[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 360, 201 ] =
BGCG(UG(ATD[180,9]);K1;3).
(I) Following is a form readable by MAGMA:
g:=Graph<360|{ {180, 181}, {178, 185}, {164, 181}, {170, 185}, {163, 183}, {172,
186}, {173, 186}, {161, 185}, {175, 181}, {161, 189}, {160, 189}, {144, 182},
{145, 182}, {158, 185}, {131, 183}, {142, 186}, {128, 183}, {134, 186}, {137,
201}, {141, 207}, {178, 246}, {154, 223}, {149, 210}, {130, 202}, {165, 237},
{151, 223}, {164, 237}, {157, 214}, {150, 219}, {136, 198}, {134, 201}, {164,
235}, {136, 216}, {143, 222}, {152, 201}, {130, 214}, {146, 198}, {133, 210},
{135, 222}, {175, 246}, {150, 207}, {178, 232}, {133, 216}, {134, 219}, {129,
226}, {171, 207}, {170, 207}, {130, 228}, {147, 245}, {131, 228}, {174, 201},
{145, 246}, {130, 235}, {128, 237}, {137, 249}, {135, 246}, {139, 249}, {155,
232}, {161, 213}, {162, 214}, {158, 235}, {173, 216}, {168, 223}, {175, 216},
{140, 245}, {146, 232}, {147, 232}, {169, 210}, {128, 252}, {174, 210}, {158,
226}, {129, 253}, {128, 253}, {159, 226}, {94, 222}, {93, 220}, {95, 222}, {118,
244}, {75, 200}, {119, 244}, {56, 189}, {87, 209}, {71, 192}, {112, 248}, {116,
252}, {65, 200}, {126, 247}, {71, 205}, {90, 208}, {90, 209}, {123, 247}, {124,
240}, {125, 240}, {77, 194}, {125, 242}, {46, 190}, {83, 195}, {77, 221}, {47,
190}, {76, 221}, {95, 206}, {98, 243}, {70, 212}, {43, 184}, {114, 225}, {80,
196}, {125, 233}, {127, 235}, {117, 224}, {119, 226}, {46, 184}, {121, 239},
{43, 188}, {91, 195}, {92, 198}, {98, 248}, {74, 209}, {93, 198}, {78, 211},
{101, 248}, {110, 240}, {81, 206}, {82, 243}, {84, 245}, {66, 224}, {102, 196},
{28, 191}, {31, 187}, {81, 245}, {25, 191}, {31, 184}, {23, 190}, {67, 234},
{109, 196}, {109, 199}, {82, 249}, {69, 233}, {118, 218}, {68, 233}, {66, 236},
{114, 220}, {72, 231}, {76, 252}, {83, 227}, {9, 184}, {82, 227}, {15, 190},
{102, 215}, {107, 218}, {69, 247}, {103, 213}, {104, 218}, {120, 202}, {11,
191}, {99, 215}, {107, 223}, {112, 196}, {73, 252}, {10, 188}, {88, 238}, {79,
249}, {66, 244}, {74, 253}, {76, 251}, {111, 215}, {5, 188}, {66, 251}, {113,
203}, {7, 188}, {87, 236}, {85, 238}, {126, 197}, {96, 220}, {116, 200}, {121,
197}, {123, 199}, {117, 200}, {122, 199}, {101, 219}, {64, 255}, {100, 219},
{51, 243}, {1, 192}, {50, 243}, {36, 230}, {35, 231}, {59, 255}, {43, 239}, {34,
231}, {63, 250}, {38, 227}, {120, 189}, {56, 255}, {16, 217}, {49, 248}, {40,
225}, {6, 204}, {7, 204}, {45, 230}, {1, 204}, {13, 192}, {29, 211}, {26, 202},
{46, 254}, {27, 202}, {61, 236}, {6, 212}, {18, 192}, {24, 203}, {61, 238}, {34,
241}, {13, 217}, {57, 237}, {23, 193}, {38, 240}, {96, 182}, {10, 221}, {52,
227}, {37, 242}, {22, 193}, {19, 203}, {42, 242}, {10, 208}, {62, 228}, {33,
250}, {59, 224}, {8, 212}, {30, 194}, {105, 181}, {31, 194}, {106, 183}, {36,
250}, {11, 212}, {63, 224}, {48, 239}, {34, 194}, {37, 197}, {4, 229}, {90,
187}, {55, 214}, {30, 255}, {55, 213}, {46, 205}, {1, 229}, {55, 211}, {2, 231},
{27, 253}, {60, 218}, {39, 193}, {37, 195}, {1, 230}, {29, 250}, {49, 217}, {3,
234}, {60, 213}, {58, 211}, {53, 220}, {85, 191}, {7, 236}, {40, 195}, {26,
241}, {29, 241}, {33, 205}, {32, 205}, {91, 182}, {16, 254}, {26, 244}, {17,
254}, {62, 209}, {35, 204}, {41, 217}, {5, 247}, {73, 187}, {9, 251}, {8, 251},
{52, 199}, {17, 229}, {53, 193}, {21, 225}, {20, 225}, {78, 187}, {27, 238},
{19, 229}, {51, 197}, {24, 239}, {28, 228}, {19, 234}, {31, 230}, {52, 206},
{53, 206}, {2, 254}, {44, 208}, {22, 234}, {12, 241}, {54, 203}, {32, 221}, {41,
215}, {13, 242}, {47, 208}, {22, 233}, {45, 301}, {90, 347}, {100, 357}, {16,
274}, {25, 282}, {93, 350}, {70, 325}, {50, 305}, {82, 342}, {79, 330}, {21,
275}, {73, 335}, {99, 356}, {25, 273}, {70, 334}, {28, 276}, {14, 263}, {71,
334}, {29, 276}, {9, 259}, {18, 280}, {24, 275}, {49, 314}, {44, 295}, {14,
258}, {88, 340}, {20, 280}, {32, 301}, {89, 340}, {36, 297}, {4, 266}, {85,
347}, {62, 304}, {61, 307}, {52, 314}, {36, 298}, {104, 358}, {12, 259}, {88,
343}, {63, 304}, {60, 307}, {57, 310}, {108, 355}, {12, 285}, {63, 302}, {38,
311}, {60, 302}, {35, 304}, {78, 349}, {22, 258}, {65, 341}, {51, 294}, {12,
282}, {89, 335}, {80, 326}, {34, 308}, {17, 263}, {113, 359}, {11, 284}, {93,
330}, {57, 302}, {23, 271}, {94, 326}, {75, 339}, {67, 347}, {86, 335}, {27,
257}, {4, 287}, {7, 282}, {64, 349}, {48, 301}, {23, 266}, {20, 266}, {41, 311},
{30, 257}, {119, 360}, {33, 257}, {109, 333}, {6, 295}, {8, 297}, {120, 345},
{123, 346}, {18, 305}, {58, 281}, {118, 341}, {96, 324}, {108, 328}, {110, 330},
{97, 324}, {42, 269}, {123, 348}, {2, 298}, {3, 298}, {39, 269}, {75, 353}, {72,
354}, {40, 258}, {41, 258}, {74, 353}, {13, 289}, {56, 276}, {117, 345}, {42,
263}, {54, 283}, {44, 259}, {59, 267}, {97, 337}, {126, 334}, {61, 268}, {97,
336}, {124, 333}, {107, 345}, {40, 283}, {58, 265}, {21, 289}, {100, 336}, {110,
346}, {15, 314}, {111, 346}, {126, 331}, {96, 342}, {105, 351}, {83, 356}, {102,
337}, {104, 351}, {89, 353}, {102, 350}, {125, 325}, {54, 271}, {94, 359}, {48,
266}, {37, 286}, {113, 330}, {115, 328}, {47, 275}, {91, 359}, {58, 262}, {51,
271}, {33, 284}, {59, 262}, {15, 305}, {91, 357}, {44, 274}, {118, 328}, {45,
274}, {114, 333}, {122, 325}, {124, 323}, {14, 334}, {39, 359}, {2, 323}, {121,
314}, {95, 283}, {103, 291}, {73, 268}, {103, 290}, {115, 310}, {5, 323}, {69,
259}, {92, 283}, {20, 348}, {87, 287}, {108, 292}, {110, 294}, {26, 339}, {86,
287}, {84, 286}, {17, 346}, {86, 285}, {105, 292}, {45, 354}, {106, 293}, {108,
291}, {114, 317}, {18, 323}, {92, 269}, {79, 286}, {95, 270}, {117, 292}, {5,
343}, {16, 322}, {111, 317}, {4, 343}, {74, 281}, {28, 335}, {100, 311}, {72,
284}, {77, 281}, {3, 340}, {86, 257}, {68, 275}, {11, 339}, {101, 317}, {10,
339}, {81, 264}, {69, 284}, {6, 348}, {24, 322}, {99, 313}, {65, 282}, {70,
285}, {68, 287}, {98, 313}, {124, 295}, {76, 273}, {101, 312}, {19, 333}, {67,
285}, {21, 331}, {111, 305}, {121, 295}, {3, 348}, {55, 360}, {8, 343}, {92,
316}, {119, 279}, {85, 308}, {106, 267}, {50, 336}, {67, 289}, {115, 273}, {77,
302}, {94, 317}, {84, 311}, {116, 279}, {115, 278}, {127, 281}, {9, 353}, {88,
304}, {84, 316}, {65, 297}, {112, 280}, {122, 274}, {64, 297}, {72, 289}, {97,
264}, {105, 256}, {113, 280}, {120, 273}, {127, 278}, {48, 347}, {62, 341}, {14,
354}, {39, 331}, {98, 270}, {103, 267}, {15, 354}, {38, 331}, {43, 325}, {99,
269}, {104, 262}, {106, 260}, {107, 260}, {50, 322}, {80, 288}, {68, 308}, {25,
360}, {54, 324}, {64, 307}, {83, 288}, {71, 308}, {109, 286}, {127, 268}, {89,
301}, {49, 324}, {122, 271}, {30, 360}, {80, 294}, {53, 322}, {81, 294}, {79,
312}, {112, 263}, {57, 321}, {78, 310}, {56, 321}, {42, 336}, {47, 340}, {32,
349}, {87, 298}, {75, 310}, {116, 265}, {35, 349}, {129, 256}, {151, 277}, {139,
264}, {177, 306}, {141, 270}, {132, 256}, {166, 290}, {176, 309}, {142, 264},
{147, 277}, {171, 300}, {132, 268}, {156, 277}, {171, 290}, {180, 318}, {163,
296}, {174, 290}, {173, 291}, {132, 267}, {177, 318}, {160, 303}, {170, 315},
{177, 293}, {129, 276}, {176, 293}, {169, 319}, {178, 296}, {169, 306}, {179,
296}, {137, 277}, {152, 260}, {157, 256}, {162, 319}, {144, 270}, {177, 303},
{179, 300}, {180, 299}, {139, 299}, {165, 261}, {159, 319}, {142, 300}, {151,
309}, {143, 300}, {165, 262}, {145, 306}, {150, 306}, {180, 272}, {161, 261},
{155, 319}, {131, 292}, {156, 315}, {148, 316}, {172, 261}, {138, 288}, {175,
260}, {146, 318}, {169, 261}, {149, 313}, {145, 316}, {149, 315}, {167, 265},
{148, 315}, {166, 265}, {131, 307}, {143, 318}, {135, 309}, {157, 303}, {138,
312}, {153, 299}, {156, 303}, {163, 272}, {148, 288}, {151, 291}, {157, 296},
{163, 278}, {166, 272}, {142, 313}, {160, 279}, {144, 299}, {158, 293}, {172,
272}, {133, 312}, {168, 278}, {138, 309}, {168, 279}, {154, 344}, {155, 344},
{160, 355}, {136, 332}, {162, 358}, {159, 345}, {140, 327}, {173, 358}, {153,
338}, {148, 344}, {172, 352}, {170, 358}, {138, 327}, {136, 326}, {137, 326},
{132, 341}, {139, 344}, {154, 329}, {133, 337}, {134, 350}, {135, 350}, {143,
342}, {153, 320}, {140, 342}, {141, 337}, {156, 320}, {144, 332}, {153, 327},
{152, 327}, {159, 320}, {162, 321}, {166, 321}, {167, 320}, {140, 352}, {141,
352}, {164, 329}, {167, 329}, {167, 328}, {176, 351}, {149, 357}, {174, 351},
{150, 356}, {146, 357}, {165, 338}, {147, 356}, {155, 355}, {171, 338}, {154,
352}, {179, 329}, {168, 338}, {152, 355}, {176, 332}, {179, 332} }>;
(II) A more general form is to represent the graph as the orbit of {180, 181}
under the group generated by the following permutations:
a: (1, 2)(3, 71)(4, 72)(5, 45)(6, 46)(7, 16)(8, 15)(9, 121)(10, 122)(11, 23)(12,
24)(13, 87)(14, 88)(17, 35)(18, 36)(19, 34)(20, 33)(21, 86)(22, 85)(25, 53)(26,
54)(27, 40)(28, 39)(29, 113)(30, 114)(31, 124)(32, 123)(37, 74)(38, 73)(41,
61)(42, 62)(43, 44)(47, 70)(48, 69)(49, 66)(50, 65)(51, 75)(52, 76)(55, 93)(56,
94)(57, 80)(58, 79)(59, 101)(60, 102)(63, 112)(64, 111)(67, 68)(77, 109)(78,
110)(81, 115)(82, 116)(83, 128)(84, 127)(89, 126)(90, 125)(91, 129)(92, 130)(95,
120)(96, 119)(97, 118)(98, 117)(99, 131)(100, 132)(103, 134)(104, 133)(105,
149)(106, 150)(107, 141)(108, 142)(135, 161)(136, 162)(137, 166)(138, 165)(139,
167)(140, 168)(143, 160)(144, 159)(145, 158)(146, 157)(147, 163)(148, 164)(151,
172)(152, 171)(155, 179)(156, 180)(169, 176)(170, 175)(181, 315)(182, 226)(183,
356)(184, 295)(185, 246)(186, 291)(187, 240)(188, 274)(189, 222)(190, 212)(191,
193)(192, 298)(194, 333)(195, 253)(196, 302)(197, 353)(198, 214)(199, 221)(200,
243)(201, 290)(202, 283)(203, 241)(204, 254)(205, 348)(206, 273)(207, 260)(208,
325)(209, 242)(210, 351)(211, 330)(213, 350)(215, 307)(216, 358)(217, 236)(218,
337)(219, 267)(220, 360)(223, 352)(224, 248)(225, 257)(227, 252)(228, 269)(229,
231)(230, 323)(232, 296)(233, 347)(234, 308)(235, 316)(237, 288)(238, 258)(239,
259)(244, 324)(245, 278)(247, 301)(249, 265)(250, 280)(251, 314)(255, 317)(256,
357)(261, 309)(262, 312)(263, 304)(264, 328)(266, 284)(268, 311)(270, 345)(271,
339)(272, 277)(275, 285)(276, 359)(279, 342)(281, 286)(282, 322)(287, 289)(292,
313)(293, 306)(294, 310)(297, 305)(299, 320)(300, 355)(303, 318)(319, 332)(321,
326)(327, 338)(329, 344)(331, 335)(334, 340)(336, 341)(343, 354)(346, 349) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (3, 46)(4, 45)(5, 72)(6, 71)(7, 13)(8, 14)(9, 22)(10, 21)(11, 126)(12,
125)(15, 88)(16, 87)(17, 36)(18, 35)(19, 31)(20, 32)(23, 89)(24, 90)(25, 37)(26,
38)(27, 52)(28, 51)(29, 110)(30, 109)(33, 123)(34, 124)(39, 75)(40, 76)(41,
66)(42, 65)(43, 67)(44, 68)(49, 61)(50, 62)(53, 74)(54, 73)(55, 79)(56, 80)(57,
94)(58, 93)(59, 102)(60, 101)(63, 111)(64, 112)(77, 114)(78, 113)(81, 129)(82,
130)(83, 120)(84, 119)(85, 121)(86, 122)(91, 115)(92, 116)(95, 128)(96, 127)(97,
132)(98, 131)(99, 117)(100, 118)(103, 133)(104, 134)(105, 142)(106, 141)(107,
150)(108, 149)(135, 165)(136, 166)(137, 162)(138, 161)(139, 157)(140, 158)(143,
164)(144, 163)(145, 168)(146, 167)(147, 159)(148, 160)(151, 169)(152, 170)(153,
178)(154, 177)(155, 156)(171, 175)(172, 176)(173, 174)(179, 180)(181, 300)(182,
278)(183, 270)(184, 234)(185, 327)(186, 351)(187, 203)(188, 289)(189, 288)(190,
340)(191, 197)(192, 204)(193, 353)(194, 333)(195, 273)(196, 255)(198, 265)(199,
257)(200, 269)(201, 358)(202, 227)(205, 348)(206, 253)(207, 260)(208, 275)(209,
322)(210, 291)(211, 330)(212, 334)(213, 312)(214, 249)(215, 224)(216, 290)(217,
236)(218, 219)(220, 281)(221, 225)(222, 237)(223, 306)(226, 245)(228, 243)(229,
230)(231, 323)(232, 320)(233, 259)(235, 342)(238, 314)(239, 347)(240, 241)(242,
282)(244, 311)(246, 338)(247, 284)(248, 307)(250, 346)(251, 258)(252, 283)(254,
298)(256, 264)(261, 309)(262, 350)(263, 297)(266, 301)(267, 337)(268, 324)(271,
335)(272, 332)(274, 287)(276, 294)(277, 319)(279, 316)(280, 349)(285, 325)(286,
360)(292, 313)(293, 352)(295, 308)(296, 299)(302, 317)(303, 344)(304, 305)(310,
359)(315, 355)(318, 329)(321, 326)(328, 357)(331, 339)(336, 341)(343, 354)(345,
356)
c: (3, 72)(4, 71)(5, 46)(6, 45)(7, 31)(8, 32)(9, 10)(11, 89)(12, 90)(13, 19)(14,
20)(15, 123)(16, 124)(17, 18)(21, 22)(23, 126)(24, 125)(25, 73)(26, 74)(29,
62)(30, 61)(33, 88)(34, 87)(35, 36)(37, 54)(38, 53)(41, 114)(42, 113)(47,
69)(48, 70)(49, 109)(50, 110)(55, 132)(56, 131)(57, 117)(58, 118)(59, 60)(65,
78)(66, 77)(79, 97)(80, 98)(81, 82)(83, 95)(84, 96)(85, 86)(91, 92)(93, 100)(94,
99)(101, 102)(105, 162)(106, 161)(107, 165)(108, 166)(115, 116)(119, 127)(120,
128)(121, 122)(129, 130)(135, 150)(136, 149)(137, 142)(138, 141)(143, 147)(144,
148)(151, 171)(152, 172)(153, 154)(155, 180)(156, 179)(159, 164)(160, 163)(169,
175)(170, 176)(173, 174)(177, 178)(181, 319)(182, 316)(183, 189)(184, 188)(185,
293)(186, 201)(187, 282)(190, 247)(191, 335)(192, 229)(193, 331)(194, 236)(195,
283)(196, 248)(197, 271)(198, 357)(199, 314)(200, 310)(202, 253)(203, 242)(204,
230)(205, 343)(206, 227)(207, 309)(208, 259)(209, 241)(210, 216)(211, 341)(212,
301)(213, 267)(214, 256)(215, 317)(217, 333)(218, 262)(219, 350)(220, 311)(221,
251)(222, 356)(223, 338)(224, 302)(225, 258)(226, 235)(228, 276)(231, 298)(232,
318)(233, 275)(234, 289)(237, 345)(238, 257)(239, 325)(240, 322)(243, 294)(244,
281)(245, 342)(246, 306)(249, 264)(250, 304)(252, 273)(254, 323)(255, 307)(260,
261)(263, 280)(265, 328)(266, 334)(268, 360)(269, 359)(270, 288)(272, 355)(274,
295)(277, 300)(278, 279)(284, 340)(285, 347)(286, 324)(287, 308)(290, 291)(292,
321)(296, 303)(297, 349)(299, 344)(305, 346)(312, 337)(313, 326)(315, 332)(320,
329)(327, 352)(330, 336)(339, 353)(348, 354)(351, 358)
d: (1, 3)(2, 4)(7, 123)(8, 124)(9, 125)(10, 126)(11, 121)(12, 122)(13, 89)(14,
90)(15, 85)(16, 86)(17, 87)(18, 88)(19, 36)(20, 35)(21, 32)(22, 31)(23, 34)(24,
33)(25, 52)(26, 51)(27, 50)(28, 49)(29, 54)(30, 53)(37, 75)(38, 76)(39, 77)(40,
78)(41, 73)(42, 74)(43, 69)(44, 70)(45, 67)(46, 68)(47, 71)(48, 72)(55, 95)(56,
96)(57, 91)(58, 92)(59, 93)(60, 94)(61, 111)(62, 112)(63, 113)(64, 114)(65,
109)(66, 110)(79, 117)(80, 118)(81, 119)(82, 120)(83, 115)(84, 116)(97, 129)(98,
130)(99, 127)(100, 128)(101, 131)(102, 132)(103, 135)(104, 136)(105, 133)(106,
134)(107, 137)(108, 138)(139, 159)(140, 160)(141, 157)(142, 158)(143, 161)(144,
162)(145, 166)(146, 165)(147, 168)(148, 167)(149, 164)(150, 163)(153, 155)(154,
156)(169, 180)(170, 179)(171, 178)(172, 177)(173, 176)(174, 175)(181, 210)(182,
321)(183, 219)(184, 233)(185, 300)(186, 293)(187, 258)(188, 247)(189, 342)(190,
308)(191, 314)(192, 340)(193, 194)(195, 310)(196, 341)(197, 339)(198, 262)(199,
282)(200, 286)(201, 260)(202, 243)(203, 250)(204, 348)(205, 275)(206, 360)(207,
296)(208, 334)(209, 263)(211, 283)(212, 295)(213, 222)(214, 270)(215, 268)(216,
351)(217, 335)(218, 326)(220, 255)(221, 331)(223, 277)(224, 330)(225, 349)(226,
264)(227, 273)(228, 248)(229, 298)(230, 234)(231, 266)(232, 338)(235, 313)(236,
346)(237, 357)(238, 305)(239, 284)(240, 251)(241, 271)(242, 353)(244, 294)(245,
279)(246, 290)(249, 345)(252, 311)(253, 336)(254, 287)(256, 337)(257, 322)(259,
325)(261, 318)(265, 316)(267, 350)(269, 281)(272, 306)(274, 285)(276, 324)(278,
356)(280, 304)(288, 328)(289, 301)(291, 309)(292, 312)(297, 333)(299, 319)(302,
359)(303, 352)(307, 317)(315, 329)(320, 344)(323, 343)(327, 355)(332, 358)(347,
354)
e: (1, 7)(2, 8)(3, 88)(4, 87)(5, 36)(6, 35)(9, 46)(10, 45)(11, 72)(12, 71)(13,
25)(14, 26)(15, 75)(16, 76)(17, 66)(18, 65)(19, 61)(20, 62)(21, 28)(22, 27)(23,
74)(24, 73)(29, 126)(30, 125)(31, 43)(32, 44)(33, 69)(34, 70)(37, 55)(38,
56)(39, 129)(40, 130)(41, 120)(42, 119)(47, 89)(48, 90)(49, 115)(50, 116)(51,
58)(52, 57)(53, 128)(54, 127)(59, 110)(60, 109)(63, 123)(64, 124)(67, 85)(68,
86)(77, 122)(78, 121)(79, 103)(80, 104)(81, 165)(82, 166)(83, 162)(84, 161)(91,
157)(92, 158)(93, 106)(94, 105)(95, 164)(96, 163)(97, 168)(98, 167)(99,
159)(100, 160)(101, 108)(102, 107)(111, 117)(112, 118)(113, 132)(114, 131)(133,
151)(134, 152)(135, 175)(136, 176)(137, 174)(138, 173)(139, 171)(140, 172)(141,
154)(142, 153)(143, 180)(144, 179)(145, 178)(146, 177)(147, 169)(148, 170)(149,
156)(150, 155)(181, 222)(182, 296)(183, 220)(185, 316)(186, 327)(187, 239)(188,
230)(189, 311)(190, 353)(191, 289)(192, 282)(193, 253)(194, 325)(195, 214)(196,
218)(197, 211)(198, 293)(199, 302)(200, 305)(202, 258)(203, 268)(205, 259)(206,
237)(207, 344)(208, 301)(209, 266)(210, 277)(212, 231)(213, 286)(215, 345)(216,
309)(217, 273)(219, 355)(221, 274)(223, 337)(224, 346)(225, 228)(226, 269)(227,
321)(229, 236)(232, 306)(233, 257)(234, 238)(235, 283)(240, 255)(241, 334)(242,
360)(243, 265)(244, 263)(245, 261)(247, 250)(248, 328)(249, 290)(251, 254)(252,
322)(256, 359)(260, 350)(262, 294)(264, 338)(267, 330)(270, 329)(271, 281)(272,
342)(275, 335)(276, 331)(278, 324)(279, 336)(280, 341)(285, 308)(288, 358)(291,
312)(292, 317)(295, 349)(297, 323)(298, 343)(299, 300)(303, 357)(304, 348)(307,
333)(310, 314)(313, 320)(319, 356)(326, 351)(339, 354)
C4[ 360, 201 ]
360
-1 192 204 229 230
-2 231 254 298 323
-3 298 234 348 340
-4 287 266 343 229
-5 188 343 323 247
-6 212 204 348 295
-7 188 236 204 282
-8 297 343 212 251
-9 353 259 184 251
-10 188 221 339 208
-11 212 191 284 339
-12 259 282 241 285
-13 242 289 192 217
-14 354 334 258 263
-15 354 190 314 305
-16 254 322 217 274
-17 254 346 229 263
-18 323 192 280 305
-19 234 333 203 229
-20 266 225 280 348
-21 275 331 289 225
-22 233 234 258 193
-23 266 190 193 271
-24 275 322 203 239
-25 191 282 360 273
-26 244 202 339 241
-27 253 202 257 238
-28 276 191 335 228
-29 276 211 250 241
-30 255 257 194 360
-31 187 194 184 230
-32 221 301 205 349
-33 257 205 250 284
-34 231 308 194 241
-35 231 204 304 349
-36 297 298 250 230
-37 242 286 195 197
-38 331 311 227 240
-39 331 269 193 359
-40 225 258 195 283
-41 311 258 215 217
-42 242 269 336 263
-43 188 325 184 239
-44 259 295 208 274
-45 354 301 230 274
-46 254 190 205 184
-47 275 190 208 340
-48 266 301 347 239
-49 324 248 314 217
-50 243 322 336 305
-51 243 271 294 197
-52 199 314 227 206
-53 220 322 193 206
-54 203 324 271 283
-55 211 213 214 360
-56 276 189 255 321
-57 310 321 302 237
-58 265 211 281 262
-59 255 267 224 262
-60 213 302 218 307
-61 268 236 238 307
-62 209 341 304 228
-63 224 302 304 250
-64 297 255 349 307
-65 297 341 200 282
-66 244 224 236 251
-67 234 289 347 285
-68 275 308 287 233
-69 233 247 259 284
-70 212 334 325 285
-71 308 334 192 205
-72 231 354 289 284
-73 187 268 335 252
-74 209 253 353 281
-75 353 200 310 339
-76 221 251 273 252
-77 221 302 281 194
-78 187 211 310 349
-79 286 330 312 249
-80 288 326 294 196
-81 264 245 206 294
-82 243 342 227 249
-83 288 356 227 195
-84 286 245 311 316
-85 308 191 347 238
-86 287 257 335 285
-87 209 287 298 236
-88 343 238 304 340
-89 353 301 335 340
-90 187 209 347 208
-91 357 182 359 195
-92 198 269 283 316
-93 198 220 330 350
-94 222 326 359 317
-95 222 270 206 283
-96 220 342 324 182
-97 264 324 336 337
-98 243 313 248 270
-99 356 269 313 215
-100 311 357 336 219
-101 312 248 317 219
-102 215 337 196 350
-103 267 213 290 291
-104 358 218 262 351
-105 256 181 292 351
-106 267 183 260 293
-107 223 345 260 218
-108 355 291 292 328
-109 286 199 333 196
-110 330 346 294 240
-111 346 215 305 317
-112 280 248 196 263
-113 330 203 280 359
-114 220 333 225 317
-115 310 278 273 328
-116 265 200 279 252
-117 200 224 345 292
-118 341 244 218 328
-119 244 279 226 360
-120 189 202 345 273
-121 314 239 295 197
-122 199 325 271 274
-123 199 247 346 348
-124 333 323 240 295
-125 242 233 325 240
-126 331 334 247 197
-127 278 235 268 281
-128 253 237 183 252
-129 253 276 256 226
-130 202 235 214 228
-131 292 183 228 307
-132 341 256 267 268
-133 210 312 216 337
-134 201 350 186 219
-135 309 222 246 350
-136 198 332 216 326
-137 277 201 249 326
-138 309 288 312 327
-139 264 299 344 249
-140 352 342 245 327
-141 352 270 337 207
-142 264 300 313 186
-143 342 222 300 318
-144 299 332 182 270
-145 246 182 316 306
-146 198 232 357 318
-147 232 277 245 356
-148 288 344 315 316
-149 210 313 357 315
-150 356 207 306 219
-151 309 277 223 291
-152 201 355 260 327
-153 320 299 327 338
-154 352 223 344 329
-155 319 232 344 355
-156 320 277 303 315
-157 256 214 303 296
-158 235 226 293 185
-159 319 320 345 226
-160 189 355 279 303
-161 189 213 261 185
-162 319 321 214 358
-163 278 183 272 296
-164 235 181 237 329
-165 237 261 338 262
-166 265 321 290 272
-167 265 320 328 329
-168 223 278 279 338
-169 319 210 261 306
-170 358 315 185 207
-171 300 290 338 207
-172 352 261 272 186
-173 291 358 216 186
-174 210 201 290 351
-175 246 181 216 260
-176 309 332 293 351
-177 303 293 306 318
-178 232 246 185 296
-179 332 300 296 329
-180 299 181 272 318
-181 180 105 164 175
-182 144 145 91 96
-183 106 128 163 131
-184 46 9 31 43
-185 178 158 170 161
-186 134 172 173 142
-187 78 90 73 31
-188 5 7 10 43
-189 56 160 161 120
-190 23 46 47 15
-191 11 25 28 85
-192 1 13 71 18
-193 22 23 39 53
-194 77 34 30 31
-195 91 37 83 40
-196 112 80 102 109
-197 121 37 126 51
-198 146 92 136 93
-199 122 123 52 109
-200 116 117 75 65
-201 134 137 152 174
-202 26 27 130 120
-203 24 113 19 54
-204 1 35 6 7
-205 33 46 71 32
-206 81 95 52 53
-207 170 171 150 141
-208 44 90 47 10
-209 90 62 74 87
-210 133 169 149 174
-211 55 78 58 29
-212 11 70 6 8
-213 55 103 60 161
-214 55 157 162 130
-215 99 111 102 41
-216 133 136 173 175
-217 13 16 49 41
-218 60 104 107 118
-219 100 101 134 150
-220 114 93 96 53
-221 77 10 32 76
-222 143 135 94 95
-223 154 168 107 151
-224 66 59 117 63
-225 114 40 20 21
-226 158 159 129 119
-227 38 82 83 52
-228 28 62 130 131
-229 1 4 17 19
-230 1 45 36 31
-231 34 2 35 72
-232 155 178 146 147
-233 22 68 69 125
-234 22 67 3 19
-235 158 127 130 164
-236 66 61 7 87
-237 165 57 128 164
-238 88 27 61 85
-239 121 24 48 43
-240 110 124 125 38
-241 12 34 26 29
-242 13 37 125 42
-243 82 50 51 98
-244 66 26 118 119
-245 81 147 84 140
-246 145 178 135 175
-247 123 69 5 126
-248 101 112 49 98
-249 79 82 137 139
-250 33 36 29 63
-251 66 8 9 76
-252 116 73 128 76
-253 27 128 74 129
-254 2 46 16 17
-255 56 59 30 64
-256 132 157 105 129
-257 33 27 30 86
-258 22 14 40 41
-259 44 12 69 9
-260 106 107 152 175
-261 165 169 161 172
-262 165 58 59 104
-263 112 14 17 42
-264 81 139 97 142
-265 166 167 58 116
-266 23 4 48 20
-267 132 59 103 106
-268 132 61 127 73
-269 99 92 39 42
-270 144 95 141 98
-271 23 122 51 54
-272 166 180 172 163
-273 25 115 76 120
-274 44 45 122 16
-275 24 68 47 21
-276 56 28 29 129
-277 156 147 137 151
-278 168 115 127 163
-279 168 116 160 119
-280 112 113 18 20
-281 77 58 127 74
-282 12 25 7 65
-283 92 40 95 54
-284 11 33 69 72
-285 12 67 70 86
-286 79 37 84 109
-287 68 4 86 87
-288 80 148 83 138
-289 67 13 72 21
-290 166 103 171 174
-291 103 151 173 108
-292 105 117 108 131
-293 176 177 158 106
-294 110 80 81 51
-295 44 121 124 6
-296 178 157 179 163
-297 36 8 64 65
-298 2 3 36 87
-299 144 180 139 153
-300 143 179 171 142
-301 45 89 48 32
-302 77 57 60 63
-303 177 156 157 160
-304 88 35 62 63
-305 111 15 50 18
-306 177 145 169 150
-307 60 61 64 131
-308 34 68 71 85
-309 176 135 138 151
-310 78 57 115 75
-311 100 38 84 41
-312 133 79 101 138
-313 99 149 98 142
-314 121 15 49 52
-315 156 148 170 149
-316 145 92 148 84
-317 111 101 114 94
-318 143 177 146 180
-319 155 169 159 162
-320 156 167 159 153
-321 56 166 57 162
-322 24 16 50 53
-323 2 124 5 18
-324 49 96 97 54
-325 122 70 125 43
-326 80 136 137 94
-327 138 140 152 153
-328 167 115 118 108
-329 154 167 179 164
-330 110 79 113 93
-331 38 126 39 21
-332 176 144 179 136
-333 124 114 19 109
-334 14 70 71 126
-335 89 28 73 86
-336 100 50 42 97
-337 133 102 97 141
-338 165 168 171 153
-339 11 26 75 10
-340 88 89 3 47
-341 132 62 118 65
-342 143 82 96 140
-343 88 4 5 8
-344 154 155 148 139
-345 159 117 107 120
-346 110 111 123 17
-347 67 90 48 85
-348 123 3 6 20
-349 78 35 64 32
-350 134 102 135 93
-351 176 104 105 174
-352 154 172 140 141
-353 89 74 9 75
-354 45 14 15 72
-355 155 160 108 152
-356 99 147 83 150
-357 100 91 146 149
-358 104 170 162 173
-359 91 113 39 94
-360 55 25 30 119
0