C4graphGraph forms for C4 [ 360, 191 ] = BGCG(UG(Rmap(180,4){5,4|5}_8);K2;{1,2})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 191 ] = BGCG(UG(Rmap(180,4){5,4|5}_8);K2;{1,2}).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {156, 184}, {144, 182}, {147, 184}, {146, 188}, {140, 186}, {143, 185}, {131, 185}, {129, 190}, {149, 213}, {156, 221}, {161, 224}, {145, 210}, {136, 207}, {130, 202}, {179, 251}, {149, 223}, {157, 215}, {128, 203}, {172, 231}, {170, 230}, {178, 254}, {132, 203}, {147, 195}, {159, 207}, {155, 202}, {172, 253}, {161, 240}, {150, 196}, {160, 242}, {133, 214}, {180, 231}, {169, 250}, {128, 212}, {165, 241}, {141, 216}, {177, 230}, {148, 204}, {166, 254}, {164, 252}, {139, 210}, {171, 242}, {170, 243}, {169, 240}, {131, 217}, {151, 205}, {173, 241}, {139, 214}, {157, 195}, {135, 216}, {152, 199}, {156, 252}, {149, 244}, {165, 196}, {151, 245}, {159, 253}, {161, 194}, {163, 199}, {137, 236}, {163, 198}, {143, 233}, {131, 235}, {172, 197}, {132, 239}, {133, 238}, {151, 251}, {148, 249}, {164, 201}, {141, 226}, {173, 194}, {170, 197}, {130, 243}, {136, 249}, {135, 245}, {144, 228}, {158, 235}, {162, 215}, {147, 229}, {146, 234}, {180, 204}, {167, 223}, {145, 232}, {150, 239}, {155, 226}, {158, 228}, {175, 213}, {129, 250}, {149, 233}, {167, 219}, {150, 234}, {137, 244}, {180, 201}, {74, 202}, {73, 200}, {119, 246}, {99, 225}, {54, 181}, {85, 214}, {56, 187}, {107, 238}, {71, 193}, {67, 196}, {100, 227}, {65, 201}, {75, 195}, {109, 229}, {125, 247}, {50, 185}, {124, 247}, {73, 197}, {96, 237}, {57, 183}, {53, 186}, {72, 216}, {90, 202}, {77, 220}, {90, 203}, {83, 193}, {41, 186}, {82, 198}, {69, 208}, {80, 198}, {122, 236}, {119, 224}, {71, 223}, {110, 246}, {113, 232}, {33, 187}, {39, 189}, {37, 190}, {67, 216}, {66, 222}, {32, 190}, {97, 255}, {34, 189}, {65, 225}, {81, 241}, {79, 239}, {24, 185}, {83, 242}, {96, 193}, {113, 211}, {91, 248}, {92, 255}, {28, 184}, {92, 248}, {80, 244}, {120, 220}, {127, 219}, {88, 253}, {89, 252}, {101, 192}, {120, 222}, {17, 182}, {68, 227}, {23, 191}, {71, 239}, {68, 236}, {116, 221}, {112, 218}, {30, 181}, {82, 254}, {98, 206}, {77, 224}, {108, 193}, {103, 200}, {115, 220}, {123, 212}, {93, 237}, {74, 251}, {76, 253}, {111, 222}, {113, 192}, {87, 229}, {90, 232}, {11, 184}, {105, 218}, {126, 205}, {11, 191}, {124, 200}, {80, 229}, {100, 209}, {79, 249}, {70, 241}, {102, 209}, {14, 182}, {118, 206}, {5, 188}, {75, 242}, {66, 251}, {105, 208}, {82, 232}, {69, 254}, {1, 188}, {93, 227}, {95, 225}, {109, 211}, {102, 217}, {111, 208}, {121, 198}, {15, 207}, {58, 250}, {61, 252}, {118, 183}, {25, 219}, {29, 223}, {124, 190}, {127, 189}, {23, 212}, {30, 221}, {6, 194}, {47, 235}, {26, 222}, {8, 205}, {41, 236}, {30, 219}, {6, 192}, {43, 237}, {19, 212}, {122, 189}, {123, 188}, {21, 221}, {59, 243}, {114, 186}, {13, 199}, {32, 235}, {61, 246}, {60, 240}, {114, 191}, {120, 182}, {22, 217}, {18, 194}, {55, 231}, {28, 205}, {59, 234}, {56, 233}, {51, 225}, {101, 183}, {46, 250}, {54, 227}, {60, 233}, {12, 218}, {15, 217}, {10, 210}, {24, 192}, {21, 207}, {42, 240}, {34, 248}, {31, 197}, {35, 248}, {59, 224}, {45, 246}, {40, 244}, {47, 243}, {104, 181}, {12, 210}, {39, 249}, {107, 181}, {53, 234}, {57, 230}, {96, 191}, {49, 209}, {91, 187}, {20, 245}, {40, 201}, {49, 213}, {51, 215}, {95, 187}, {26, 255}, {34, 199}, {42, 204}, {55, 209}, {3, 228}, {5, 226}, {6, 238}, {29, 245}, {36, 206}, {38, 204}, {9, 226}, {3, 238}, {59, 214}, {10, 228}, {23, 231}, {58, 203}, {33, 211}, {41, 218}, {61, 206}, {2, 247}, {66, 183}, {38, 211}, {19, 230}, {10, 255}, {1, 247}, {62, 200}, {37, 220}, {45, 215}, {17, 237}, {57, 196}, {43, 213}, {46, 208}, {60, 195}, {17, 273}, {64, 320}, {62, 318}, {47, 303}, {43, 299}, {2, 256}, {87, 341}, {86, 340}, {76, 334}, {55, 309}, {21, 279}, {7, 261}, {7, 259}, {72, 332}, {63, 315}, {16, 277}, {77, 328}, {1, 263}, {82, 340}, {97, 359}, {101, 355}, {7, 256}, {81, 342}, {67, 324}, {50, 309}, {44, 299}, {35, 292}, {111, 360}, {78, 326}, {83, 347}, {4, 269}, {46, 295}, {39, 301}, {9, 261}, {56, 308}, {40, 292}, {39, 298}, {108, 353}, {8, 263}, {77, 322}, {45, 290}, {19, 259}, {27, 267}, {5, 279}, {117, 359}, {74, 345}, {13, 281}, {88, 332}, {70, 338}, {45, 313}, {24, 268}, {14, 282}, {36, 305}, {70, 339}, {16, 262}, {38, 304}, {78, 345}, {20, 269}, {79, 342}, {49, 296}, {37, 316}, {18, 264}, {88, 322}, {81, 330}, {67, 351}, {4, 281}, {120, 357}, {11, 277}, {90, 324}, {66, 348}, {122, 356}, {5, 282}, {87, 328}, {85, 330}, {71, 344}, {57, 294}, {29, 317}, {104, 328}, {123, 347}, {14, 303}, {121, 344}, {115, 336}, {44, 264}, {53, 273}, {24, 317}, {15, 297}, {27, 316}, {31, 312}, {103, 320}, {117, 338}, {8, 288}, {36, 268}, {22, 318}, {124, 340}, {3, 297}, {54, 284}, {19, 313}, {15, 293}, {13, 295}, {106, 320}, {23, 315}, {42, 262}, {28, 304}, {102, 330}, {116, 344}, {53, 280}, {115, 350}, {44, 258}, {72, 358}, {16, 319}, {99, 332}, {50, 258}, {126, 334}, {6, 311}, {18, 291}, {17, 288}, {123, 330}, {4, 310}, {13, 319}, {4, 311}, {106, 345}, {2, 310}, {28, 296}, {112, 324}, {22, 291}, {84, 353}, {52, 257}, {42, 287}, {37, 272}, {125, 328}, {86, 352}, {122, 332}, {26, 290}, {51, 267}, {3, 314}, {31, 293}, {52, 270}, {1, 314}, {58, 257}, {50, 265}, {10, 305}, {102, 349}, {110, 338}, {43, 278}, {99, 350}, {20, 298}, {35, 285}, {25, 294}, {92, 355}, {48, 271}, {98, 349}, {9, 331}, {32, 355}, {105, 298}, {25, 349}, {86, 274}, {64, 260}, {94, 282}, {127, 315}, {12, 329}, {75, 270}, {20, 337}, {95, 281}, {83, 276}, {84, 275}, {95, 280}, {110, 297}, {31, 343}, {108, 292}, {119, 319}, {14, 327}, {119, 318}, {16, 346}, {27, 337}, {88, 275}, {89, 274}, {46, 354}, {114, 318}, {126, 306}, {26, 343}, {112, 317}, {113, 316}, {117, 315}, {121, 311}, {40, 359}, {81, 286}, {103, 296}, {105, 294}, {64, 272}, {84, 260}, {78, 286}, {76, 284}, {75, 283}, {68, 276}, {94, 270}, {49, 352}, {118, 295}, {12, 350}, {69, 278}, {91, 264}, {89, 266}, {9, 349}, {76, 280}, {112, 292}, {22, 323}, {116, 289}, {8, 350}, {25, 335}, {100, 306}, {115, 293}, {109, 314}, {69, 285}, {96, 312}, {104, 304}, {70, 287}, {118, 303}, {85, 271}, {62, 357}, {64, 283}, {29, 320}, {87, 266}, {84, 265}, {63, 353}, {125, 291}, {58, 357}, {60, 355}, {121, 294}, {38, 326}, {63, 351}, {110, 270}, {44, 334}, {91, 313}, {125, 286}, {35, 327}, {93, 313}, {72, 300}, {52, 336}, {100, 256}, {62, 347}, {97, 260}, {99, 262}, {2, 356}, {51, 341}, {94, 312}, {97, 262}, {33, 329}, {48, 344}, {36, 333}, {92, 309}, {109, 260}, {98, 264}, {32, 331}, {94, 309}, {108, 263}, {41, 325}, {65, 301}, {52, 346}, {7, 360}, {78, 289}, {63, 336}, {11, 356}, {106, 261}, {18, 354}, {68, 308}, {127, 271}, {34, 339}, {104, 281}, {21, 359}, {27, 360}, {101, 278}, {107, 287}, {116, 256}, {48, 325}, {54, 323}, {126, 267}, {55, 321}, {56, 335}, {93, 298}, {89, 302}, {86, 289}, {111, 280}, {30, 358}, {65, 312}, {74, 307}, {107, 274}, {114, 267}, {117, 268}, {73, 307}, {73, 306}, {85, 302}, {61, 321}, {80, 300}, {106, 278}, {33, 348}, {79, 306}, {48, 333}, {47, 338}, {98, 287}, {103, 282}, {160, 288}, {132, 261}, {170, 299}, {159, 286}, {134, 263}, {141, 268}, {175, 301}, {142, 269}, {140, 266}, {154, 284}, {134, 257}, {162, 299}, {159, 277}, {168, 290}, {144, 283}, {142, 258}, {140, 257}, {158, 275}, {133, 277}, {164, 308}, {163, 305}, {176, 290}, {154, 271}, {148, 258}, {163, 308}, {143, 279}, {169, 305}, {154, 259}, {138, 272}, {143, 274}, {179, 301}, {136, 296}, {130, 291}, {176, 273}, {146, 307}, {179, 273}, {132, 288}, {174, 266}, {152, 317}, {153, 316}, {154, 319}, {135, 289}, {178, 276}, {145, 310}, {129, 297}, {165, 269}, {133, 300}, {134, 300}, {139, 295}, {155, 311}, {158, 307}, {174, 259}, {128, 303}, {129, 302}, {166, 279}, {155, 302}, {168, 285}, {147, 293}, {171, 285}, {177, 265}, {137, 304}, {165, 284}, {140, 310}, {179, 265}, {174, 276}, {135, 314}, {166, 283}, {173, 275}, {175, 272}, {142, 335}, {146, 336}, {138, 334}, {152, 348}, {128, 325}, {131, 326}, {156, 347}, {162, 357}, {134, 333}, {138, 326}, {174, 354}, {145, 322}, {139, 351}, {144, 324}, {151, 322}, {153, 335}, {142, 345}, {137, 337}, {141, 342}, {138, 343}, {157, 323}, {167, 327}, {171, 329}, {176, 339}, {167, 321}, {175, 329}, {177, 342}, {136, 353}, {162, 331}, {130, 360}, {166, 333}, {168, 325}, {176, 351}, {160, 337}, {173, 348}, {148, 358}, {168, 346}, {150, 356}, {178, 321}, {160, 340}, {161, 343}, {177, 327}, {180, 323}, {153, 352}, {178, 331}, {153, 354}, {169, 341}, {157, 352}, {152, 358}, {171, 341}, {164, 346}, {172, 339} }>;

(II) A more general form is to represent the graph as the orbit of {156, 184} under the group generated by the following permutations:

a: (1, 2)(3, 7)(4, 5)(6, 9)(8, 11)(10, 19)(12, 23)(13, 14)(15, 27)(16, 17)(18, 32)(20, 21)(22, 37)(24, 25)(26, 45)(29, 30)(31, 51)(33, 55)(34, 35)(36, 57)(38, 49)(39, 40)(41, 63)(42, 43)(44, 60)(46, 47)(48, 67)(50, 56)(52, 53)(54, 64)(58, 59)(61, 66)(62, 77)(68, 84)(69, 70)(71, 72)(73, 87)(74, 89)(75, 76)(78, 86)(79, 80)(81, 82)(83, 88)(85, 90)(91, 92)(93, 97)(94, 95)(96, 99)(98, 101)(100, 109)(102, 113)(103, 104)(105, 117)(106, 107)(108, 122)(110, 111)(112, 127)(114, 115)(116, 135)(119, 120)(121, 141)(123, 145)(124, 125)(126, 147)(128, 139)(129, 130)(131, 153)(132, 133)(134, 150)(136, 137)(138, 157)(140, 146)(142, 143)(144, 154)(148, 149)(151, 156)(152, 167)(158, 174)(159, 160)(161, 162)(163, 177)(164, 179)(165, 166)(168, 176)(169, 170)(171, 172)(173, 178)(175, 180)(181, 320)(182, 319)(183, 206)(184, 205)(185, 335)(186, 336)(187, 309)(188, 310)(189, 292)(190, 291)(191, 350)(192, 349)(193, 332)(194, 331)(195, 334)(196, 333)(197, 341)(198, 342)(199, 327)(200, 328)(201, 301)(202, 302)(203, 214)(204, 213)(207, 337)(208, 338)(209, 211)(210, 212)(215, 343)(216, 344)(217, 316)(218, 315)(219, 317)(220, 318)(221, 245)(222, 246)(223, 358)(224, 357)(225, 312)(226, 311)(227, 260)(228, 259)(229, 306)(230, 305)(231, 329)(232, 330)(233, 258)(234, 257)(235, 354)(236, 353)(237, 262)(238, 261)(239, 300)(240, 299)(241, 254)(242, 253)(243, 250)(244, 249)(251, 252)(255, 313)(256, 314)(263, 356)(264, 355)(265, 308)(266, 307)(267, 293)(268, 294)(269, 279)(270, 280)(271, 324)(272, 323)(273, 346)(274, 345)(275, 276)(277, 288)(278, 287)(281, 282)(283, 284)(285, 339)(286, 340)(295, 303)(296, 304)(297, 360)(298, 359)(321, 348)(322, 347)(325, 351)(326, 352)
b: (1, 91)(2, 92)(3, 93)(4, 94)(5, 95)(6, 96)(7, 97)(8, 98)(9, 99)(10, 100)(11, 101)(12, 102)(13, 103)(14, 104)(15, 105)(16, 106)(17, 107)(18, 108)(19, 109)(20, 110)(21, 111)(22, 112)(23, 113)(24, 114)(25, 115)(26, 116)(27, 117)(28, 118)(29, 119)(30, 120)(31, 121)(32, 122)(33, 123)(34, 124)(35, 125)(36, 126)(37, 127)(38, 128)(39, 129)(40, 130)(41, 131)(42, 132)(43, 133)(44, 134)(45, 135)(46, 136)(47, 137)(48, 138)(49, 139)(50, 140)(51, 141)(52, 142)(53, 143)(54, 144)(55, 145)(56, 146)(57, 147)(58, 148)(59, 149)(60, 150)(61, 151)(62, 152)(63, 153)(64, 154)(65, 155)(66, 156)(67, 157)(68, 158)(69, 159)(70, 160)(71, 161)(72, 162)(73, 163)(74, 164)(75, 165)(76, 166)(77, 167)(78, 168)(79, 169)(80, 170)(81, 171)(82, 172)(83, 173)(84, 174)(85, 175)(86, 176)(87, 177)(88, 178)(89, 179)(90, 180)(181, 182)(183, 184)(185, 186)(187, 188)(189, 190)(191, 192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207, 208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223, 224)(225, 226)(227, 228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239, 240)(241, 242)(243, 244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255, 256)(257, 258)(259, 260)(261, 262)(263, 264)(265, 266)(267, 268)(269, 270)(271, 272)(273, 274)(275, 276)(277, 278)(279, 280)(281, 282)(283, 284)(285, 286)(287, 288)(289, 290)(291, 292)(293, 294)(295, 296)(297, 298)(299, 300)(301, 302)(303, 304)(305, 306)(307, 308)(309, 310)(311, 312)(313, 314)(315, 316)(317, 318)(319, 320)(321, 322)(323, 324)(325, 326)(327, 328)(329, 330)(331, 332)(333, 334)(335, 336)(337, 338)(339, 340)(341, 342)(343, 344)(345, 346)(347, 348)(349, 350)(351, 352)(353, 354)(355, 356)(357, 358)(359, 360)
c: (2, 5, 8, 3)(4, 9, 17, 10)(6, 7, 14, 12)(11, 21, 28, 15)(13, 25, 43, 26)(16, 30, 49, 31)(18, 19, 35, 33)(20, 32, 53, 36)(22, 23, 40, 38)(24, 27, 47, 41)(29, 37, 59, 48)(34, 56, 44, 45)(39, 60, 76, 61)(42, 54, 55, 65)(46, 57, 69, 66)(50, 51, 70, 68)(52, 72, 86, 73)(58, 67, 82, 74)(62, 63, 80, 78)(64, 77, 85, 71)(75, 88, 89, 79)(81, 83, 84, 87)(92, 95, 98, 93)(94, 99, 107, 100)(96, 97, 104, 102)(101, 111, 118, 105)(103, 115, 133, 116)(106, 120, 139, 121)(108, 109, 125, 123)(110, 122, 143, 126)(112, 113, 130, 128)(114, 117, 137, 131)(119, 127, 149, 138)(124, 146, 134, 135)(129, 150, 166, 151)(132, 144, 145, 155)(136, 147, 159, 156)(140, 141, 160, 158)(142, 162, 176, 163)(148, 157, 172, 164)(152, 153, 170, 168)(154, 167, 175, 161)(165, 178, 179, 169)(171, 173, 174, 177)(181, 209, 312, 262)(182, 210, 311, 261)(183, 208)(184, 207)(185, 267, 338, 236)(186, 268, 337, 235)(187, 264, 313, 248)(188, 263, 314, 247)(189, 233, 334, 246)(190, 234, 333, 245)(191, 359, 304, 217)(192, 360, 303, 218)(193, 260, 328, 330)(194, 259, 327, 329)(195, 253, 252, 249)(196, 254, 251, 250)(197, 346, 358, 352)(198, 345, 357, 351)(199, 335, 299, 290)(200, 336, 300, 289)(201, 204, 323, 231)(202, 203, 324, 232)(205, 297, 356, 279)(206, 298, 355, 280)(211, 291, 212, 292)(213, 343, 319, 219)(214, 344, 320, 220)(215, 339, 308, 258)(216, 340, 307, 257)(221, 296, 293, 277)(222, 295, 294, 278)(223, 272, 224, 271)(225, 287, 227, 309)(226, 288, 228, 310)(229, 286, 347, 353)(230, 285, 348, 354)(237, 255, 281, 349)(238, 256, 282, 350)(239, 283, 322, 302)(240, 284, 321, 301)(241, 276, 265, 341)(242, 275, 266, 342)(243, 325, 317, 316)(244, 326, 318, 315)(269, 331, 273, 305)(270, 332, 274, 306)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 191 ]
360
-1 188 247 314 263
-2 310 256 356 247
-3 297 314 238 228
-4 310 311 269 281
-5 188 279 226 282
-6 311 192 194 238
-7 256 259 261 360
-8 288 205 350 263
-9 331 226 261 349
-10 210 255 228 305
-11 277 191 356 184
-12 210 218 350 329
-13 319 199 281 295
-14 182 303 282 327
-15 297 293 217 207
-16 319 277 346 262
-17 288 182 237 273
-18 264 354 291 194
-19 212 313 259 230
-20 298 245 269 337
-21 221 279 359 207
-22 323 291 217 318
-23 231 212 191 315
-24 268 192 185 317
-25 335 294 349 219
-26 222 255 343 290
-27 267 337 316 360
-28 205 304 184 296
-29 320 223 245 317
-30 221 181 358 219
-31 343 312 293 197
-32 331 190 355 235
-33 187 211 348 329
-34 199 189 248 339
-35 248 292 327 285
-36 333 268 206 305
-37 220 190 272 316
-38 211 204 304 326
-39 298 189 301 249
-40 244 201 292 359
-41 236 325 218 186
-42 287 204 240 262
-43 299 278 213 237
-44 264 299 334 258
-45 246 290 313 215
-46 354 250 295 208
-47 243 235 303 338
-48 333 344 325 271
-49 209 352 213 296
-50 265 309 258 185
-51 341 267 225 215
-52 257 346 270 336
-53 234 280 273 186
-54 323 181 227 284
-55 209 231 309 321
-56 187 308 233 335
-57 183 294 196 230
-58 257 203 357 250
-59 243 234 224 214
-60 233 355 195 240
-61 321 246 206 252
-62 200 357 347 318
-63 353 336 315 351
-64 320 260 272 283
-65 201 301 312 225
-66 222 183 348 251
-67 324 216 196 351
-68 308 276 236 227
-69 254 278 208 285
-70 287 338 339 241
-71 223 344 193 239
-72 332 300 358 216
-73 200 306 197 307
-74 202 345 251 307
-75 242 270 195 283
-76 253 334 280 284
-77 220 322 224 328
-78 286 289 345 326
-79 342 249 239 306
-80 198 244 300 229
-81 286 330 342 241
-82 198 232 254 340
-83 242 276 193 347
-84 275 265 353 260
-85 330 214 302 271
-86 352 289 274 340
-87 341 266 229 328
-88 253 275 332 322
-89 266 302 252 274
-90 232 202 203 324
-91 187 264 313 248
-92 309 255 355 248
-93 298 313 237 227
-94 309 312 270 282
-95 187 225 280 281
-96 191 312 193 237
-97 255 260 359 262
-98 264 287 206 349
-99 332 225 262 350
-100 209 256 227 306
-101 278 355 192 183
-102 209 330 217 349
-103 320 200 282 296
-104 181 281 304 328
-105 298 294 218 208
-106 320 278 345 261
-107 287 181 238 274
-108 353 193 292 263
-109 211 314 260 229
-110 297 246 270 338
-111 222 280 360 208
-112 324 292 218 317
-113 232 211 192 316
-114 267 191 186 318
-115 220 336 293 350
-116 221 256 289 344
-117 268 315 359 338
-118 303 183 206 295
-119 319 224 246 318
-120 220 222 357 182
-121 198 311 344 294
-122 189 332 356 236
-123 330 188 212 347
-124 200 190 247 340
-125 286 247 291 328
-126 267 334 205 306
-127 189 271 315 219
-128 212 203 303 325
-129 297 190 302 250
-130 243 202 291 360
-131 235 326 217 185
-132 288 203 239 261
-133 277 300 214 238
-134 300 333 257 263
-135 245 289 314 216
-136 353 249 207 296
-137 244 236 304 337
-138 343 334 326 272
-139 210 214 295 351
-140 266 310 257 186
-141 342 268 226 216
-142 345 258 269 335
-143 233 279 185 274
-144 324 182 228 283
-145 210 232 310 322
-146 188 234 336 307
-147 293 184 195 229
-148 258 204 358 249
-149 233 244 223 213
-150 234 356 239 196
-151 245 322 205 251
-152 199 358 348 317
-153 352 354 335 316
-154 319 259 271 284
-155 311 202 302 226
-156 221 347 184 252
-157 352 323 215 195
-158 275 235 228 307
-159 253 286 277 207
-160 242 288 337 340
-161 343 224 194 240
-162 331 299 357 215
-163 198 308 199 305
-164 308 201 346 252
-165 269 196 284 241
-166 254 333 279 283
-167 321 223 327 219
-168 290 346 325 285
-169 341 250 305 240
-170 243 299 197 230
-171 242 341 285 329
-172 231 253 339 197
-173 275 194 348 241
-174 276 266 354 259
-175 213 301 272 329
-176 290 273 339 351
-177 265 342 327 230
-178 254 276 331 321
-179 265 301 251 273
-180 231 201 323 204
-181 104 30 107 54
-182 144 14 17 120
-183 66 57 101 118
-184 11 156 147 28
-185 143 24 50 131
-186 114 41 140 53
-187 33 56 91 95
-188 1 123 146 5
-189 34 122 39 127
-190 124 37 129 32
-191 11 23 114 96
-192 24 101 113 6
-193 71 83 96 108
-194 6 18 161 173
-195 157 147 60 75
-196 165 67 57 150
-197 170 73 172 31
-198 121 80 82 163
-199 34 13 152 163
-200 124 103 62 73
-201 180 40 65 164
-202 155 90 74 130
-203 132 90 58 128
-204 180 38 148 42
-205 126 28 8 151
-206 36 61 118 98
-207 15 136 159 21
-208 111 46 69 105
-209 55 100 102 49
-210 12 145 139 10
-211 33 113 38 109
-212 23 123 128 19
-213 49 149 43 175
-214 133 59 139 85
-215 45 157 51 162
-216 67 135 72 141
-217 22 102 15 131
-218 12 112 105 41
-219 167 25 127 30
-220 77 37 115 120
-221 156 116 30 21
-222 66 111 26 120
-223 167 71 149 29
-224 77 59 161 119
-225 99 51 95 65
-226 155 5 9 141
-227 100 68 93 54
-228 144 3 158 10
-229 80 147 87 109
-230 177 57 170 19
-231 55 23 180 172
-232 90 145 113 82
-233 143 56 60 149
-234 146 59 150 53
-235 47 158 32 131
-236 122 68 137 41
-237 93 17 96 43
-238 133 3 6 107
-239 132 79 71 150
-240 169 60 161 42
-241 165 70 81 173
-242 83 160 171 75
-243 47 59 170 130
-244 80 137 149 40
-245 135 29 151 20
-246 110 45 61 119
-247 1 2 124 125
-248 34 35 91 92
-249 79 136 148 39
-250 46 58 169 129
-251 66 179 74 151
-252 89 156 61 164
-253 88 159 172 76
-254 166 178 69 82
-255 26 92 97 10
-256 100 2 116 7
-257 134 58 52 140
-258 44 148 50 142
-259 154 7 19 174
-260 84 64 97 109
-261 132 7 106 9
-262 99 16 42 97
-263 1 134 8 108
-264 44 91 18 98
-265 177 179 50 84
-266 89 140 174 87
-267 114 27 126 51
-268 24 36 117 141
-269 165 4 20 142
-270 110 94 52 75
-271 154 48 127 85
-272 37 138 64 175
-273 176 179 17 53
-274 143 89 107 86
-275 88 158 84 173
-276 68 178 83 174
-277 11 133 16 159
-278 101 69 106 43
-279 143 166 5 21
-280 111 95 53 76
-281 13 4 104 95
-282 14 103 5 94
-283 144 166 64 75
-284 154 165 54 76
-285 35 69 168 171
-286 78 81 125 159
-287 70 107 42 98
-288 132 17 160 8
-289 78 135 116 86
-290 176 45 168 26
-291 22 125 18 130
-292 35 112 40 108
-293 15 147 115 31
-294 121 57 25 105
-295 13 46 139 118
-296 103 136 49 28
-297 110 3 15 129
-298 93 39 105 20
-299 44 170 162 43
-300 133 134 80 72
-301 179 39 65 175
-302 89 155 85 129
-303 14 47 128 118
-304 38 104 137 28
-305 36 169 163 10
-306 100 79 126 73
-307 146 158 73 74
-308 56 68 163 164
-309 55 92 50 94
-310 2 145 4 140
-311 121 155 4 6
-312 94 96 31 65
-313 45 91 93 19
-314 1 3 135 109
-315 23 127 117 63
-316 113 37 27 153
-317 24 112 29 152
-318 22 114 62 119
-319 154 13 16 119
-320 103 29 106 64
-321 55 167 178 61
-322 77 88 145 151
-323 22 157 180 54
-324 67 144 90 112
-325 168 48 128 41
-326 78 38 138 131
-327 177 35 167 14
-328 77 125 104 87
-329 33 12 171 175
-330 123 102 81 85
-331 178 162 9 32
-332 88 99 122 72
-333 166 134 36 48
-334 44 126 138 76
-335 56 25 142 153
-336 146 115 52 63
-337 27 137 160 20
-338 110 47 70 117
-339 176 34 70 172
-340 124 82 160 86
-341 169 171 51 87
-342 177 79 81 141
-343 26 138 161 31
-344 121 48 71 116
-345 78 106 74 142
-346 168 16 52 164
-347 123 156 83 62
-348 33 66 173 152
-349 25 102 9 98
-350 99 12 115 8
-351 176 67 139 63
-352 157 49 86 153
-353 136 84 63 108
-354 46 18 174 153
-355 101 92 60 32
-356 11 122 2 150
-357 58 62 162 120
-358 148 72 30 152
-359 40 117 97 21
-360 111 27 7 130
0

**************