C4graphGraph forms for C4 [ 360, 197 ] = BGCG(MSZ(12,15,5,2);K1;5)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 197 ] = BGCG(MSZ(12,15,5,2);K1;5).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {176, 186}, {177, 186}, {173, 190}, {169, 188}, {168, 190}, {163, 189}, {148, 188}, {146, 190}, {147, 190}, {150, 187}, {147, 188}, {142, 191}, {138, 185}, {143, 182}, {157, 220}, {167, 230}, {165, 231}, {172, 238}, {164, 231}, {166, 229}, {129, 197}, {128, 197}, {136, 206}, {164, 226}, {153, 223}, {151, 209}, {158, 217}, {135, 206}, {178, 251}, {148, 221}, {129, 203}, {169, 226}, {179, 255}, {139, 198}, {178, 255}, {177, 252}, {167, 232}, {159, 207}, {161, 240}, {172, 253}, {157, 206}, {141, 217}, {139, 221}, {171, 253}, {136, 223}, {159, 200}, {138, 221}, {152, 192}, {178, 234}, {153, 192}, {130, 216}, {177, 234}, {170, 246}, {139, 214}, {158, 195}, {146, 204}, {155, 196}, {156, 252}, {166, 194}, {155, 252}, {165, 194}, {179, 219}, {174, 197}, {156, 240}, {130, 239}, {129, 239}, {131, 236}, {180, 219}, {160, 207}, {158, 238}, {157, 238}, {171, 216}, {168, 220}, {132, 241}, {171, 222}, {134, 240}, {180, 194}, {135, 240}, {137, 241}, {165, 221}, {154, 226}, {138, 242}, {155, 226}, {132, 251}, {155, 228}, {144, 239}, {72, 200}, {86, 214}, {74, 202}, {75, 202}, {84, 213}, {52, 182}, {92, 222}, {121, 251}, {111, 233}, {71, 192}, {90, 210}, {104, 224}, {109, 229}, {49, 184}, {100, 237}, {104, 225}, {97, 235}, {124, 246}, {60, 183}, {125, 246}, {57, 181}, {89, 213}, {84, 216}, {59, 183}, {109, 225}, {118, 250}, {79, 194}, {93, 211}, {119, 249}, {122, 245}, {38, 182}, {78, 222}, {67, 211}, {42, 186}, {36, 181}, {73, 216}, {66, 211}, {65, 208}, {37, 182}, {77, 222}, {114, 230}, {126, 235}, {35, 181}, {75, 220}, {99, 244}, {111, 248}, {107, 243}, {117, 237}, {123, 227}, {105, 245}, {120, 229}, {111, 241}, {76, 211}, {110, 241}, {75, 235}, {127, 223}, {84, 245}, {120, 217}, {126, 223}, {68, 230}, {102, 196}, {27, 184}, {89, 250}, {69, 230}, {28, 184}, {76, 232}, {64, 228}, {98, 199}, {83, 245}, {97, 199}, {76, 235}, {100, 204}, {101, 204}, {96, 202}, {103, 203}, {102, 203}, {18, 188}, {92, 242}, {119, 217}, {93, 242}, {101, 202}, {120, 215}, {82, 227}, {91, 234}, {113, 195}, {98, 209}, {103, 212}, {112, 195}, {83, 231}, {91, 237}, {90, 237}, {112, 199}, {67, 250}, {89, 224}, {90, 224}, {112, 203}, {3, 191}, {83, 238}, {106, 215}, {68, 250}, {70, 248}, {95, 225}, {105, 215}, {118, 200}, {127, 193}, {94, 225}, {8, 201}, {24, 218}, {121, 187}, {19, 215}, {43, 239}, {40, 236}, {36, 227}, {6, 206}, {32, 233}, {23, 218}, {1, 207}, {58, 244}, {21, 219}, {7, 201}, {4, 212}, {23, 199}, {5, 212}, {30, 207}, {18, 192}, {31, 205}, {30, 205}, {45, 254}, {110, 189}, {29, 201}, {109, 185}, {49, 228}, {61, 232}, {98, 183}, {50, 228}, {62, 232}, {42, 253}, {99, 187}, {31, 195}, {39, 251}, {43, 246}, {19, 204}, {96, 191}, {100, 187}, {24, 248}, {33, 193}, {88, 185}, {28, 254}, {3, 224}, {34, 193}, {20, 247}, {16, 243}, {53, 209}, {62, 218}, {28, 249}, {52, 209}, {40, 205}, {95, 186}, {12, 234}, {81, 183}, {50, 212}, {46, 198}, {47, 197}, {85, 191}, {63, 213}, {45, 198}, {62, 213}, {18, 254}, {60, 208}, {19, 254}, {25, 247}, {87, 185}, {61, 210}, {13, 253}, {2, 243}, {48, 193}, {1, 243}, {14, 252}, {13, 255}, {58, 201}, {13, 249}, {57, 205}, {1, 244}, {61, 200}, {39, 210}, {25, 236}, {13, 248}, {26, 236}, {78, 184}, {38, 208}, {8, 255}, {45, 218}, {39, 208}, {14, 249}, {12, 244}, {17, 233}, {11, 242}, {30, 231}, {25, 227}, {60, 198}, {40, 210}, {18, 233}, {11, 247}, {65, 189}, {56, 196}, {10, 247}, {64, 189}, {57, 196}, {38, 219}, {27, 229}, {40, 214}, {34, 220}, {41, 214}, {74, 181}, {56, 312}, {56, 313}, {70, 327}, {66, 323}, {65, 323}, {75, 329}, {72, 330}, {69, 327}, {53, 305}, {50, 311}, {63, 314}, {61, 312}, {95, 346}, {2, 260}, {48, 310}, {103, 353}, {10, 269}, {54, 305}, {16, 279}, {17, 281}, {81, 345}, {37, 301}, {16, 281}, {22, 287}, {92, 341}, {32, 299}, {69, 334}, {82, 350}, {32, 301}, {71, 330}, {93, 336}, {55, 313}, {91, 341}, {94, 336}, {105, 359}, {107, 357}, {12, 259}, {81, 350}, {26, 277}, {111, 352}, {53, 293}, {82, 322}, {112, 352}, {83, 322}, {17, 259}, {58, 296}, {51, 288}, {87, 324}, {84, 327}, {80, 323}, {59, 296}, {6, 274}, {73, 349}, {48, 293}, {125, 360}, {5, 275}, {46, 312}, {33, 311}, {126, 360}, {47, 312}, {93, 330}, {15, 279}, {45, 309}, {44, 309}, {64, 345}, {47, 310}, {29, 263}, {41, 307}, {28, 263}, {63, 291}, {85, 328}, {121, 356}, {126, 355}, {46, 304}, {86, 328}, {53, 299}, {92, 322}, {122, 356}, {14, 302}, {63, 287}, {59, 283}, {19, 307}, {116, 340}, {8, 297}, {17, 304}, {35, 257}, {44, 270}, {97, 322}, {104, 331}, {48, 276}, {110, 330}, {113, 341}, {118, 339}, {20, 306}, {117, 339}, {20, 307}, {62, 281}, {79, 359}, {29, 308}, {78, 359}, {59, 274}, {10, 288}, {125, 343}, {4, 303}, {23, 316}, {24, 308}, {78, 354}, {34, 270}, {100, 328}, {103, 331}, {109, 321}, {35, 270}, {110, 321}, {120, 343}, {37, 276}, {101, 340}, {37, 279}, {81, 355}, {102, 340}, {60, 271}, {80, 355}, {108, 351}, {115, 320}, {6, 306}, {31, 299}, {99, 343}, {98, 343}, {2, 308}, {20, 290}, {125, 331}, {3, 308}, {21, 290}, {5, 306}, {7, 318}, {21, 303}, {44, 278}, {38, 284}, {23, 301}, {12, 311}, {22, 301}, {102, 349}, {11, 311}, {57, 261}, {108, 336}, {43, 278}, {123, 326}, {124, 321}, {1, 319}, {50, 268}, {49, 271}, {27, 293}, {96, 350}, {97, 351}, {26, 293}, {88, 359}, {58, 261}, {51, 268}, {49, 270}, {27, 292}, {15, 335}, {108, 300}, {123, 315}, {14, 335}, {77, 268}, {7, 325}, {32, 354}, {101, 295}, {6, 325}, {33, 354}, {11, 328}, {70, 258}, {77, 265}, {72, 268}, {25, 348}, {76, 265}, {71, 258}, {22, 337}, {91, 284}, {107, 300}, {124, 315}, {94, 278}, {114, 314}, {117, 317}, {88, 273}, {94, 276}, {47, 356}, {31, 339}, {72, 261}, {74, 263}, {39, 360}, {2, 338}, {15, 351}, {9, 344}, {99, 306}, {80, 258}, {5, 342}, {67, 272}, {54, 357}, {106, 313}, {104, 316}, {16, 325}, {66, 279}, {21, 320}, {105, 316}, {113, 292}, {119, 290}, {22, 320}, {114, 292}, {119, 289}, {124, 298}, {7, 336}, {85, 258}, {65, 278}, {118, 289}, {4, 348}, {73, 273}, {30, 326}, {114, 298}, {71, 286}, {115, 298}, {79, 277}, {15, 340}, {74, 273}, {29, 326}, {86, 266}, {87, 266}, {96, 317}, {4, 346}, {3, 348}, {66, 290}, {86, 310}, {73, 296}, {35, 321}, {95, 317}, {121, 282}, {33, 325}, {42, 334}, {36, 320}, {41, 332}, {55, 338}, {43, 334}, {106, 271}, {41, 335}, {88, 318}, {42, 332}, {108, 266}, {89, 318}, {9, 353}, {79, 295}, {52, 349}, {116, 285}, {44, 326}, {54, 348}, {46, 324}, {115, 281}, {10, 353}, {36, 335}, {9, 357}, {68, 296}, {55, 347}, {8, 357}, {67, 302}, {51, 349}, {55, 345}, {115, 285}, {116, 282}, {9, 358}, {85, 314}, {54, 345}, {90, 309}, {106, 282}, {107, 282}, {69, 310}, {122, 265}, {34, 342}, {77, 313}, {56, 332}, {117, 257}, {68, 305}, {70, 307}, {116, 257}, {80, 295}, {127, 263}, {24, 353}, {82, 299}, {52, 334}, {64, 314}, {113, 266}, {26, 358}, {122, 262}, {123, 262}, {51, 333}, {87, 297}, {127, 256}, {128, 256}, {176, 304}, {175, 303}, {140, 269}, {174, 303}, {153, 280}, {156, 287}, {143, 267}, {173, 297}, {142, 267}, {139, 269}, {164, 291}, {174, 297}, {153, 272}, {154, 272}, {143, 260}, {146, 286}, {159, 275}, {158, 275}, {145, 287}, {145, 286}, {176, 319}, {148, 283}, {151, 261}, {135, 276}, {152, 267}, {149, 262}, {137, 285}, {144, 260}, {149, 256}, {174, 315}, {144, 262}, {157, 267}, {167, 319}, {166, 319}, {131, 280}, {132, 280}, {147, 271}, {134, 283}, {133, 283}, {140, 274}, {150, 264}, {141, 274}, {175, 304}, {151, 264}, {128, 289}, {165, 260}, {147, 305}, {179, 273}, {162, 257}, {128, 292}, {130, 294}, {133, 289}, {130, 295}, {131, 294}, {133, 288}, {175, 265}, {141, 298}, {180, 275}, {160, 264}, {171, 259}, {170, 259}, {140, 294}, {145, 315}, {150, 316}, {161, 269}, {129, 300}, {144, 288}, {172, 284}, {173, 284}, {170, 280}, {178, 256}, {161, 277}, {150, 291}, {160, 277}, {149, 291}, {145, 294}, {134, 318}, {168, 272}, {177, 264}, {143, 309}, {148, 302}, {134, 317}, {166, 285}, {149, 302}, {146, 300}, {160, 286}, {167, 358}, {162, 352}, {137, 333}, {154, 351}, {151, 337}, {138, 333}, {156, 347}, {152, 337}, {135, 332}, {168, 358}, {179, 355}, {154, 331}, {142, 347}, {152, 333}, {141, 347}, {132, 339}, {136, 338}, {137, 338}, {142, 341}, {159, 323}, {131, 354}, {140, 360}, {163, 327}, {133, 352}, {161, 329}, {162, 329}, {136, 356}, {169, 324}, {170, 346}, {180, 324}, {175, 350}, {164, 342}, {169, 346}, {172, 344}, {163, 342}, {176, 329}, {162, 344}, {163, 344}, {173, 337} }>;

(II) A more general form is to represent the graph as the orbit of {176, 186} under the group generated by the following permutations:

a: (1, 2)(3, 176)(4, 175)(5, 122)(6, 121)(7, 116)(8, 115)(9, 62)(10, 61)(11, 56)(12, 55)(13, 114)(14, 113)(15, 108)(16, 107)(17, 54)(18, 53)(19, 48)(20, 47)(21, 174)(22, 173)(23, 168)(24, 167)(25, 46)(26, 45)(27, 28)(29, 166)(30, 165)(31, 148)(32, 147)(33, 106)(34, 105)(35, 88)(36, 87)(37, 146)(38, 145)(39, 140)(40, 139)(41, 86)(42, 85)(43, 80)(44, 79)(49, 78)(50, 77)(51, 72)(52, 71)(57, 138)(58, 137)(59, 132)(60, 131)(63, 172)(64, 171)(65, 130)(66, 129)(67, 112)(68, 111)(69, 70)(73, 110)(74, 109)(75, 104)(76, 103)(81, 170)(82, 169)(83, 164)(84, 163)(89, 162)(90, 161)(91, 156)(92, 155)(93, 102)(94, 101)(95, 96)(97, 154)(98, 153)(99, 136)(100, 135)(117, 134)(118, 133)(119, 128)(120, 127)(123, 180)(124, 179)(125, 126)(141, 178)(142, 177)(143, 160)(144, 159)(149, 158)(150, 157)(151, 152)(181, 185)(182, 286)(183, 280)(186, 191)(187, 206)(188, 299)(189, 216)(190, 301)(192, 209)(193, 215)(194, 326)(195, 302)(196, 242)(197, 290)(198, 236)(199, 272)(200, 288)(201, 285)(202, 225)(203, 211)(204, 276)(205, 221)(207, 260)(208, 294)(210, 269)(212, 265)(213, 344)(217, 256)(218, 358)(219, 315)(220, 316)(222, 228)(223, 343)(224, 329)(226, 322)(227, 324)(229, 263)(230, 248)(232, 353)(233, 305)(234, 347)(235, 331)(237, 240)(238, 291)(239, 323)(241, 296)(244, 338)(245, 342)(246, 355)(247, 312)(249, 292)(250, 352)(251, 274)(252, 341)(253, 314)(254, 293)(255, 298)(257, 318)(258, 334)(259, 345)(261, 333)(262, 275)(264, 267)(266, 335)(270, 359)(271, 354)(273, 321)(277, 309)(278, 295)(279, 300)(281, 357)(282, 325)(283, 339)(284, 287)(297, 320)(304, 348)(306, 356)(307, 310)(308, 319)(311, 313)(328, 332)(330, 349)(336, 340)(346, 350)
b: (2, 12, 30, 176)(3, 91, 83, 175)(4, 90, 172, 122)(5, 61, 9, 121)(6, 72, 26, 116)(7, 151, 79, 115)(8, 150, 180, 62)(10, 132, 34, 56)(11, 31, 75, 55)(13, 149, 169, 45)(14, 148, 18, 28)(15, 59, 71, 27)(16, 58, 160, 166)(17, 29, 177, 165)(19, 119, 67, 147)(20, 118, 168, 106)(21, 89, 173, 105)(22, 88)(23, 179, 63, 87)(24, 178, 164, 46)(25, 117, 157, 77)(32, 74, 156, 138)(33, 57, 161, 137)(35, 135, 51, 131)(36, 134, 152, 78)(37, 73, 145, 109)(38, 84, 174, 104)(39, 163, 47, 103)(40, 162, 136, 50)(41, 133, 153, 49)(42, 144, 170, 44)(48, 102, 140, 110)(52, 130, 124, 94)(53, 101, 141, 93)(54, 100, 158, 76)(60, 70, 128, 154)(64, 86, 112, 126)(65, 69, 129, 125)(66, 68, 146, 120)(80, 114, 108, 98)(81, 85, 113, 97)(82, 96, 142, 92)(95, 143, 171, 123)(99, 159, 167, 107)(111, 127, 155, 139)(181, 240, 333, 354)(182, 216, 315, 225)(183, 258, 292, 351)(184, 335, 283, 192)(185, 301, 273, 287)(186, 260, 259, 326)(187, 275, 232, 357)(188, 254, 249, 302)(189, 310, 203, 360)(190, 215, 290, 250)(191, 341, 322, 350)(193, 196, 269, 241)(194, 281, 201, 264)(195, 235, 345, 328)(197, 331, 208, 327)(198, 248, 256, 226)(199, 355, 314, 266)(200, 358, 282, 306)(202, 347, 242, 299)(204, 217, 211, 305)(205, 329, 338, 311)(206, 268, 236, 257)(207, 319, 243, 244)(209, 295, 298, 336)(210, 344, 356, 212)(213, 297, 316, 219)(214, 352, 223, 228)(218, 255, 291, 324)(220, 313, 247, 339)(221, 233, 263, 252)(222, 227, 317, 267)(224, 284, 245, 303)(229, 279, 296, 286)(230, 300, 343, 323)(231, 304, 308, 234)(237, 238, 265, 348)(239, 246, 278, 334)(251, 342, 312, 353)(253, 262, 346, 309)(261, 277, 285, 325)(270, 332, 288, 280)(271, 307, 289, 272)(274, 330, 293, 340)(276, 349, 294, 321)(318, 337, 359, 320)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 197 ]
360
-1 319 243 244 207
-2 308 243 260 338
-3 308 191 224 348
-4 212 346 303 348
-5 275 342 212 306
-6 325 206 306 274
-7 201 325 336 318
-8 297 255 201 357
-9 353 344 357 358
-10 353 288 247 269
-11 242 311 247 328
-12 244 234 311 259
-13 253 255 248 249
-14 302 335 249 252
-15 279 335 340 351
-16 243 279 281 325
-17 233 259 281 304
-18 188 254 233 192
-19 254 204 215 307
-20 290 247 306 307
-21 320 290 303 219
-22 287 320 301 337
-23 199 301 316 218
-24 308 353 248 218
-25 236 247 227 348
-26 277 236 358 293
-27 292 293 184 229
-28 254 249 184 263
-29 308 201 326 263
-30 231 205 326 207
-31 299 205 195 339
-32 233 299 354 301
-33 354 311 193 325
-34 220 342 193 270
-35 321 257 181 270
-36 320 181 335 227
-37 276 279 301 182
-38 182 284 208 219
-39 210 360 251 208
-40 210 214 236 205
-41 332 214 335 307
-42 253 332 334 186
-43 278 246 334 239
-44 309 278 270 326
-45 198 254 309 218
-46 198 312 324 304
-47 310 312 356 197
-48 276 310 193 293
-49 270 271 184 228
-50 212 311 268 228
-51 288 333 268 349
-52 209 334 182 349
-53 209 299 293 305
-54 345 357 348 305
-55 345 313 347 338
-56 332 312 313 196
-57 181 205 261 196
-58 244 201 261 296
-59 183 283 274 296
-60 198 183 271 208
-61 210 232 200 312
-62 232 213 281 218
-63 287 213 291 314
-64 189 345 314 228
-65 189 278 323 208
-66 211 279 290 323
-67 211 302 250 272
-68 250 305 230 296
-69 310 334 327 230
-70 258 248 327 307
-71 286 330 192 258
-72 330 200 268 261
-73 216 349 273 296
-74 202 181 273 263
-75 220 202 235 329
-76 232 265 211 235
-77 265 222 268 313
-78 222 354 359 184
-79 277 194 359 295
-80 355 323 258 295
-81 355 345 183 350
-82 299 322 227 350
-83 231 245 322 238
-84 245 213 216 327
-85 191 258 314 328
-86 266 310 214 328
-87 297 266 324 185
-88 359 185 273 318
-89 213 224 250 318
-90 210 309 224 237
-91 341 234 237 284
-92 242 341 222 322
-93 242 330 211 336
-94 276 278 225 336
-95 225 346 317 186
-96 191 202 317 350
-97 199 322 235 351
-98 209 199 343 183
-99 187 244 343 306
-100 187 204 237 328
-101 202 204 295 340
-102 203 349 196 340
-103 331 353 212 203
-104 331 224 225 316
-105 245 215 359 316
-106 313 215 271 282
-107 243 300 357 282
-108 266 300 336 351
-109 321 225 185 229
-110 330 189 321 241
-111 352 233 248 241
-112 352 199 203 195
-113 341 266 292 195
-114 298 292 314 230
-115 298 320 281 285
-116 257 282 285 340
-117 257 237 317 339
-118 200 289 250 339
-119 289 290 249 217
-120 343 215 217 229
-121 187 356 282 251
-122 265 245 356 262
-123 227 315 326 262
-124 298 321 246 315
-125 331 343 246 360
-126 223 355 235 360
-127 223 256 193 263
-128 256 289 292 197
-129 300 203 239 197
-130 216 239 294 295
-131 354 236 280 294
-132 280 251 339 241
-133 352 288 289 283
-134 283 240 317 318
-135 276 332 206 240
-136 223 356 206 338
-137 333 338 241 285
-138 242 221 333 185
-139 198 221 214 269
-140 269 294 360 274
-141 298 347 217 274
-142 341 267 191 347
-143 309 267 182 260
-144 288 260 239 262
-145 286 287 315 294
-146 286 190 300 204
-147 188 190 271 305
-148 188 221 302 283
-149 256 291 302 262
-150 187 264 291 316
-151 209 264 337 261
-152 267 333 192 337
-153 223 192 280 272
-154 331 226 272 351
-155 226 228 196 252
-156 287 347 240 252
-157 220 267 238 206
-158 275 238 195 217
-159 275 200 323 207
-160 264 286 277 207
-161 277 269 240 329
-162 352 344 257 329
-163 342 189 344 327
-164 231 342 291 226
-165 231 221 194 260
-166 319 194 229 285
-167 319 232 358 230
-168 220 190 358 272
-169 188 324 346 226
-170 246 280 346 259
-171 253 222 259 216
-172 253 344 238 284
-173 297 190 337 284
-174 297 303 315 197
-175 265 303 304 350
-176 319 304 186 329
-177 264 234 186 252
-178 255 234 256 251
-179 255 355 273 219
-180 275 324 194 219
-181 35 57 36 74
-182 143 37 38 52
-183 59 81 60 98
-184 78 27 49 28
-185 88 138 87 109
-186 176 177 95 42
-187 99 121 100 150
-188 147 169 148 18
-189 110 64 163 65
-190 146 168 147 173
-191 3 85 96 142
-192 71 18 152 153
-193 33 34 48 127
-194 165 166 79 180
-195 112 113 158 31
-196 56 155 57 102
-197 47 128 129 174
-198 45 46 60 139
-199 23 112 97 98
-200 159 61 72 118
-201 58 7 29 8
-202 101 74 96 75
-203 112 102 103 129
-204 100 101 146 19
-205 57 40 30 31
-206 135 157 136 6
-207 1 159 160 30
-208 38 60 39 65
-209 52 151 53 98
-210 90 39 61 40
-211 66 67 93 76
-212 4 103 5 50
-213 89 62 84 63
-214 40 139 41 86
-215 105 106 19 120
-216 171 73 84 130
-217 158 119 141 120
-218 23 45 24 62
-219 179 180 38 21
-220 34 157 168 75
-221 165 148 138 139
-222 77 78 92 171
-223 136 126 127 153
-224 89 90 3 104
-225 104 94 95 109
-226 154 155 169 164
-227 123 25 36 82
-228 155 49 50 64
-229 166 27 109 120
-230 68 167 69 114
-231 165 83 30 164
-232 167 61 62 76
-233 111 17 18 32
-234 12 177 178 91
-235 126 75 97 76
-236 25 26 40 131
-237 100 90 91 117
-238 157 158 83 172
-239 144 129 130 43
-240 134 156 135 161
-241 110 132 111 137
-242 11 92 93 138
-243 1 2 16 107
-244 99 1 12 58
-245 122 83 105 84
-246 124 125 170 43
-247 11 25 20 10
-248 111 13 24 70
-249 13 14 28 119
-250 67 89 68 118
-251 121 132 178 39
-252 155 177 156 14
-253 13 171 172 42
-254 45 28 18 19
-255 13 178 179 8
-256 178 127 149 128
-257 35 116 117 162
-258 80 70 71 85
-259 12 170 17 171
-260 143 165 144 2
-261 57 58 72 151
-262 122 144 123 149
-263 28 127 29 74
-264 177 160 150 151
-265 77 122 76 175
-266 113 86 108 87
-267 143 157 152 142
-268 77 50 72 51
-269 139 161 140 10
-270 44 34 35 49
-271 147 49 60 106
-272 154 67 168 153
-273 88 179 73 74
-274 59 6 140 141
-275 158 180 5 159
-276 135 37 48 94
-277 79 26 160 161
-278 44 94 43 65
-279 66 15 37 16
-280 132 170 131 153
-281 16 115 17 62
-282 121 116 106 107
-283 133 134 59 148
-284 91 38 172 173
-285 166 115 137 116
-286 145 146 71 160
-287 22 145 156 63
-288 133 144 51 10
-289 133 128 118 119
-290 66 20 119 21
-291 149 150 63 164
-292 113 114 27 128
-293 26 48 27 53
-294 145 140 130 131
-295 79 101 80 130
-296 68 58 59 73
-297 8 173 174 87
-298 124 114 115 141
-299 82 31 53 32
-300 146 107 129 108
-301 22 23 37 32
-302 67 14 148 149
-303 4 174 21 175
-304 176 46 17 175
-305 68 147 53 54
-306 99 5 6 20
-307 70 19 41 20
-308 2 24 3 29
-309 44 143 45 90
-310 47 69 48 86
-311 11 33 12 50
-312 56 46 47 61
-313 55 77 56 106
-314 114 63 85 64
-315 123 145 124 174
-316 23 104 105 150
-317 134 95 117 96
-318 88 89 134 7
-319 176 1 166 167
-320 22 36 115 21
-321 110 35 124 109
-322 92 82 83 97
-323 66 80 159 65
-324 46 169 180 87
-325 33 16 6 7
-326 44 123 29 30
-327 69 70 84 163
-328 11 100 85 86
-329 176 161 162 75
-330 110 71 93 72
-331 154 103 125 104
-332 56 135 41 42
-333 137 138 51 152
-334 69 52 42 43
-335 14 36 15 41
-336 93 94 7 108
-337 22 151 173 152
-338 55 2 136 137
-339 132 117 118 31
-340 101 102 15 116
-341 91 113 92 142
-342 34 5 163 164
-343 99 125 98 120
-344 172 162 9 163
-345 55 81 64 54
-346 4 169 170 95
-347 55 156 141 142
-348 3 25 4 54
-349 102 51 73 52
-350 81 82 96 175
-351 154 15 97 108
-352 111 133 112 162
-353 24 103 9 10
-354 33 78 32 131
-355 80 179 81 126
-356 121 122 47 136
-357 8 107 9 54
-358 167 168 26 9
-359 88 78 79 105
-360 125 126 39 140
0

**************