C4graphGraph forms for C4 [ 360, 178 ] = BGCG(UG(ATD[60,16]),C_3,{1,4})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 178 ] = BGCG(UG(ATD[60,16]),C_3,{1,4}).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {58, 63}, {298, 303}, {178, 183}, {120, 126}, {240, 246}, {178, 184}, {174, 190}, {294, 310}, {234, 250}, {238, 254}, {239, 255}, {174, 191}, {294, 311}, {44, 62}, {297, 315}, {164, 182}, {44, 63}, {297, 314}, {296, 315}, {110, 125}, {164, 183}, {230, 245}, {110, 122}, {296, 316}, {230, 242}, {233, 252}, {175, 185}, {295, 305}, {106, 125}, {295, 304}, {175, 184}, {226, 245}, {102, 124}, {298, 304}, {163, 190}, {224, 253}, {163, 189}, {88, 122}, {208, 242}, {90, 121}, {210, 241}, {88, 124}, {208, 244}, {220, 249}, {92, 123}, {212, 243}, {223, 248}, {148, 188}, {86, 127}, {148, 189}, {222, 244}, {212, 248}, {273, 317}, {273, 316}, {283, 310}, {283, 309}, {76, 126}, {284, 302}, {196, 246}, {206, 252}, {284, 303}, {75, 127}, {195, 247}, {207, 251}, {76, 123}, {78, 121}, {196, 243}, {198, 241}, {268, 308}, {194, 251}, {268, 309}, {206, 247}, {1, 61}, {2, 62}, {195, 255}, {129, 191}, {2, 61}, {10, 74}, {281, 345}, {133, 197}, {130, 194}, {41, 105}, {13, 77}, {161, 225}, {3, 66}, {292, 357}, {129, 192}, {52, 117}, {9, 72}, {172, 237}, {3, 65}, {292, 358}, {282, 344}, {258, 320}, {52, 118}, {42, 104}, {18, 80}, {138, 200}, {162, 224}, {172, 238}, {1, 66}, {291, 352}, {282, 345}, {281, 346}, {258, 321}, {133, 198}, {130, 193}, {51, 112}, {42, 105}, {41, 106}, {18, 81}, {13, 78}, {10, 73}, {7, 68}, {138, 201}, {161, 226}, {162, 225}, {171, 232}, {7, 67}, {274, 342}, {131, 199}, {34, 102}, {11, 79}, {154, 222}, {16, 85}, {256, 325}, {136, 205}, {16, 86}, {289, 359}, {265, 335}, {256, 326}, {136, 206}, {49, 119}, {25, 95}, {145, 215}, {169, 239}, {4, 67}, {289, 358}, {274, 341}, {49, 118}, {34, 101}, {154, 221}, {169, 238}, {185, 254}, {189, 250}, {20, 92}, {275, 347}, {260, 332}, {35, 107}, {146, 218}, {167, 239}, {181, 253}, {6, 79}, {145, 216}, {146, 219}, {147, 218}, {134, 204}, {147, 217}, {149, 223}, {5, 78}, {280, 339}, {131, 200}, {40, 99}, {4, 72}, {280, 340}, {270, 322}, {261, 329}, {40, 100}, {30, 82}, {21, 89}, {5, 73}, {171, 231}, {128, 205}, {134, 203}, {9, 71}, {272, 350}, {262, 328}, {32, 110}, {22, 88}, {20, 91}, {275, 348}, {272, 351}, {270, 321}, {262, 329}, {261, 330}, {260, 331}, {35, 108}, {32, 111}, {30, 81}, {22, 89}, {21, 90}, {182, 249}, {53, 101}, {285, 333}, {53, 100}, {285, 332}, {271, 350}, {6, 84}, {271, 349}, {128, 210}, {38, 116}, {8, 90}, {38, 117}, {39, 116}, {37, 113}, {39, 115}, {36, 113}, {269, 344}, {37, 112}, {36, 114}, {286, 328}, {257, 343}, {137, 223}, {12, 91}, {132, 211}, {47, 120}, {167, 240}, {28, 68}, {266, 338}, {47, 119}, {140, 212}, {28, 69}, {286, 327}, {267, 338}, {266, 339}, {265, 336}, {135, 222}, {14, 84}, {269, 343}, {267, 337}, {11, 80}, {51, 111}, {263, 347}, {132, 216}, {141, 209}, {150, 202}, {153, 197}, {8, 85}, {263, 346}, {257, 348}, {14, 83}, {153, 196}, {135, 217}, {259, 349}, {142, 208}, {140, 211}, {141, 210}, {142, 209}, {150, 201}, {24, 120}, {264, 360}, {144, 240}, {19, 114}, {259, 354}, {139, 234}, {59, 94}, {299, 334}, {179, 214}, {48, 86}, {299, 333}, {288, 326}, {59, 93}, {168, 206}, {179, 213}, {48, 87}, {288, 327}, {168, 207}, {15, 102}, {166, 207}, {24, 115}, {264, 355}, {12, 96}, {290, 334}, {50, 94}, {33, 77}, {143, 227}, {33, 76}, {290, 335}, {50, 95}, {43, 70}, {137, 228}, {143, 226}, {15, 97}, {300, 322}, {60, 82}, {43, 69}, {139, 229}, {60, 83}, {300, 323}, {45, 93}, {293, 341}, {54, 70}, {165, 213}, {173, 221}, {31, 110}, {293, 340}, {54, 71}, {45, 92}, {151, 230}, {165, 212}, {173, 220}, {31, 109}, {278, 356}, {57, 75}, {151, 229}, {158, 236}, {177, 195}, {56, 75}, {279, 356}, {278, 357}, {57, 74}, {158, 237}, {159, 236}, {176, 195}, {177, 194}, {56, 76}, {279, 355}, {277, 353}, {157, 233}, {159, 235}, {176, 196}, {29, 104}, {277, 352}, {276, 353}, {149, 224}, {156, 233}, {157, 232}, {17, 103}, {276, 354}, {55, 65}, {46, 88}, {156, 234}, {166, 208}, {55, 64}, {287, 360}, {26, 98}, {287, 359}, {155, 227}, {25, 96}, {46, 87}, {27, 98}, {26, 99}, {27, 97}, {58, 64}, {29, 103}, {144, 235}, {160, 219}, {23, 107}, {291, 351}, {160, 220}, {170, 214}, {17, 108}, {23, 106}, {170, 215}, {19, 109}, {152, 230}, {180, 202}, {152, 231}, {155, 228}, {180, 203}, {63, 180}, {63, 171}, {61, 152}, {62, 142}, {126, 204}, {61, 133}, {126, 199}, {125, 198}, {124, 192}, {125, 193}, {62, 129}, {85, 149}, {74, 139}, {123, 186}, {108, 174}, {123, 185}, {111, 173}, {121, 186}, {127, 188}, {97, 165}, {127, 187}, {119, 179}, {89, 159}, {97, 167}, {65, 134}, {124, 187}, {107, 172}, {91, 156}, {87, 144}, {69, 130}, {83, 155}, {74, 131}, {106, 163}, {91, 146}, {69, 143}, {75, 135}, {122, 182}, {121, 181}, {108, 160}, {80, 156}, {93, 147}, {101, 171}, {66, 141}, {122, 181}, {82, 157}, {113, 160}, {86, 132}, {87, 131}, {112, 164}, {95, 139}, {68, 145}, {116, 161}, {90, 140}, {102, 176}, {65, 153}, {81, 137}, {67, 154}, {81, 136}, {78, 151}, {71, 155}, {92, 128}, {73, 148}, {77, 147}, {120, 166}, {85, 138}, {117, 170}, {107, 180}, {82, 178}, {80, 177}, {117, 151}, {84, 176}, {105, 141}, {100, 129}, {112, 150}, {66, 165}, {103, 128}, {79, 168}, {73, 161}, {96, 136}, {79, 167}, {115, 154}, {71, 173}, {115, 152}, {68, 168}, {72, 164}, {70, 170}, {100, 137}, {104, 133}, {64, 174}, {72, 166}, {77, 162}, {99, 140}, {111, 159}, {119, 135}, {118, 134}, {114, 130}, {94, 175}, {103, 150}, {67, 177}, {64, 179}, {109, 158}, {95, 172}, {70, 178}, {96, 148}, {93, 169}, {101, 144}, {113, 132}, {98, 149}, {105, 158}, {114, 138}, {118, 143}, {83, 169}, {116, 142}, {104, 146}, {84, 175}, {98, 153}, {89, 162}, {109, 145}, {94, 163}, {99, 157}, {53, 311}, {48, 308}, {50, 310}, {54, 304}, {57, 307}, {59, 304}, {58, 310}, {32, 301}, {48, 319}, {33, 305}, {47, 319}, {41, 313}, {34, 307}, {60, 303}, {35, 311}, {44, 312}, {46, 312}, {42, 317}, {51, 303}, {45, 306}, {13, 301}, {31, 318}, {23, 309}, {28, 313}, {27, 317}, {9, 302}, {21, 306}, {19, 314}, {25, 308}, {11, 314}, {15, 315}, {22, 302}, {6, 316}, {7, 315}, {1, 318}, {14, 305}, {10, 309}, {3, 316}, {16, 336}, {7, 326}, {34, 355}, {26, 344}, {32, 355}, {8, 332}, {25, 349}, {17, 340}, {46, 360}, {20, 339}, {30, 343}, {40, 353}, {2, 328}, {12, 326}, {1, 330}, {4, 328}, {44, 352}, {28, 336}, {21, 345}, {11, 327}, {24, 341}, {41, 356}, {3, 332}, {29, 338}, {17, 321}, {16, 321}, {26, 331}, {4, 342}, {13, 344}, {27, 333}, {18, 325}, {50, 357}, {29, 325}, {5, 350}, {2, 350}, {59, 359}, {19, 335}, {9, 340}, {20, 330}, {5, 346}, {24, 327}, {8, 343}, {35, 323}, {42, 329}, {36, 320}, {43, 334}, {51, 341}, {37, 322}, {60, 347}, {10, 354}, {15, 359}, {14, 358}, {53, 351}, {54, 348}, {12, 353}, {6, 360}, {56, 342}, {39, 329}, {36, 331}, {52, 347}, {18, 354}, {23, 358}, {43, 346}, {22, 356}, {49, 323}, {33, 338}, {55, 324}, {40, 348}, {37, 339}, {39, 351}, {58, 322}, {55, 334}, {57, 320}, {31, 357}, {38, 349}, {52, 335}, {45, 337}, {56, 324}, {49, 333}, {30, 352}, {47, 337}, {38, 345}, {187, 297}, {184, 299}, {183, 291}, {190, 298}, {191, 293}, {183, 300}, {188, 288}, {190, 290}, {184, 294}, {181, 272}, {186, 285}, {185, 273}, {187, 274}, {255, 342}, {191, 275}, {252, 336}, {255, 337}, {182, 262}, {246, 324}, {248, 330}, {188, 265}, {252, 331}, {189, 263}, {254, 324}, {251, 320}, {248, 325}, {254, 323}, {186, 261}, {205, 269}, {253, 317}, {250, 314}, {194, 259}, {249, 312}, {243, 306}, {228, 294}, {243, 305}, {231, 293}, {241, 306}, {253, 318}, {250, 313}, {247, 308}, {217, 285}, {251, 319}, {247, 307}, {239, 299}, {209, 279}, {217, 287}, {207, 264}, {244, 307}, {211, 276}, {227, 292}, {201, 257}, {198, 271}, {246, 319}, {201, 256}, {209, 282}, {245, 318}, {218, 273}, {244, 312}, {245, 313}, {193, 268}, {214, 283}, {197, 267}, {249, 311}, {219, 277}, {205, 258}, {227, 300}, {237, 290}, {223, 270}, {215, 259}, {216, 268}, {221, 264}, {210, 260}, {218, 269}, {193, 281}, {199, 287}, {203, 275}, {216, 256}, {211, 266}, {192, 284}, {242, 302}, {200, 276}, {241, 301}, {220, 257}, {192, 286}, {213, 267}, {197, 282}, {202, 277}, {219, 260}, {242, 301}, {202, 298}, {200, 297}, {237, 271}, {204, 296}, {225, 261}, {232, 270}, {199, 288}, {234, 258}, {238, 263}, {203, 289}, {224, 266}, {236, 262}, {204, 295}, {229, 265}, {240, 286}, {231, 279}, {214, 295}, {233, 280}, {215, 292}, {229, 278}, {213, 289}, {232, 284}, {236, 281}, {222, 296}, {225, 278}, {226, 283}, {235, 274}, {235, 272}, {228, 280}, {221, 291} }>;

(II) A more general form is to represent the graph as the orbit of {58, 63} under the group generated by the following permutations:

a: (1, 121)(2, 151)(3, 140)(4, 139)(5, 152)(6, 132)(7, 131)(8, 165)(9, 172)(10, 154)(11, 127)(12, 126)(13, 133)(14, 160)(15, 138)(16, 167)(17, 169)(18, 135)(19, 124)(20, 123)(21, 141)(22, 158)(23, 173)(24, 148)(25, 166)(26, 153)(27, 149)(28, 144)(29, 147)(30, 179)(31, 122)(32, 125)(33, 146)(34, 130)(35, 155)(36, 176)(37, 175)(38, 142)(39, 161)(40, 134)(41, 159)(42, 162)(43, 171)(44, 170)(45, 128)(46, 145)(47, 136)(48, 168)(49, 137)(50, 164)(51, 163)(52, 129)(53, 143)(54, 180)(55, 157)(56, 156)(57, 177)(58, 178)(59, 150)(60, 174)(61, 78)(62, 117)(63, 70)(64, 82)(65, 99)(66, 90)(67, 74)(68, 87)(69, 101)(71, 107)(72, 95)(73, 115)(75, 80)(76, 91)(77, 104)(79, 86)(81, 119)(83, 108)(84, 113)(85, 97)(88, 109)(89, 105)(93, 103)(94, 112)(96, 120)(100, 118)(102, 114)(106, 111)(181, 318)(182, 357)(183, 310)(184, 322)(185, 339)(186, 330)(187, 314)(188, 327)(189, 341)(190, 303)(191, 347)(192, 335)(193, 355)(194, 307)(195, 320)(196, 331)(197, 344)(198, 301)(199, 326)(200, 315)(201, 359)(202, 304)(203, 348)(204, 353)(205, 337)(206, 319)(207, 308)(208, 349)(209, 345)(210, 306)(211, 316)(212, 332)(213, 343)(214, 352)(215, 312)(216, 360)(217, 325)(218, 338)(219, 305)(220, 358)(221, 309)(222, 354)(223, 333)(224, 317)(225, 329)(226, 351)(227, 311)(228, 323)(229, 328)(230, 350)(231, 346)(232, 334)(233, 324)(234, 342)(235, 313)(236, 356)(237, 302)(238, 340)(239, 321)(240, 336)(242, 271)(243, 260)(244, 259)(245, 272)(246, 252)(247, 251)(248, 285)(249, 292)(250, 274)(254, 280)(255, 258)(256, 287)(257, 289)(262, 278)(263, 293)(264, 268)(265, 286)(266, 273)(267, 269)(270, 299)(276, 296)(277, 295)(279, 281)(283, 291)(284, 290)(294, 300)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 14)(10, 16)(12, 19)(13, 21)(15, 24)(17, 23)(18, 28)(20, 31)(22, 33)(25, 36)(26, 38)(27, 39)(29, 41)(30, 43)(32, 45)(34, 47)(37, 50)(40, 52)(44, 55)(46, 56)(48, 57)(49, 53)(51, 59)(54, 60)(61, 66)(62, 65)(63, 64)(67, 79)(68, 80)(69, 81)(70, 82)(71, 83)(72, 84)(73, 85)(74, 86)(75, 87)(76, 88)(77, 89)(78, 90)(91, 109)(92, 110)(93, 111)(94, 112)(95, 113)(96, 114)(97, 115)(98, 116)(99, 117)(100, 118)(101, 119)(102, 120)(103, 106)(104, 105)(107, 108)(122, 123)(124, 126)(125, 128)(127, 131)(129, 134)(130, 136)(132, 139)(133, 141)(135, 144)(137, 143)(138, 148)(140, 151)(142, 153)(145, 156)(146, 158)(147, 159)(149, 161)(150, 163)(152, 165)(154, 167)(157, 170)(160, 172)(164, 175)(166, 176)(168, 177)(169, 173)(171, 179)(174, 180)(181, 186)(182, 185)(183, 184)(187, 199)(188, 200)(189, 201)(190, 202)(191, 203)(192, 204)(193, 205)(194, 206)(195, 207)(196, 208)(197, 209)(198, 210)(211, 229)(212, 230)(213, 231)(214, 232)(215, 233)(216, 234)(217, 235)(218, 236)(219, 237)(220, 238)(221, 239)(222, 240)(223, 226)(224, 225)(227, 228)(242, 243)(244, 246)(245, 248)(247, 251)(249, 254)(250, 256)(252, 259)(253, 261)(255, 264)(257, 263)(258, 268)(260, 271)(262, 273)(265, 276)(266, 278)(267, 279)(269, 281)(270, 283)(272, 285)(274, 287)(277, 290)(280, 292)(284, 295)(286, 296)(288, 297)(289, 293)(291, 299)(294, 300)(301, 306)(302, 305)(303, 304)(307, 319)(308, 320)(309, 321)(310, 322)(311, 323)(312, 324)(313, 325)(314, 326)(315, 327)(316, 328)(317, 329)(318, 330)(331, 349)(332, 350)(333, 351)(334, 352)(335, 353)(336, 354)(337, 355)(338, 356)(339, 357)(340, 358)(341, 359)(342, 360)(343, 346)(344, 345)(347, 348)
c: (1, 2)(3, 44)(4, 20)(5, 31)(6, 30)(7, 12)(8, 46)(9, 45)(10, 19)(11, 18)(13, 32)(14, 60)(15, 40)(16, 48)(17, 47)(21, 22)(23, 52)(24, 29)(25, 28)(26, 34)(27, 53)(33, 51)(35, 49)(36, 57)(37, 56)(38, 41)(39, 42)(43, 50)(54, 59)(55, 58)(62, 66)(63, 65)(67, 91)(68, 96)(69, 95)(70, 94)(71, 93)(72, 92)(73, 109)(74, 114)(75, 113)(76, 112)(77, 111)(78, 110)(79, 81)(82, 84)(85, 87)(88, 90)(97, 100)(98, 101)(99, 102)(103, 120)(104, 115)(105, 116)(106, 117)(107, 118)(108, 119)(121, 122)(123, 164)(124, 140)(125, 151)(126, 150)(127, 132)(128, 166)(129, 165)(130, 139)(131, 138)(133, 152)(134, 180)(135, 160)(136, 168)(137, 167)(141, 142)(143, 172)(144, 149)(145, 148)(146, 154)(147, 173)(153, 171)(155, 169)(156, 177)(157, 176)(158, 161)(159, 162)(163, 170)(174, 179)(175, 178)(182, 186)(183, 185)(187, 211)(188, 216)(189, 215)(190, 214)(191, 213)(192, 212)(193, 229)(194, 234)(195, 233)(196, 232)(197, 231)(198, 230)(199, 201)(202, 204)(205, 207)(208, 210)(217, 220)(218, 221)(219, 222)(223, 240)(224, 235)(225, 236)(226, 237)(227, 238)(228, 239)(241, 242)(243, 284)(244, 260)(245, 271)(246, 270)(247, 252)(248, 286)(249, 285)(250, 259)(251, 258)(253, 272)(254, 300)(255, 280)(256, 288)(257, 287)(261, 262)(263, 292)(264, 269)(265, 268)(266, 274)(267, 293)(273, 291)(275, 289)(276, 297)(277, 296)(278, 281)(279, 282)(283, 290)(294, 299)(295, 298)(302, 306)(303, 305)(307, 331)(308, 336)(309, 335)(310, 334)(311, 333)(312, 332)(313, 349)(314, 354)(315, 353)(316, 352)(317, 351)(318, 350)(319, 321)(322, 324)(325, 327)(328, 330)(337, 340)(338, 341)(339, 342)(343, 360)(344, 355)(345, 356)(346, 357)(347, 358)(348, 359)
d: (2, 31)(3, 20)(4, 19)(5, 32)(6, 12)(7, 11)(8, 45)(9, 52)(10, 34)(14, 40)(15, 18)(16, 47)(17, 49)(22, 38)(23, 53)(24, 28)(25, 46)(26, 33)(27, 29)(30, 59)(36, 56)(37, 55)(39, 41)(43, 51)(44, 50)(54, 60)(61, 318)(62, 357)(63, 310)(64, 322)(65, 339)(66, 330)(67, 314)(68, 327)(69, 341)(70, 303)(71, 347)(72, 335)(73, 355)(74, 307)(75, 320)(76, 331)(77, 344)(78, 301)(79, 326)(80, 315)(81, 359)(82, 304)(83, 348)(84, 353)(85, 337)(86, 319)(87, 308)(88, 349)(89, 345)(90, 306)(91, 316)(92, 332)(93, 343)(94, 352)(95, 312)(96, 360)(97, 325)(98, 338)(99, 305)(100, 358)(101, 309)(102, 354)(103, 333)(104, 317)(105, 329)(106, 351)(107, 311)(108, 323)(109, 328)(110, 350)(111, 346)(112, 334)(113, 324)(114, 342)(115, 313)(116, 356)(117, 302)(118, 340)(119, 321)(120, 336)(121, 241)(122, 271)(123, 260)(124, 259)(125, 272)(126, 252)(127, 251)(128, 285)(129, 292)(130, 274)(131, 247)(132, 246)(133, 253)(134, 280)(135, 258)(136, 287)(137, 289)(138, 255)(139, 244)(140, 243)(141, 261)(142, 278)(143, 293)(144, 268)(145, 286)(146, 273)(147, 269)(148, 264)(149, 267)(150, 299)(151, 242)(152, 245)(153, 266)(154, 250)(155, 275)(156, 296)(157, 295)(158, 262)(159, 281)(160, 254)(161, 279)(162, 282)(163, 291)(164, 290)(165, 248)(166, 265)(167, 256)(168, 288)(169, 257)(170, 284)(171, 283)(172, 249)(173, 263)(174, 300)(175, 277)(176, 276)(177, 297)(178, 298)(179, 270)(180, 294)(181, 198)(182, 237)(183, 190)(184, 202)(185, 219)(186, 210)(187, 194)(188, 207)(189, 221)(191, 227)(192, 215)(193, 235)(195, 200)(196, 211)(197, 224)(199, 206)(201, 239)(203, 228)(204, 233)(205, 217)(208, 229)(209, 225)(213, 223)(214, 232)(216, 240)(220, 238)(222, 234)(226, 231)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 178 ]
360
-1 66 330 61 318
-2 61 62 328 350
-3 66 332 316 65
-4 67 342 72 328
-5 78 346 73 350
-6 79 84 316 360
-7 67 68 315 326
-8 90 332 343 85
-9 71 302 72 340
-10 309 354 73 74
-11 79 80 314 327
-12 353 91 326 96
-13 77 78 344 301
-14 83 358 84 305
-15 102 315 359 97
-16 321 336 85 86
-17 321 103 108 340
-18 354 80 81 325
-19 114 335 314 109
-20 330 91 92 339
-21 89 90 345 306
-22 88 89 356 302
-23 309 358 106 107
-24 341 115 327 120
-25 308 95 96 349
-26 99 331 344 98
-27 333 97 317 98
-28 68 69 313 336
-29 103 104 325 338
-30 352 343 81 82
-31 110 357 109 318
-32 110 111 355 301
-33 77 305 338 76
-34 101 102 355 307
-35 311 323 107 108
-36 320 331 113 114
-37 112 113 322 339
-38 345 116 117 349
-39 115 116 329 351
-40 99 100 353 348
-41 356 313 105 106
-42 104 105 317 329
-43 69 70 334 346
-44 352 312 62 63
-45 92 93 337 306
-46 88 312 360 87
-47 319 337 119 120
-48 308 319 86 87
-49 333 323 118 119
-50 310 357 94 95
-51 341 111 112 303
-52 335 347 117 118
-53 100 101 311 351
-54 70 71 304 348
-55 334 324 64 65
-56 342 324 75 76
-57 320 74 75 307
-58 310 322 63 64
-59 93 94 304 359
-60 82 83 303 347
-61 1 133 2 152
-62 44 2 129 142
-63 44 58 180 171
-64 55 58 179 174
-65 55 134 3 153
-66 165 1 3 141
-67 154 177 4 7
-68 145 168 28 7
-69 143 28 130 43
-70 178 170 43 54
-71 155 173 9 54
-72 166 4 9 164
-73 5 148 161 10
-74 57 139 10 131
-75 56 57 135 127
-76 33 56 123 126
-77 33 13 147 162
-78 121 13 5 151
-79 11 167 168 6
-80 11 177 156 18
-81 136 137 18 30
-82 178 157 60 30
-83 155 14 169 60
-84 176 14 6 175
-85 16 138 149 8
-86 132 48 16 127
-87 144 46 48 131
-88 22 122 46 124
-89 22 159 162 21
-90 121 8 140 21
-91 12 156 146 20
-92 45 123 128 20
-93 45 59 147 169
-94 59 50 163 175
-95 25 50 139 172
-96 12 25 136 148
-97 165 167 15 27
-98 26 27 149 153
-99 157 26 40 140
-100 137 40 129 53
-101 34 144 171 53
-102 176 34 124 15
-103 17 29 128 150
-104 133 146 29 42
-105 158 41 42 141
-106 23 125 41 163
-107 23 35 180 172
-108 35 17 160 174
-109 145 158 19 31
-110 122 125 31 32
-111 159 51 173 32
-112 37 51 150 164
-113 132 36 37 160
-114 36 138 19 130
-115 154 24 39 152
-116 38 39 161 142
-117 38 170 52 151
-118 143 134 49 52
-119 47 135 179 49
-120 166 24 47 126
-121 78 90 181 186
-122 88 110 181 182
-123 92 185 76 186
-124 88 187 102 192
-125 110 198 193 106
-126 199 204 76 120
-127 187 188 75 86
-128 210 92 103 205
-129 100 191 192 62
-130 69 114 193 194
-131 199 200 74 87
-132 211 113 216 86
-133 198 104 61 197
-134 203 204 118 65
-135 222 217 75 119
-136 81 205 96 206
-137 100 223 81 228
-138 200 201 114 85
-139 234 95 74 229
-140 99 90 211 212
-141 66 209 210 105
-142 209 116 62 208
-143 69 226 227 118
-144 101 235 240 87
-145 68 215 216 109
-146 91 104 218 219
-147 77 93 217 218
-148 188 189 73 96
-149 223 224 85 98
-150 112 201 103 202
-151 78 117 229 230
-152 231 115 61 230
-153 196 65 98 197
-154 67 221 222 115
-155 71 83 227 228
-156 233 80 91 234
-157 99 232 233 82
-158 236 105 237 109
-159 89 111 235 236
-160 220 113 108 219
-161 225 116 226 73
-162 77 89 224 225
-163 189 190 94 106
-164 112 72 182 183
-165 66 212 213 97
-166 72 207 120 208
-167 79 239 97 240
-168 68 79 206 207
-169 93 83 238 239
-170 70 214 215 117
-171 231 232 101 63
-172 237 95 238 107
-173 220 111 221 71
-174 190 191 64 108
-175 94 84 184 185
-176 102 84 195 196
-177 67 80 194 195
-178 70 82 183 184
-179 213 214 64 119
-180 202 203 63 107
-181 121 253 122 272
-182 122 249 262 164
-183 178 300 291 164
-184 178 299 294 175
-185 254 123 273 175
-186 121 123 261 285
-187 297 124 127 274
-188 265 288 148 127
-189 148 250 163 263
-190 298 290 163 174
-191 275 293 129 174
-192 286 124 129 284
-193 125 268 281 130
-194 177 259 130 251
-195 176 177 255 247
-196 176 243 246 153
-197 133 267 282 153
-198 133 125 271 241
-199 287 288 126 131
-200 297 276 138 131
-201 256 257 138 150
-202 298 277 180 150
-203 275 134 289 180
-204 134 126 295 296
-205 136 258 269 128
-206 168 136 247 252
-207 264 166 168 251
-208 242 166 244 142
-209 279 282 141 142
-210 128 260 141 241
-211 132 276 266 140
-212 165 243 248 140
-213 165 179 267 289
-214 179 170 283 295
-215 145 170 259 292
-216 132 145 256 268
-217 287 135 147 285
-218 146 147 269 273
-219 277 146 160 260
-220 257 160 249 173
-221 154 264 291 173
-222 154 244 135 296
-223 137 149 248 270
-224 253 266 149 162
-225 278 161 162 261
-226 143 245 161 283
-227 143 155 300 292
-228 155 137 280 294
-229 265 278 139 151
-230 242 245 151 152
-231 279 171 293 152
-232 157 171 270 284
-233 156 157 280 252
-234 156 258 139 250
-235 144 159 272 274
-236 158 159 281 262
-237 158 290 172 271
-238 254 169 172 263
-239 167 255 299 169
-240 286 144 167 246
-241 198 210 301 306
-242 301 302 208 230
-243 212 305 196 306
-244 222 312 208 307
-245 313 226 230 318
-246 319 324 196 240
-247 308 195 206 307
-248 330 212 223 325
-249 220 311 312 182
-250 189 234 313 314
-251 319 320 194 207
-252 331 233 336 206
-253 224 181 317 318
-254 323 324 238 185
-255 342 337 195 239
-256 201 325 216 326
-257 220 343 201 348
-258 320 321 234 205
-259 354 215 194 349
-260 210 331 332 219
-261 330 225 186 329
-262 236 182 328 329
-263 189 346 347 238
-264 221 355 360 207
-265 188 335 336 229
-266 211 224 338 339
-267 213 337 338 197
-268 308 309 193 216
-269 343 344 205 218
-270 232 321 223 322
-271 198 237 349 350
-272 235 181 350 351
-273 316 185 218 317
-274 187 341 342 235
-275 191 203 347 348
-276 353 200 211 354
-277 352 353 202 219
-278 356 225 357 229
-279 209 231 355 356
-280 233 228 339 340
-281 345 236 346 193
-282 209 344 345 197
-283 309 310 214 226
-284 232 192 302 303
-285 332 333 217 186
-286 192 327 240 328
-287 199 359 217 360
-288 188 199 326 327
-289 213 203 358 359
-290 190 334 335 237
-291 352 221 183 351
-292 357 215 358 227
-293 231 341 191 340
-294 310 311 184 228
-295 214 204 304 305
-296 222 204 315 316
-297 187 200 314 315
-298 190 202 303 304
-299 333 334 184 239
-300 322 323 183 227
-301 242 13 32 241
-302 22 242 9 284
-303 298 60 51 284
-304 298 59 295 54
-305 33 243 14 295
-306 45 243 21 241
-307 34 57 244 247
-308 25 48 268 247
-309 23 268 283 10
-310 58 50 283 294
-311 35 249 294 53
-312 44 46 244 249
-313 245 28 41 250
-314 11 297 19 250
-315 297 15 7 296
-316 3 6 273 296
-317 253 27 42 273
-318 253 1 245 31
-319 47 48 246 251
-320 57 36 258 251
-321 16 258 17 270
-322 58 300 37 270
-323 254 35 300 49
-324 55 56 254 246
-325 256 248 18 29
-326 12 288 256 7
-327 11 286 24 288
-328 286 2 4 262
-329 39 261 42 262
-330 1 248 261 20
-331 36 26 260 252
-332 3 260 8 285
-333 299 27 49 285
-334 55 299 290 43
-335 265 290 19 52
-336 265 16 28 252
-337 45 255 47 267
-338 33 266 267 29
-339 266 37 280 20
-340 280 17 293 9
-341 24 51 293 274
-342 56 255 4 274
-343 257 269 8 30
-344 13 26 269 282
-345 38 281 282 21
-346 5 281 43 263
-347 275 60 52 263
-348 275 257 40 54
-349 25 38 259 271
-350 2 5 271 272
-351 291 39 272 53
-352 44 277 291 30
-353 12 276 277 40
-354 276 259 18 10
-355 264 34 279 32
-356 22 278 279 41
-357 278 50 292 31
-358 23 14 289 292
-359 287 289 15 59
-360 264 287 46 6
0

**************