, 48, 51, 57)(4, 10, 13, 19, 25, 31, 37, 43, 52, 58)(5, 11, 14, 20, 26, 32, 38, 44, 53, 59)(6, 12, 15, 21, 27, 33, 39, 45, 54, 60)(61, 67, 73, 79, 85, 91, 97, 106, 109, 118)(62, 68, 74, 80, 86, 92, 98, 107, 110, 119)(63, 69, 75, 81, 87, 93, 99, 108, 111, 120)(64, 70, 76, 82, 88, 94, 100, 103, 112, 115)(65, 71, 77, 83, 89, 95, 101, 104, 113, 116)(66, 72, 78, 84, 90, 96, 102, 105, 114, 117)(121, 127, 133, 139, 145, 151, 157, 163, 169, 175)(122, 128, 134, 140, 146, 152, 158, 164, 170, 176)(123, 129, 135, 141, 147, 153, 159, 165, 171, 177)(124, 130, 136, 142, 148, 154, 160, 166, 172, 178)(125, 131, 137, 143, 149, 155, 161, 167, 173, 179)(126, 132, 138, 144, 150, 156, 162, 168, 174, 180)(181, 211, 241, 256, 271, 286, 301, 316, 198, 228)(182, 212, 242, 257, 272, 287, 302, 317, 197, 227)(183, 213, 243, 258, 273, 288, 303, 318, 196, 226)(184, 214, 244, 259, 274, 289, 304, 319, 200, 230)(185, 215, 245, 260, 275, 290, 305, 320, 199, 229)(186, 216, 246, 261, 276, 291, 306, 321, 203, 233)(187, 217, 247, 262, 277, 292, 307, 322, 202, 232)(188, 218, 248, 263, 278, 293, 308, 323, 201, 231)(189, 219, 249, 264, 279, 294, 309, 324, 205, 235)(190, 220, 250, 265, 280, 295, 310, 325, 204, 234)(191, 221, 251, 266, 281, 296, 311, 326, 208, 238)(192, 222, 252, 267, 282, 297, 312, 327, 207, 237)(193, 223, 253, 268, 283, 298, 313, 328, 206, 236)(194, 224, 254, 269, 284, 299, 314, 329, 210, 240)(195, 225, 255, 270, 285, 300, 315, 330, 209, 239)(331, 346, 334, 349, 332, 347, 335, 350, 333, 348)(336, 351, 339, 354, 337, 352, 340, 355, 338, 353)(341, 356, 344, 359, 342, 357, 345, 360, 343, 358)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 163 ]
360
-1 191 192 196 197
-2 187 196 186 197
-3 187 206 207 186
-4 181 182 206 207
-5 201 202 181 182
-6 201 191 202 192
-7 221 222 226 227
-8 226 216 227 217
-9 236 237 216 217
-10 211 212 236 237
-11 231 232 211 212
-12 231 221 232 222
-13 242 192 193 241
-14 187 242 188 241
-15 187 188 251 252
-16 182 183 251 252
-17 246 247 182 183
-18 246 192 247 193
-19 222 223 256 257
-20 256 257 217 218
-21 266 267 217 218
-22 266 212 267 213
-23 212 213 261 262
-24 222 223 261 262
-25 253 271 272 252
-26 247 248 271 272
-27 247 248 281 282
-28 242 243 281 282
-29 242 243 276 277
-30 253 276 277 252
-31 286 287 267 268
-32 286 287 262 263
-33 297 262 263 296
-34 297 257 258 296
-35 257 258 291 292
-36 267 268 291 292
-37 301 302 282 283
-38 277 278 301 302
-39 277 278 311 312
-40 311 312 272 273
-41 272 273 306 307
-42 282 283 306 307
-43 297 298 316 317
-44 292 293 316 317
-45 292 293 326 327
-46 287 288 326 327
-47 287 288 321 322
-48 297 298 321 322
-49 302 303 207 208
-50 202 203 302 303
-51 202 312 203 313
-52 198 312 313 197
-53 198 308 197 307
-54 308 207 208 307
-55 237 238 317 318
-56 232 233 317 318
-57 232 233 327 328
-58 227 228 327 328
-59 322 323 227 228
-60 322 323 237 238
-61 191 213 214 195
-62 190 213 214 186
-63 190 223 224 186
-64 223 224 181 185
-65 181 185 218 219
-66 191 195 218 219
-67 221 243 244 225
-68 220 243 244 216
-69 220 253 254 216
-70 253 254 211 215
-71 211 215 248 249
-72 221 225 248 249
-73 255 258 259 251
-74 246 258 259 250
-75 246 268 269 250
-76 245 268 269 241
-77 264 245 241 263
-78 264 255 251 263
-79 266 270 273 274
-80 265 261 273 274
-81 265 261 283 284
-82 256 260 283 284
-83 256 278 279 260
-84 266 278 279 270
-85 288 289 281 285
-86 276 288 289 280
-87 276 298 299 280
-88 275 298 299 271
-89 275 271 293 294
-90 281 293 294 285
-91 300 303 304 296
-92 291 303 304 295
-93 291 313 314 295
-94 286 290 313 314
-95 286 308 309 290
-96 308 309 300 296
-97 319 311 315 318
-98 319 310 306 318
-99 310 306 328 329
-100 301 305 328 329
-101 301 323 324 305
-102 311 323 324 315
-103 210 320 206 316
-104 320 201 205 316
-105 330 201 205 326
-106 330 200 326 196
-107 200 321 325 196
-108 210 321 325 206
-109 209 226 208 230
-110 203 204 226 230
-111 203 236 204 240
-112 198 199 236 240
-113 198 231 199 235
-114 209 231 235 208
-115 193 194 228 229
-116 188 189 228 229
-117 188 189 238 239
-118 183 238 184 239
-119 233 234 183 184
-120 233 234 193 194
-121 331 332 194 195
-122 331 189 332 190
-123 341 342 189 190
-124 341 342 184 185
-125 336 337 184 185
-126 336 194 337 195
-127 224 225 346 347
-128 220 346 347 219
-129 220 356 357 219
-130 356 214 357 215
-131 352 214 215 351
-132 352 224 225 351
-133 254 255 334 335
-134 334 335 249 250
-135 344 345 249 250
-136 244 245 344 345
-137 244 245 339 340
-138 254 255 339 340
-139 269 270 349 350
-140 264 265 349 350
-141 264 265 359 360
-142 259 260 359 360
-143 354 355 259 260
-144 354 355 269 270
-145 332 333 284 285
-146 332 333 279 280
-147 342 343 279 280
-148 275 342 343 274
-149 275 337 338 274
-150 337 338 284 285
-151 299 300 347 348
-152 347 348 294 295
-153 357 358 294 295
-154 289 290 357 358
-155 352 353 289 290
-156 352 353 299 300
-157 331 335 314 315
-158 309 331 310 335
-159 341 309 310 345
-160 341 345 304 305
-161 336 304 305 340
-162 314 336 315 340
-163 330 346 350 329
-164 324 346 325 350
-165 356 324 325 360
-166 319 320 356 360
-167 319 320 355 351
-168 330 355 329 351
-169 209 210 333 334
-170 333 334 204 205
-171 343 344 204 205
-172 199 200 343 344
-173 199 200 338 339
-174 209 210 338 339
-175 348 239 349 240
-176 234 235 348 349
-177 234 235 358 359
-178 358 359 229 230
-179 353 354 229 230
-180 353 354 239 240
-181 4 5 64 65
-182 4 5 16 17
-183 16 17 118 119
-184 124 125 118 119
-185 124 125 64 65
-186 2 3 62 63
-187 2 3 14 15
-188 14 15 116 117
-189 122 123 116 117
-190 122 123 62 63
-191 66 1 6 61
-192 1 13 6 18
-193 13 115 18 120
-194 121 115 126 120
-195 66 121 126 61
-196 1 2 106 107
-197 1 2 52 53
-198 112 113 52 53
-199 112 113 172 173
-200 106 172 107 173
-201 5 104 6 105
-202 5 6 50 51
-203 110 111 50 51
-204 110 111 170 171
-205 104 170 105 171
-206 3 4 103 108
-207 3 4 49 54
-208 114 49 54 109
-209 114 169 174 109
-210 103 169 108 174
-211 11 70 71 10
-212 11 22 23 10
-213 22 23 61 62
-214 61 62 130 131
-215 70 71 130 131
-216 68 69 8 9
-217 8 9 20 21
-218 66 20 21 65
-219 66 128 129 65
-220 68 69 128 129
-221 12 67 72 7
-222 12 24 7 19
-223 24 19 63 64
-224 132 127 63 64
-225 132 67 72 127
-226 110 7 8 109
-227 58 59 7 8
-228 58 59 115 116
-229 178 179 115 116
-230 110 178 179 109
-231 11 12 113 114
-232 11 12 56 57
-233 56 57 119 120
-234 176 177 119 120
-235 176 177 113 114
-236 111 112 9 10
-237 55 60 9 10
-238 55 60 117 118
-239 180 117 118 175
-240 111 112 180 175
-241 77 13 14 76
-242 13 14 28 29
-243 67 68 28 29
-244 67 68 136 137
-245 77 136 137 76
-246 17 18 74 75
-247 26 27 17 18
-248 26 27 71 72
-249 134 135 71 72
-250 134 135 74 75
-251 78 15 16 73
-252 25 15 16 30
-253 25 69 70 30
-254 133 69 70 138
-255 78 133 138 73
-256 82 83 19 20
-257 34 35 19 20
-258 34 35 73 74
-259 143 73 74 142
-260 143 82 83 142
-261 23 24 80 81
-262 33 23 24 32
-263 33 77 78 32
-264 77 78 140 141
-265 80 81 140 141
-266 22 79 84 21
-267 22 36 31 21
-268 36 31 75 76
-269 144 139 75 76
-270 144 79 84 139
-271 88 89 25 26
-272 25 26 40 41
-273 79 80 40 41
-274 79 80 148 149
-275 88 89 148 149
-276 29 30 86 87
-277 38 39 29 30
-278 38 39 83 84
-279 146 147 83 84
-280 146 147 86 87
-281 90 27 28 85
-282 37 27 28 42
-283 37 81 82 42
-284 145 81 82 150
-285 90 145 150 85
-286 94 95 31 32
-287 46 47 31 32
-288 46 47 85 86
-289 154 155 85 86
-290 154 155 94 95
-291 35 36 92 93
-292 44 45 35 36
-293 44 45 89 90
-294 89 90 152 153
-295 92 93 152 153
-296 33 34 91 96
-297 33 34 48 43
-298 88 48 43 87
-299 88 156 151 87
-300 156 91 96 151
-301 100 101 37 38
-302 37 38 49 50
-303 91 92 49 50
-304 91 92 160 161
-305 100 101 160 161
-306 99 41 42 98
-307 41 42 53 54
-308 95 96 53 54
-309 158 159 95 96
-310 99 158 159 98
-311 102 39 40 97
-312 39 40 51 52
-313 93 94 51 52
-314 157 93 94 162
-315 102 157 162 97
-316 44 103 104 43
-317 44 55 56 43
-318 55 56 97 98
-319 166 167 97 98
-320 166 167 103 104
-321 47 48 107 108
-322 47 48 59 60
-323 101 102 59 60
-324 165 101 102 164
-325 165 107 108 164
-326 45 46 105 106
-327 45 46 57 58
-328 99 100 57 58
-329 99 100 168 163
-330 168 105 106 163
-331 121 122 157 158
-332 121 122 145 146
-333 145 146 169 170
-334 133 134 169 170
-335 133 134 157 158
-336 125 126 161 162
-337 125 126 149 150
-338 149 150 173 174
-339 137 138 173 174
-340 137 138 161 162
-341 123 124 159 160
-342 123 124 147 148
-343 147 148 171 172
-344 135 136 171 172
-345 135 136 159 160
-346 127 128 163 164
-347 127 128 151 152
-348 176 151 152 175
-349 176 139 140 175
-350 139 140 163 164
-351 132 167 168 131
-352 132 155 156 131
-353 155 156 179 180
-354 143 144 179 180
-355 143 144 167 168
-356 165 166 129 130
-357 154 129 130 153
-358 154 177 178 153
-359 177 178 141 142
-360 165 166 141 142
0

**************