[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 360, 200 ] =
BGCG(AMC(20,3,[0.1:1.2]);K1;{2,3}).
(I) Following is a form readable by MAGMA:
g:=Graph<360|{ {169, 188}, {162, 188}, {163, 188}, {155, 188}, {143, 206}, {177,
246}, {140, 196}, {142, 199}, {143, 198}, {132, 206}, {137, 196}, {128, 206},
{160, 238}, {136, 199}, {137, 198}, {135, 215}, {154, 202}, {137, 217}, {151,
198}, {150, 196}, {138, 217}, {157, 201}, {145, 196}, {176, 229}, {159, 202},
{146, 199}, {147, 198}, {179, 229}, {145, 201}, {174, 246}, {131, 217}, {141,
215}, {146, 201}, {166, 253}, {139, 215}, {158, 194}, {135, 217}, {163, 253},
{153, 199}, {144, 206}, {156, 253}, {178, 211}, {160, 194}, {130, 225}, {171,
200}, {158, 253}, {133, 225}, {144, 244}, {145, 244}, {173, 200}, {133, 227},
{174, 200}, {180, 211}, {161, 201}, {171, 194}, {168, 194}, {140, 224}, {152,
244}, {167, 202}, {164, 202}, {143, 224}, {167, 200}, {133, 245}, {152, 232},
{159, 238}, {154, 232}, {173, 223}, {172, 223}, {148, 224}, {128, 245}, {170,
223}, {166, 211}, {135, 242}, {132, 242}, {165, 211}, {158, 232}, {159, 231},
{174, 214}, {140, 245}, {166, 223}, {153, 224}, {172, 214}, {155, 231}, {147,
238}, {138, 244}, {168, 214}, {153, 231}, {139, 245}, {145, 238}, {169, 214},
{152, 231}, {151, 232}, {76, 204}, {74, 203}, {92, 221}, {77, 204}, {103, 230},
{54, 181}, {49, 181}, {85, 208}, {122, 242}, {50, 184}, {90, 208}, {62, 181},
{64, 203}, {96, 236}, {106, 230}, {70, 203}, {95, 210}, {59, 181}, {124, 242},
{95, 208}, {96, 240}, {104, 248}, {43, 186}, {94, 207}, {97, 240}, {105, 248},
{116, 230}, {41, 186}, {43, 184}, {44, 184}, {88, 204}, {100, 240}, {104, 252},
{114, 230}, {119, 227}, {33, 183}, {89, 207}, {46, 184}, {102, 240}, {32, 183},
{122, 237}, {87, 207}, {116, 237}, {81, 203}, {98, 248}, {123, 225}, {33, 186},
{103, 252}, {118, 237}, {125, 225}, {127, 227}, {97, 252}, {126, 227}, {36,
186}, {115, 237}, {83, 204}, {92, 252}, {123, 218}, {21, 183}, {126, 220}, {78,
234}, {93, 248}, {72, 239}, {127, 215}, {67, 234}, {70, 239}, {118, 220}, {70,
234}, {112, 220}, {26, 183}, {119, 218}, {16, 190}, {97, 207}, {114, 220}, {116,
218}, {117, 218}, {74, 251}, {93, 236}, {99, 210}, {108, 221}, {91, 233}, {98,
208}, {102, 210}, {11, 190}, {72, 254}, {107, 221}, {76, 251}, {94, 233}, {101,
210}, {66, 251}, {85, 236}, {71, 254}, {4, 190}, {80, 234}, {5, 190}, {84, 233},
{96, 221}, {69, 251}, {83, 236}, {86, 233}, {12, 205}, {54, 247}, {48, 241},
{60, 254}, {14, 205}, {17, 213}, {53, 241}, {20, 209}, {46, 235}, {18, 212},
{56, 254}, {34, 228}, {35, 228}, {25, 209}, {112, 185}, {18, 216}, {47, 226},
{31, 209}, {35, 243}, {105, 185}, {10, 219}, {10, 216}, {57, 235}, {8, 219},
{49, 226}, {1, 213}, {63, 235}, {39, 243}, {14, 219}, {58, 239}, {21, 192}, {2,
212}, {57, 239}, {22, 192}, {19, 197}, {2, 213}, {3, 212}, {110, 185}, {13,
213}, {43, 243}, {41, 241}, {46, 247}, {14, 212}, {31, 197}, {22, 205}, {57,
226}, {42, 241}, {4, 216}, {7, 219}, {42, 247}, {6, 216}, {60, 226}, {53, 235},
{31, 193}, {27, 197}, {19, 205}, {40, 247}, {102, 185}, {25, 249}, {62, 222},
{4, 229}, {24, 249}, {34, 192}, {34, 193}, {33, 197}, {36, 192}, {28, 249}, {25,
255}, {89, 191}, {56, 222}, {30, 249}, {81, 182}, {43, 195}, {85, 189}, {84,
189}, {52, 222}, {85, 191}, {42, 193}, {9, 229}, {81, 189}, {19, 255}, {18,
255}, {44, 193}, {23, 250}, {20, 250}, {48, 222}, {45, 195}, {29, 243}, {10,
250}, {75, 187}, {32, 209}, {71, 182}, {4, 246}, {79, 189}, {68, 182}, {49,
195}, {23, 228}, {48, 195}, {2, 246}, {79, 187}, {11, 255}, {15, 250}, {74,
191}, {73, 191}, {19, 228}, {65, 187}, {76, 182}, {71, 187}, {7, 263}, {79,
335}, {66, 322}, {61, 317}, {45, 301}, {44, 301}, {94, 351}, {5, 263}, {87,
341}, {77, 335}, {64, 322}, {47, 301}, {6, 260}, {26, 281}, {12, 264}, {81,
341}, {71, 323}, {1, 260}, {80, 341}, {70, 323}, {56, 317}, {51, 309}, {83,
341}, {72, 335}, {30, 278}, {80, 344}, {16, 281}, {76, 325}, {64, 330}, {69,
335}, {52, 319}, {78, 325}, {65, 330}, {51, 319}, {5, 264}, {56, 309}, {20,
281}, {6, 264}, {59, 309}, {5, 277}, {72, 344}, {63, 303}, {22, 262}, {42, 315},
{89, 328}, {73, 344}, {121, 360}, {2, 272}, {69, 343}, {37, 311}, {7, 276}, {68,
343}, {36, 311}, {12, 281}, {93, 328}, {3, 277}, {126, 360}, {82, 325}, {7,
287}, {55, 303}, {39, 319}, {12, 276}, {9, 272}, {17, 264}, {13, 276}, {28,
262}, {82, 328}, {66, 344}, {37, 319}, {29, 262}, {59, 288}, {46, 309}, {44,
311}, {32, 315}, {3, 287}, {26, 262}, {9, 276}, {37, 315}, {51, 301}, {63, 288},
{90, 325}, {60, 284}, {114, 338}, {67, 354}, {102, 327}, {64, 354}, {126, 348},
{63, 284}, {110, 333}, {113, 338}, {115, 336}, {119, 340}, {3, 295}, {117, 336},
{1, 295}, {55, 273}, {29, 315}, {23, 305}, {122, 348}, {54, 273}, {58, 285},
{106, 333}, {15, 295}, {52, 284}, {120, 336}, {30, 311}, {75, 354}, {100, 333},
{121, 336}, {27, 305}, {55, 285}, {109, 327}, {120, 338}, {99, 328}, {108, 327},
{29, 305}, {61, 273}, {15, 290}, {48, 285}, {109, 320}, {121, 340}, {50, 284},
{30, 305}, {77, 354}, {52, 283}, {50, 285}, {111, 320}, {125, 338}, {38, 278},
{1, 307}, {41, 283}, {110, 348}, {17, 290}, {51, 256}, {40, 283}, {111, 348},
{116, 327}, {120, 331}, {22, 290}, {47, 283}, {53, 256}, {16, 295}, {33, 278},
{124, 331}, {117, 333}, {58, 256}, {101, 351}, {8, 307}, {25, 290}, {100, 351},
{123, 320}, {124, 320}, {61, 256}, {98, 351}, {40, 278}, {47, 273}, {35, 355},
{78, 270}, {101, 293}, {106, 298}, {96, 289}, {103, 294}, {107, 298}, {127,
318}, {14, 332}, {27, 345}, {99, 289}, {24, 347}, {77, 270}, {32, 355}, {107,
296}, {127, 316}, {122, 318}, {37, 352}, {95, 282}, {99, 294}, {107, 302}, {38,
352}, {92, 282}, {104, 302}, {120, 318}, {26, 349}, {111, 296}, {17, 345}, {82,
282}, {97, 297}, {109, 293}, {13, 324}, {113, 312}, {23, 349}, {40, 355}, {113,
314}, {115, 312}, {21, 345}, {79, 259}, {87, 282}, {101, 296}, {104, 293}, {45,
355}, {11, 324}, {28, 339}, {20, 347}, {18, 349}, {105, 294}, {13, 349}, {21,
324}, {88, 265}, {82, 259}, {49, 352}, {105, 312}, {10, 345}, {80, 259}, {24,
332}, {108, 312}, {53, 352}, {92, 265}, {86, 259}, {111, 314}, {27, 332}, {89,
270}, {114, 293}, {93, 261}, {31, 326}, {28, 326}, {84, 270}, {94, 261}, {115,
296}, {117, 302}, {16, 332}, {24, 324}, {84, 265}, {103, 314}, {100, 314}, {112,
302}, {6, 359}, {65, 288}, {39, 326}, {66, 288}, {50, 337}, {73, 300}, {123,
286}, {54, 337}, {75, 300}, {118, 286}, {62, 343}, {108, 261}, {15, 357}, {69,
303}, {98, 265}, {121, 274}, {9, 357}, {67, 303}, {8, 357}, {11, 357}, {74,
292}, {57, 343}, {8, 359}, {75, 292}, {41, 326}, {106, 261}, {125, 274}, {58,
330}, {124, 268}, {34, 339}, {91, 298}, {68, 310}, {91, 297}, {86, 292}, {90,
297}, {55, 323}, {88, 300}, {62, 330}, {38, 339}, {95, 298}, {39, 337}, {38,
337}, {86, 289}, {65, 310}, {118, 257}, {35, 347}, {78, 310}, {59, 323}, {68,
317}, {88, 289}, {83, 297}, {87, 300}, {119, 268}, {110, 274}, {112, 268}, {125,
257}, {91, 294}, {113, 268}, {45, 339}, {90, 292}, {67, 317}, {60, 322}, {36,
347}, {73, 310}, {61, 322}, {109, 274}, {129, 257}, {171, 299}, {142, 271},
{153, 280}, {139, 271}, {175, 299}, {156, 280}, {136, 269}, {157, 280}, {135,
257}, {139, 269}, {180, 307}, {163, 299}, {151, 280}, {134, 279}, {155, 266},
{154, 267}, {129, 279}, {162, 308}, {152, 271}, {149, 269}, {150, 271}, {141,
279}, {177, 299}, {140, 279}, {162, 313}, {131, 286}, {174, 307}, {128, 286},
{156, 258}, {147, 269}, {148, 266}, {149, 266}, {148, 308}, {171, 267}, {130,
291}, {144, 306}, {178, 272}, {177, 275}, {160, 258}, {146, 304}, {150, 308},
{176, 275}, {148, 304}, {134, 291}, {164, 258}, {158, 313}, {170, 258}, {173,
260}, {137, 291}, {161, 267}, {160, 266}, {147, 313}, {136, 291}, {146, 313},
{179, 287}, {154, 308}, {165, 267}, {130, 306}, {142, 316}, {173, 287}, {129,
306}, {180, 263}, {143, 316}, {176, 260}, {165, 275}, {177, 263}, {170, 275},
{172, 277}, {138, 304}, {175, 277}, {130, 318}, {172, 272}, {142, 306}, {141,
304}, {131, 316}, {151, 342}, {155, 346}, {149, 342}, {167, 356}, {157, 350},
{138, 334}, {164, 353}, {136, 334}, {144, 342}, {157, 346}, {163, 356}, {161,
358}, {175, 359}, {168, 353}, {132, 334}, {128, 331}, {133, 334}, {134, 331},
{132, 340}, {179, 353}, {129, 340}, {180, 353}, {178, 359}, {178, 356}, {179,
356}, {141, 342}, {159, 321}, {161, 321}, {169, 329}, {175, 329}, {166, 321},
{169, 321}, {131, 360}, {164, 329}, {134, 360}, {150, 358}, {168, 346}, {149,
358}, {170, 350}, {167, 350}, {176, 329}, {156, 358}, {162, 350}, {165, 346}
}>;
(II) A more general form is to represent the graph as the orbit of {169, 188}
under the group generated by the following permutations:
a: (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)(19, 20,
21)(22, 23, 24)(25, 26, 27)(28, 29, 30)(31, 32, 33)(34, 35, 36)(37, 38, 39)(40,
41, 42)(43, 44, 45)(46, 47, 48)(49, 50, 51)(52, 53, 54)(55, 56, 57)(58, 59,
60)(61, 62, 63)(64, 65, 66)(67, 68, 69)(70, 71, 72)(73, 74, 75)(76, 77, 78)(79,
80, 81)(82, 83, 84)(85, 86, 87)(88, 89, 90)(91, 92, 93)(94, 95, 96)(97, 98,
99)(100, 101, 102)(103, 104, 105)(106, 107, 108)(109, 110, 111)(112, 113,
114)(115, 116, 117)(118, 119, 120)(121, 122, 123)(124, 125, 126)(127, 128,
129)(130, 131, 132)(133, 134, 135)(136, 137, 138)(139, 140, 141)(142, 143,
144)(145, 146, 147)(148, 149, 150)(151, 152, 153)(154, 155, 156)(157, 158,
159)(160, 161, 162)(163, 164, 165)(166, 167, 168)(169, 170, 171)(172, 173,
174)(175, 176, 177)(178, 179, 180)(181, 284, 256)(182, 335, 234)(183, 197,
209)(184, 301, 195)(185, 314, 293)(186, 193, 355)(187, 344, 203)(188, 258,
267)(189, 259, 341)(190, 264, 216)(191, 292, 300)(192, 228, 347)(194, 321,
350)(196, 304, 269)(198, 244, 199)(200, 214, 223)(201, 313, 238)(202, 346,
253)(204, 270, 325)(205, 250, 324)(206, 306, 316)(207, 208, 289)(210, 240,
351)(211, 356, 353)(212, 295, 213)(215, 245, 279)(217, 334, 291)(218, 336,
237)(219, 357, 276)(220, 268, 338)(221, 261, 298)(222, 235, 273)(224, 342,
271)(225, 360, 242)(226, 285, 309)(227, 331, 257)(229, 263, 359)(230, 302,
312)(231, 280, 232)(233, 282, 236)(239, 323, 254)(241, 247, 283)(243, 311,
339)(246, 277, 260)(248, 294, 252)(249, 262, 305)(251, 354, 310)(255, 281,
345)(265, 328, 297)(266, 358, 308)(272, 287, 307)(274, 348, 320)(275, 299,
329)(278, 326, 315)(286, 340, 318)(288, 322, 330)(290, 349, 332)(296, 327,
333)(303, 317, 343)(319, 352, 337) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145,
154, 163, 172)(2, 15, 27, 34, 39, 53, 59, 67, 74, 87, 99, 106, 111, 125, 131,
139, 146, 159, 171, 178, 3, 17, 23, 31, 38, 51, 63, 70, 75, 89, 95, 103, 110,
123, 135, 142, 147, 161, 167, 175)(4, 11, 24, 36, 43, 48, 62, 68, 76, 83, 96,
108, 115, 120, 134, 140, 148, 155, 168, 180, 7, 12, 26, 32, 40, 47, 60, 72, 79,
84, 98, 104, 112, 119, 132, 144, 151, 156, 170, 176)(5, 13, 20, 33, 45, 52, 57,
71, 77, 85, 92, 105, 117, 124, 129, 143, 149, 157, 164, 177, 9, 16, 21, 35, 41,
49, 56, 69, 81, 88, 93, 107, 113, 121, 128, 141, 153, 160, 165, 179)(6, 18, 25,
30, 44, 50, 58, 65, 78, 90, 97, 102, 116, 122, 130, 137, 150, 162, 169, 174, 8,
14, 22, 29, 42, 54, 61, 66, 80, 86, 94, 101, 114, 126, 133, 138, 152, 158, 166,
173)(181, 317, 251, 341, 289, 261, 296, 338, 360, 245, 304, 231, 194, 211, 287,
264, 349, 209, 278, 301, 284, 239, 187, 270, 208, 252, 185, 218, 242, 306, 198,
358, 350, 329, 246, 357, 332, 192, 243, 241)(182, 204, 236, 221, 312, 336, 331,
279, 224, 266, 346, 353, 263, 276, 281, 183, 355, 283, 226, 254, 335, 189, 265,
248, 302, 268, 340, 206, 342, 280, 258, 275, 229, 190, 324, 347, 186, 195, 222,
343)(184, 285, 330, 310, 325, 297, 240, 327, 237, 318, 291, 196, 308, 188, 214,
307, 219, 205, 262, 315, 247, 273, 322, 344, 259, 233, 351, 293, 220, 227, 334,
244, 232, 253, 223, 260, 216, 255, 249, 311)(191, 282, 294, 333, 320, 257, 316,
269, 201, 202, 299, 272, 295, 345, 228, 326, 352, 309, 303, 203, 300, 328, 298,
314, 274, 286, 215, 199, 238, 267, 356, 277, 213, 250, 197, 339, 319, 235, 323,
354)(193, 337, 256, 288, 234, 292, 207, 210, 230, 348, 225, 217, 271, 313, 321,
200, 359, 212, 290, 305)
c: (2, 6, 3, 8)(4, 5, 7, 9)(10, 172)(11, 177, 12, 179)(13, 176, 16, 180)(14,
178, 18, 175)(15, 174, 17, 173)(19, 163)(20, 168, 21, 170)(22, 167, 25, 171)(23,
169, 27, 166)(24, 165, 26, 164)(28, 154)(29, 159, 30, 161)(31, 158, 34, 162)(32,
160, 36, 157)(33, 156, 35, 155)(37, 145)(38, 150, 39, 152)(40, 149, 43, 153)(41,
151, 45, 148)(42, 147, 44, 146)(46, 136)(47, 141, 48, 143)(49, 140, 52, 144)(50,
142, 54, 139)(51, 138, 53, 137)(55, 127)(56, 132, 57, 134)(58, 131, 61, 135)(59,
133, 63, 130)(60, 129, 62, 128)(64, 118)(65, 123, 66, 125)(67, 122, 70, 126)(68,
124, 72, 121)(69, 120, 71, 119)(73, 109)(74, 114, 75, 116)(76, 113, 79, 117)(77,
115, 81, 112)(78, 111, 80, 110)(82, 100)(83, 105, 84, 107)(85, 104, 88, 108)(86,
106, 90, 103)(87, 102, 89, 101)(92, 96, 93, 98)(94, 95, 97, 99)(181, 245, 284,
306)(182, 268, 335, 336)(183, 258, 347, 346)(184, 199, 247, 269)(185, 270, 296,
341)(186, 280, 355, 266)(187, 218, 251, 338)(188, 197, 253, 228)(189, 302, 204,
312)(190, 263, 276, 229)(191, 293, 300, 327)(192, 350, 209, 194)(193, 313)(195,
224, 283, 342)(196, 319, 244, 352)(198, 301, 304, 241)(200, 290)(201, 315, 238,
311)(202, 249, 267, 262)(203, 220, 354, 237)(205, 356, 255, 299)(206, 226, 279,
222)(207, 210)(208, 252, 289, 261)(211, 349, 329, 332)(212, 359)(213, 260, 295,
307)(214, 345, 223, 250)(215, 285, 316, 273)(216, 277, 219, 272)(217, 256)(221,
236, 248, 265)(225, 288)(227, 303, 318, 323)(230, 292)(231, 278, 358, 243)(232,
339, 308, 326)(233, 298, 297, 294)(234, 348)(235, 291, 309, 334)(239, 360, 317,
242)(240, 328, 351, 282)(246, 264, 287, 357)(254, 340, 343, 331)(257, 330, 286,
322)(259, 333, 325, 314)(271, 337)(274, 310, 320, 344)(275, 281, 353, 324)(305,
321)
C4[ 360, 200 ]
360
-1 213 260 295 307
-2 212 213 246 272
-3 287 277 212 295
-4 190 246 216 229
-5 264 277 190 263
-6 264 216 260 359
-7 276 287 219 263
-8 357 359 219 307
-9 276 357 272 229
-10 345 216 250 219
-11 255 190 324 357
-12 264 276 281 205
-13 276 213 324 349
-14 332 212 205 219
-15 290 357 250 295
-16 332 190 281 295
-17 264 213 290 345
-18 255 212 216 349
-19 255 205 228 197
-20 209 281 347 250
-21 345 192 324 183
-22 290 192 205 262
-23 228 349 250 305
-24 332 324 347 249
-25 209 255 290 249
-26 281 183 349 262
-27 332 345 305 197
-28 249 326 262 339
-29 243 315 305 262
-30 278 311 249 305
-31 209 193 326 197
-32 209 355 183 315
-33 278 183 186 197
-34 192 193 228 339
-35 243 355 347 228
-36 311 192 347 186
-37 319 352 311 315
-38 352 278 337 339
-39 319 243 326 337
-40 278 355 247 283
-41 326 283 186 241
-42 247 193 315 241
-43 243 184 195 186
-44 311 301 193 184
-45 355 301 195 339
-46 309 235 247 184
-47 301 226 283 273
-48 222 195 241 285
-49 352 181 226 195
-50 337 184 284 285
-51 319 309 256 301
-52 319 222 283 284
-53 352 256 235 241
-54 181 247 337 273
-55 323 303 273 285
-56 254 309 222 317
-57 343 235 226 239
-58 330 256 239 285
-59 309 288 323 181
-60 254 322 226 284
-61 256 322 273 317
-62 330 222 343 181
-63 288 235 303 284
-64 330 354 322 203
-65 187 330 288 310
-66 288 322 344 251
-67 354 234 303 317
-68 310 343 182 317
-69 343 335 303 251
-70 234 323 203 239
-71 187 254 323 182
-72 254 344 335 239
-73 310 300 344 191
-74 191 203 292 251
-75 187 354 300 292
-76 182 204 325 251
-77 354 335 204 270
-78 310 234 270 325
-79 187 189 335 259
-80 341 234 344 259
-81 341 189 203 182
-82 259 325 282 328
-83 297 341 236 204
-84 265 189 233 270
-85 189 191 236 208
-86 233 289 259 292
-87 341 300 282 207
-88 265 289 300 204
-89 191 270 207 328
-90 297 292 325 208
-91 297 298 233 294
-92 221 265 282 252
-93 236 248 261 328
-94 233 261 207 351
-95 210 298 282 208
-96 221 289 236 240
-97 297 207 240 252
-98 265 248 208 351
-99 210 289 294 328
-100 333 314 240 351
-101 210 293 296 351
-102 210 327 185 240
-103 314 294 230 252
-104 302 248 293 252
-105 312 248 294 185
-106 298 333 261 230
-107 221 298 302 296
-108 221 312 261 327
-109 320 293 327 274
-110 333 348 185 274
-111 320 314 348 296
-112 220 268 302 185
-113 268 312 314 338
-114 220 293 338 230
-115 312 237 336 296
-116 237 327 218 230
-117 333 302 336 218
-118 220 286 257 237
-119 268 227 218 340
-120 331 336 338 318
-121 336 360 274 340
-122 242 237 348 318
-123 286 320 225 218
-124 242 320 331 268
-125 257 225 338 274
-126 220 227 348 360
-127 215 227 316 318
-128 286 331 245 206
-129 257 279 306 340
-130 225 291 306 318
-131 286 217 316 360
-132 242 334 206 340
-133 245 334 225 227
-134 331 279 291 360
-135 242 257 215 217
-136 199 334 269 291
-137 198 291 217 196
-138 244 334 304 217
-139 245 269 215 271
-140 245 224 279 196
-141 342 279 215 304
-142 199 271 316 306
-143 198 224 206 316
-144 342 244 206 306
-145 244 201 238 196
-146 199 201 313 304
-147 198 269 313 238
-148 308 266 224 304
-149 342 266 269 358
-150 308 358 271 196
-151 198 232 342 280
-152 231 232 244 271
-153 231 199 224 280
-154 308 232 267 202
-155 231 188 266 346
-156 253 258 280 358
-157 201 280 346 350
-158 253 232 313 194
-159 231 321 202 238
-160 266 258 194 238
-161 321 201 267 358
-162 308 188 313 350
-163 253 188 299 356
-164 353 202 258 329
-165 275 211 267 346
-166 253 211 321 223
-167 200 202 356 350
-168 353 214 346 194
-169 188 321 214 329
-170 275 223 258 350
-171 200 299 267 194
-172 277 223 214 272
-173 287 200 223 260
-174 200 246 214 307
-175 277 299 359 329
-176 275 260 229 329
-177 275 299 246 263
-178 211 356 359 272
-179 287 353 356 229
-180 353 211 263 307
-181 59 49 62 54
-182 68 81 71 76
-183 33 26 21 32
-184 44 46 50 43
-185 110 112 102 105
-186 33 36 41 43
-187 79 71 75 65
-188 155 169 162 163
-189 79 81 84 85
-190 11 4 5 16
-191 89 73 74 85
-192 22 34 36 21
-193 44 34 31 42
-194 168 158 160 171
-195 45 48 49 43
-196 145 137 150 140
-197 33 27 19 31
-198 143 147 137 151
-199 146 136 142 153
-200 167 171 173 174
-201 145 146 157 161
-202 154 167 159 164
-203 70 81 74 64
-204 77 88 83 76
-205 22 12 14 19
-206 132 143 144 128
-207 89 94 97 87
-208 90 95 85 98
-209 25 20 31 32
-210 99 101 102 95
-211 165 166 178 180
-212 2 3 14 18
-213 1 2 13 17
-214 168 169 172 174
-215 135 127 139 141
-216 4 6 18 10
-217 135 137 138 131
-218 123 116 117 119
-219 14 7 8 10
-220 112 114 126 118
-221 92 96 107 108
-222 56 48 62 52
-223 166 170 172 173
-224 143 148 140 153
-225 133 123 125 130
-226 57 47 49 60
-227 133 126 127 119
-228 23 34 35 19
-229 176 179 4 9
-230 103 114 116 106
-231 155 159 152 153
-232 154 158 151 152
-233 91 94 84 86
-234 67 78 80 70
-235 46 57 63 53
-236 93 83 85 96
-237 122 115 116 118
-238 145 147 159 160
-239 57 58 70 72
-240 100 102 96 97
-241 48 41 42 53
-242 132 122 124 135
-243 35 39 29 43
-244 144 145 138 152
-245 133 128 139 140
-246 177 2 4 174
-247 46 40 42 54
-248 93 104 105 98
-249 24 25 28 30
-250 23 15 20 10
-251 66 69 74 76
-252 92 103 104 97
-253 166 156 158 163
-254 56 60 71 72
-255 11 25 18 19
-256 58 61 51 53
-257 135 125 118 129
-258 156 170 160 164
-259 79 80 82 86
-260 176 1 6 173
-261 93 94 106 108
-262 22 26 28 29
-263 177 180 5 7
-264 12 5 6 17
-265 88 92 84 98
-266 155 148 149 160
-267 154 165 171 161
-268 112 113 124 119
-269 136 147 149 139
-270 77 78 89 84
-271 139 150 152 142
-272 2 178 172 9
-273 55 47 61 54
-274 110 121 125 109
-275 165 176 177 170
-276 12 13 7 9
-277 3 5 172 175
-278 33 38 40 30
-279 134 129 140 141
-280 156 157 151 153
-281 12 26 16 20
-282 92 82 95 87
-283 47 40 41 52
-284 60 50 52 63
-285 55 58 48 50
-286 123 128 118 131
-287 3 179 7 173
-288 66 59 63 65
-289 88 99 96 86
-290 22 25 15 17
-291 134 136 137 130
-292 90 74 75 86
-293 101 114 104 109
-294 99 91 103 105
-295 1 3 15 16
-296 111 101 115 107
-297 90 91 83 97
-298 91 95 106 107
-299 177 171 163 175
-300 88 73 75 87
-301 44 45 47 51
-302 112 104 117 107
-303 55 67 69 63
-304 146 148 138 141
-305 23 27 29 30
-306 144 129 130 142
-307 1 180 8 174
-308 154 148 150 162
-309 56 46 59 51
-310 78 68 73 65
-311 44 36 37 30
-312 113 115 105 108
-313 146 147 158 162
-314 100 111 113 103
-315 37 29 42 32
-316 143 127 131 142
-317 56 67 68 61
-318 122 127 130 120
-319 37 39 51 52
-320 111 123 124 109
-321 166 169 159 161
-322 66 60 61 64
-323 55 59 70 71
-324 11 13 24 21
-325 78 90 82 76
-326 28 39 41 31
-327 102 116 108 109
-328 99 89 82 93
-329 176 169 164 175
-330 58 62 64 65
-331 134 124 128 120
-332 24 14 16 27
-333 110 100 106 117
-334 132 133 136 138
-335 77 79 69 72
-336 121 115 117 120
-337 38 39 50 54
-338 113 114 125 120
-339 34 45 38 28
-340 121 132 129 119
-341 80 81 83 87
-342 144 149 151 141
-343 57 68 69 62
-344 66 80 72 73
-345 27 17 10 21
-346 165 155 157 168
-347 24 35 36 20
-348 110 111 122 126
-349 23 13 26 18
-350 167 157 170 162
-351 100 101 94 98
-352 37 38 49 53
-353 168 179 180 164
-354 77 67 64 75
-355 45 35 40 32
-356 167 178 179 163
-357 11 15 8 9
-358 156 149 150 161
-359 178 6 8 175
-360 121 134 126 131
0