C4graphGraph forms for C4 [ 360, 208 ] = BGCG(UG(Rmap(360,19){8,4|4}_10);K1;4)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 208 ] = BGCG(UG(Rmap(360,19){8,4|4}_10);K1;4).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {180, 184}, {170, 186}, {162, 182}, {170, 181}, {153, 186}, {157, 184}, {147, 181}, {150, 188}, {130, 182}, {132, 191}, {132, 186}, {137, 183}, {157, 221}, {171, 235}, {178, 240}, {139, 207}, {144, 213}, {166, 225}, {128, 200}, {129, 201}, {133, 207}, {174, 228}, {163, 232}, {168, 227}, {143, 195}, {129, 204}, {158, 208}, {161, 239}, {132, 203}, {154, 203}, {132, 214}, {177, 227}, {148, 198}, {134, 212}, {166, 245}, {144, 196}, {149, 192}, {135, 208}, {150, 206}, {178, 234}, {151, 205}, {137, 210}, {138, 209}, {162, 254}, {177, 239}, {131, 227}, {174, 206}, {136, 233}, {147, 241}, {172, 200}, {176, 214}, {159, 248}, {179, 219}, {178, 219}, {145, 250}, {133, 232}, {161, 204}, {171, 196}, {140, 252}, {168, 216}, {167, 215}, {142, 254}, {146, 224}, {149, 231}, {142, 253}, {148, 231}, {159, 235}, {172, 216}, {130, 247}, {159, 234}, {157, 232}, {135, 241}, {172, 218}, {164, 210}, {135, 240}, {179, 196}, {175, 215}, {154, 227}, {167, 222}, {162, 216}, {136, 243}, {156, 231}, {142, 245}, {130, 255}, {134, 251}, {171, 212}, {61, 189}, {65, 192}, {91, 217}, {119, 245}, {106, 238}, {76, 201}, {85, 208}, {97, 228}, {57, 191}, {97, 230}, {98, 229}, {105, 238}, {51, 187}, {89, 209}, {116, 252}, {100, 237}, {109, 228}, {126, 247}, {72, 194}, {97, 235}, {53, 190}, {76, 199}, {94, 211}, {82, 220}, {125, 243}, {69, 202}, {75, 196}, {121, 246}, {124, 236}, {69, 212}, {79, 222}, {91, 202}, {127, 238}, {118, 228}, {120, 234}, {92, 207}, {106, 249}, {76, 216}, {102, 242}, {82, 199}, {110, 251}, {119, 226}, {110, 248}, {67, 218}, {126, 231}, {115, 239}, {124, 224}, {38, 187}, {37, 187}, {100, 250}, {93, 194}, {107, 244}, {110, 241}, {118, 233}, {85, 245}, {104, 200}, {113, 209}, {125, 221}, {65, 224}, {74, 235}, {71, 230}, {122, 219}, {84, 246}, {114, 209}, {118, 213}, {27, 191}, {93, 249}, {27, 190}, {16, 182}, {99, 197}, {28, 187}, {78, 233}, {20, 189}, {103, 206}, {18, 184}, {89, 243}, {20, 190}, {99, 201}, {106, 192}, {112, 218}, {115, 217}, {30, 181}, {74, 225}, {119, 220}, {120, 211}, {64, 237}, {123, 214}, {120, 214}, {88, 247}, {66, 242}, {4, 182}, {70, 244}, {127, 205}, {95, 236}, {73, 253}, {84, 225}, {84, 226}, {117, 195}, {113, 198}, {88, 224}, {70, 255}, {98, 219}, {103, 221}, {2, 185}, {87, 236}, {101, 222}, {115, 200}, {77, 241}, {5, 184}, {83, 238}, {69, 248}, {7, 185}, {66, 252}, {116, 202}, {121, 199}, {94, 225}, {56, 249}, {116, 181}, {24, 218}, {29, 223}, {28, 222}, {117, 183}, {8, 203}, {55, 244}, {122, 185}, {22, 210}, {18, 215}, {121, 188}, {60, 250}, {61, 251}, {11, 204}, {10, 195}, {54, 255}, {1, 203}, {21, 223}, {9, 197}, {48, 252}, {51, 253}, {13, 194}, {16, 223}, {12, 220}, {35, 243}, {19, 194}, {57, 232}, {39, 244}, {3, 215}, {38, 242}, {11, 223}, {34, 247}, {19, 197}, {63, 233}, {52, 226}, {23, 193}, {108, 186}, {26, 205}, {59, 236}, {44, 251}, {40, 255}, {104, 191}, {24, 192}, {62, 230}, {15, 212}, {62, 229}, {9, 213}, {27, 199}, {14, 211}, {55, 234}, {98, 188}, {99, 189}, {38, 249}, {98, 189}, {29, 253}, {4, 229}, {34, 195}, {35, 193}, {22, 242}, {24, 254}, {39, 193}, {2, 229}, {10, 237}, {19, 250}, {26, 240}, {42, 198}, {85, 185}, {63, 210}, {62, 208}, {23, 248}, {35, 204}, {32, 207}, {59, 202}, {29, 239}, {21, 230}, {53, 198}, {33, 213}, {3, 246}, {47, 217}, {59, 205}, {1, 246}, {64, 183}, {7, 240}, {6, 254}, {70, 190}, {57, 193}, {20, 237}, {35, 217}, {77, 183}, {70, 188}, {63, 197}, {39, 221}, {32, 220}, {53, 201}, {45, 211}, {29, 226}, {49, 206}, {12, 268}, {101, 357}, {6, 260}, {96, 354}, {11, 264}, {87, 340}, {81, 338}, {26, 281}, {101, 358}, {8, 268}, {66, 326}, {60, 312}, {58, 318}, {41, 301}, {13, 265}, {23, 274}, {68, 321}, {91, 350}, {3, 260}, {83, 340}, {60, 315}, {47, 296}, {44, 299}, {19, 276}, {94, 345}, {49, 313}, {107, 355}, {111, 359}, {39, 302}, {86, 351}, {82, 347}, {54, 319}, {37, 303}, {111, 357}, {8, 259}, {24, 275}, {15, 259}, {71, 331}, {50, 318}, {77, 320}, {45, 291}, {86, 344}, {79, 321}, {50, 316}, {80, 351}, {86, 345}, {94, 337}, {109, 354}, {1, 273}, {69, 341}, {18, 258}, {95, 335}, {40, 314}, {81, 323}, {65, 339}, {92, 334}, {2, 273}, {78, 349}, {46, 317}, {7, 275}, {49, 293}, {95, 331}, {114, 358}, {31, 266}, {3, 277}, {84, 322}, {25, 271}, {17, 263}, {9, 286}, {56, 303}, {44, 315}, {22, 270}, {73, 337}, {68, 348}, {54, 302}, {46, 310}, {125, 357}, {81, 328}, {4, 286}, {90, 320}, {76, 342}, {73, 339}, {52, 302}, {42, 304}, {8, 274}, {92, 327}, {10, 278}, {4, 281}, {80, 333}, {46, 307}, {42, 311}, {14, 275}, {11, 277}, {56, 294}, {90, 324}, {53, 298}, {91, 324}, {60, 284}, {64, 353}, {105, 328}, {58, 280}, {74, 360}, {107, 329}, {50, 278}, {58, 287}, {96, 325}, {13, 299}, {56, 286}, {32, 262}, {111, 329}, {7, 288}, {63, 280}, {58, 285}, {112, 344}, {5, 300}, {47, 262}, {45, 260}, {43, 258}, {27, 306}, {36, 264}, {49, 285}, {26, 311}, {22, 312}, {73, 359}, {113, 351}, {44, 259}, {61, 274}, {109, 322}, {1, 305}, {54, 262}, {9, 313}, {117, 325}, {110, 351}, {41, 283}, {87, 357}, {30, 301}, {5, 305}, {25, 301}, {12, 312}, {16, 293}, {50, 263}, {31, 298}, {28, 297}, {51, 261}, {55, 257}, {101, 339}, {108, 346}, {15, 310}, {38, 287}, {36, 285}, {25, 288}, {118, 335}, {90, 352}, {104, 338}, {40, 275}, {14, 306}, {43, 279}, {34, 286}, {17, 301}, {17, 300}, {85, 360}, {115, 334}, {117, 331}, {10, 330}, {18, 338}, {28, 349}, {99, 290}, {114, 307}, {34, 352}, {72, 266}, {119, 309}, {103, 292}, {72, 269}, {81, 276}, {71, 257}, {105, 303}, {37, 354}, {126, 313}, {95, 279}, {74, 259}, {123, 306}, {67, 265}, {106, 288}, {21, 350}, {77, 262}, {68, 271}, {41, 354}, {104, 291}, {31, 338}, {112, 317}, {65, 271}, {82, 284}, {78, 256}, {75, 261}, {5, 330}, {88, 279}, {75, 260}, {30, 337}, {6, 342}, {87, 263}, {100, 308}, {123, 299}, {122, 299}, {14, 348}, {79, 285}, {15, 349}, {92, 270}, {20, 320}, {48, 356}, {120, 300}, {126, 298}, {2, 343}, {96, 309}, {116, 289}, {6, 336}, {48, 358}, {93, 267}, {31, 327}, {96, 312}, {112, 296}, {113, 296}, {21, 335}, {78, 276}, {12, 343}, {51, 360}, {13, 342}, {102, 317}, {103, 316}, {124, 295}, {16, 332}, {59, 359}, {109, 305}, {127, 289}, {25, 326}, {57, 345}, {33, 323}, {75, 297}, {67, 289}, {41, 331}, {47, 332}, {121, 282}, {124, 287}, {45, 329}, {86, 306}, {64, 292}, {43, 334}, {66, 295}, {52, 337}, {61, 347}, {111, 264}, {36, 333}, {71, 302}, {100, 269}, {37, 335}, {125, 279}, {33, 330}, {105, 258}, {80, 316}, {48, 349}, {90, 311}, {108, 257}, {52, 346}, {80, 319}, {102, 265}, {122, 267}, {40, 346}, {89, 298}, {97, 274}, {36, 336}, {67, 311}, {93, 297}, {17, 356}, {33, 340}, {23, 353}, {30, 360}, {102, 272}, {123, 269}, {32, 344}, {72, 304}, {68, 316}, {46, 342}, {43, 339}, {114, 266}, {83, 297}, {127, 261}, {62, 325}, {79, 307}, {55, 330}, {89, 292}, {88, 293}, {108, 273}, {107, 277}, {42, 341}, {83, 300}, {158, 287}, {128, 258}, {139, 271}, {162, 294}, {144, 277}, {160, 293}, {131, 261}, {160, 294}, {155, 284}, {158, 281}, {175, 294}, {156, 278}, {145, 282}, {154, 276}, {180, 314}, {158, 272}, {173, 290}, {174, 318}, {176, 289}, {131, 273}, {138, 280}, {176, 291}, {152, 269}, {160, 309}, {155, 270}, {134, 272}, {175, 313}, {151, 257}, {140, 283}, {161, 310}, {159, 263}, {133, 284}, {145, 267}, {155, 256}, {165, 318}, {169, 308}, {134, 280}, {165, 315}, {149, 266}, {145, 305}, {133, 292}, {168, 265}, {161, 256}, {152, 315}, {171, 264}, {178, 278}, {170, 268}, {167, 256}, {155, 307}, {179, 281}, {131, 303}, {156, 304}, {138, 295}, {153, 308}, {146, 319}, {137, 295}, {180, 282}, {165, 267}, {160, 270}, {141, 291}, {143, 288}, {139, 314}, {170, 283}, {144, 290}, {142, 317}, {164, 272}, {143, 314}, {175, 282}, {135, 319}, {163, 283}, {154, 290}, {138, 304}, {146, 296}, {141, 310}, {143, 308}, {177, 268}, {139, 309}, {140, 334}, {163, 353}, {140, 328}, {148, 336}, {163, 356}, {156, 340}, {149, 348}, {169, 352}, {136, 323}, {147, 344}, {129, 332}, {150, 347}, {153, 343}, {151, 324}, {141, 345}, {147, 326}, {153, 320}, {128, 346}, {129, 347}, {150, 333}, {148, 329}, {152, 326}, {157, 322}, {130, 355}, {169, 328}, {128, 355}, {179, 336}, {165, 321}, {167, 322}, {176, 341}, {166, 321}, {164, 332}, {180, 348}, {136, 353}, {173, 324}, {137, 352}, {141, 358}, {174, 325}, {172, 327}, {166, 333}, {169, 327}, {173, 323}, {177, 350}, {151, 355}, {146, 359}, {173, 341}, {164, 350}, {152, 356}, {168, 343} }>;

(II) A more general form is to represent the graph as the orbit of {180, 184} under the group generated by the following permutations:

a: (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 14)(11, 16)(13, 19)(15, 22)(17, 25)(18, 26)(20, 27)(21, 29)(23, 32)(24, 33)(28, 38)(30, 41)(31, 42)(34, 45)(35, 47)(36, 49)(37, 51)(39, 54)(40, 55)(43, 59)(44, 60)(46, 63)(48, 66)(50, 68)(52, 71)(56, 75)(57, 77)(58, 79)(61, 82)(62, 84)(64, 86)(65, 87)(67, 81)(69, 92)(73, 95)(74, 96)(76, 99)(78, 102)(80, 103)(83, 106)(85, 109)(88, 111)(89, 113)(90, 104)(91, 115)(94, 117)(97, 119)(98, 121)(100, 123)(101, 124)(105, 127)(107, 130)(110, 133)(112, 136)(114, 138)(116, 140)(118, 142)(120, 143)(122, 145)(125, 146)(126, 148)(128, 151)(132, 153)(134, 155)(135, 157)(137, 141)(139, 159)(144, 162)(147, 163)(149, 156)(154, 168)(158, 167)(160, 171)(161, 164)(166, 174)(169, 176)(172, 173)(175, 179)(178, 180)(181, 283)(182, 277)(183, 345)(184, 240)(185, 305)(189, 199)(191, 320)(192, 340)(193, 262)(195, 211)(196, 294)(197, 342)(198, 298)(200, 324)(202, 334)(203, 343)(204, 332)(205, 258)(206, 333)(207, 248)(208, 322)(210, 310)(212, 270)(213, 254)(214, 308)(215, 281)(216, 290)(218, 323)(219, 282)(220, 274)(221, 319)(222, 287)(224, 357)(225, 325)(226, 230)(228, 245)(229, 246)(232, 241)(233, 317)(234, 314)(235, 309)(236, 339)(237, 306)(239, 350)(242, 349)(243, 296)(244, 255)(247, 329)(249, 297)(250, 299)(251, 284)(253, 335)(256, 272)(257, 346)(259, 312)(260, 286)(261, 303)(263, 271)(264, 293)(265, 276)(266, 304)(275, 330)(278, 348)(279, 359)(280, 307)(288, 300)(289, 328)(291, 352)(292, 351)(295, 358)(311, 338)(313, 336)(318, 321)(326, 356)(327, 341)(331, 337)(344, 353)(354, 360)
b: (2, 3)(4, 6)(5, 8)(7, 11)(9, 13)(10, 15)(12, 18)(14, 21)(16, 24)(17, 23)(20, 28)(22, 31)(25, 35)(26, 36)(27, 37)(29, 40)(30, 39)(32, 43)(33, 44)(34, 46)(38, 53)(41, 57)(42, 58)(45, 62)(47, 65)(48, 64)(49, 67)(50, 69)(51, 70)(54, 73)(55, 74)(56, 76)(59, 80)(60, 81)(61, 83)(63, 72)(66, 89)(68, 91)(71, 94)(75, 98)(77, 101)(78, 100)(79, 90)(82, 105)(84, 108)(85, 107)(86, 95)(87, 110)(88, 112)(93, 99)(96, 104)(97, 120)(102, 126)(103, 116)(106, 129)(109, 132)(111, 135)(113, 124)(114, 137)(115, 139)(117, 141)(118, 123)(119, 128)(121, 131)(122, 144)(125, 147)(127, 150)(130, 142)(133, 140)(134, 156)(136, 152)(143, 161)(145, 154)(148, 158)(149, 164)(151, 166)(153, 167)(155, 169)(157, 170)(160, 172)(165, 173)(168, 175)(171, 178)(174, 176)(177, 180)(181, 221)(182, 254)(183, 358)(184, 268)(185, 277)(186, 322)(187, 190)(188, 261)(189, 297)(191, 354)(192, 332)(193, 301)(194, 197)(195, 310)(196, 219)(198, 287)(199, 303)(200, 309)(201, 249)(202, 316)(203, 305)(204, 288)(205, 333)(206, 289)(207, 334)(208, 329)(209, 295)(210, 266)(211, 230)(212, 278)(213, 299)(214, 228)(215, 343)(216, 294)(217, 271)(218, 293)(220, 258)(222, 320)(223, 275)(224, 296)(225, 257)(226, 346)(227, 282)(229, 260)(231, 272)(232, 283)(233, 269)(234, 235)(236, 351)(237, 349)(238, 347)(239, 314)(240, 264)(241, 357)(242, 298)(243, 326)(244, 360)(245, 355)(246, 273)(247, 317)(248, 263)(250, 276)(251, 340)(252, 292)(253, 255)(256, 308)(259, 330)(262, 339)(265, 313)(267, 290)(270, 327)(274, 300)(279, 344)(280, 304)(281, 336)(284, 328)(285, 311)(286, 342)(291, 325)(302, 337)(306, 335)(307, 352)(312, 338)(315, 323)(318, 341)(319, 359)(321, 324)(331, 345)(348, 350)(353, 356)
c: (2, 3, 8, 5)(4, 11, 23, 10)(6, 15, 17, 7)(9, 21, 39, 20)(12, 18)(13, 28, 30, 14)(16, 35, 64, 34)(19, 37, 52, 27)(22, 43, 32, 31)(24, 46, 48, 25)(26, 36, 69, 50)(29, 57, 100, 56)(33, 62, 107, 61)(38, 73, 86, 72)(40, 76, 78, 41)(42, 58, 59, 80)(44, 83, 85, 45)(47, 89, 137, 88)(49, 91, 103, 90)(51, 94, 123, 93)(53, 63, 95, 54)(55, 98, 144, 97)(60, 105, 119, 104)(65, 112, 114, 66)(67, 79, 116, 68)(70, 99, 118, 71)(74, 120, 122, 75)(77, 126, 164, 125)(81, 96, 128, 82)(84, 132, 145, 131)(87, 135, 148, 134)(101, 147, 149, 102)(106, 142, 141, 152)(108, 121, 154, 109)(110, 156, 158, 111)(113, 138, 124, 146)(115, 133, 169, 160)(117, 130, 129, 136)(127, 166, 176, 165)(139, 172, 155, 140)(143, 162, 161, 163)(150, 173, 174, 151)(153, 175, 177, 157)(159, 178, 179, 171)(167, 170, 180, 168)(181, 348, 265, 222)(182, 204, 353, 195)(183, 247, 332, 243)(184, 343, 215, 268)(185, 260, 259, 300)(186, 282, 227, 322)(187, 337, 306, 194)(188, 290, 228, 257)(189, 213, 230, 244)(190, 197, 335, 302)(191, 250, 303, 226)(192, 317, 358, 326)(193, 237, 286, 223)(196, 235, 234, 219)(198, 280, 236, 319)(199, 276, 354, 346)(200, 284, 328, 309)(201, 233, 331, 255)(202, 316, 311, 285)(203, 305, 273, 246)(205, 333, 341, 318)(206, 324)(207, 327, 270, 334)(208, 329, 251, 340)(209, 295, 224, 296)(210, 279, 262, 298)(211, 299, 297, 360)(212, 263, 240, 336)(214, 267, 261, 225)(216, 256, 283, 314)(217, 292, 352, 293)(218, 307, 252, 271)(220, 338, 312, 258)(221, 320, 313, 350)(229, 277, 274, 330)(231, 272, 357, 241)(232, 308, 294, 239)(238, 245, 291, 315)(242, 339, 344, 266)(248, 278, 281, 264)(249, 253, 345, 269)(254, 310, 356, 288)(275, 342, 349, 301)(287, 359, 351, 304)(289, 321)(323, 325, 355, 347)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 208 ]
360
-1 246 203 305 273
-2 343 185 229 273
-3 277 246 215 260
-4 286 182 281 229
-5 330 300 184 305
-6 254 342 336 260
-7 275 288 185 240
-8 268 203 259 274
-9 286 213 313 197
-10 330 278 237 195
-11 264 277 223 204
-12 220 343 268 312
-13 265 342 299 194
-14 275 211 348 306
-15 310 212 259 349
-16 332 223 182 293
-17 300 301 356 263
-18 258 215 184 338
-19 276 194 250 197
-20 320 189 190 237
-21 223 335 350 230
-22 242 210 312 270
-23 353 193 248 274
-24 275 254 192 218
-25 288 301 271 326
-26 311 281 205 240
-27 199 190 191 306
-28 187 297 222 349
-29 253 223 226 239
-30 301 181 337 360
-31 298 266 327 338
-32 220 344 207 262
-33 330 213 323 340
-34 286 352 247 195
-35 243 193 204 217
-36 264 333 336 285
-37 187 354 335 303
-38 187 242 287 249
-39 221 244 302 193
-40 275 255 346 314
-41 331 354 301 283
-42 198 341 311 304
-43 279 334 258 339
-44 299 259 315 251
-45 211 291 260 329
-46 342 310 317 307
-47 332 217 262 296
-48 356 358 349 252
-49 313 293 206 285
-50 278 316 263 318
-51 187 253 261 360
-52 302 346 226 337
-53 198 298 190 201
-54 319 255 302 262
-55 330 244 234 257
-56 286 303 249 294
-57 232 191 345 193
-58 287 280 285 318
-59 202 236 205 359
-60 312 315 250 284
-61 189 347 251 274
-62 325 229 208 230
-63 210 233 280 197
-64 353 237 292 183
-65 224 192 271 339
-66 242 326 295 252
-67 265 289 311 218
-68 321 271 348 316
-69 341 212 202 248
-70 188 244 255 190
-71 331 257 302 230
-72 266 269 194 304
-73 253 337 359 339
-74 235 225 259 360
-75 297 260 261 196
-76 199 342 201 216
-77 320 183 262 241
-78 276 233 256 349
-79 222 321 285 307
-80 319 333 316 351
-81 276 323 338 328
-82 220 199 347 284
-83 297 300 238 340
-84 322 246 225 226
-85 245 360 185 208
-86 344 345 306 351
-87 236 357 263 340
-88 224 279 247 293
-89 209 243 298 292
-90 352 320 311 324
-91 202 324 217 350
-92 334 270 327 207
-93 297 267 194 249
-94 211 345 225 337
-95 331 279 236 335
-96 309 354 312 325
-97 235 228 230 274
-98 188 189 229 219
-99 189 201 290 197
-100 308 269 237 250
-101 222 357 358 339
-102 242 265 272 317
-103 221 292 206 316
-104 200 191 291 338
-105 258 303 238 328
-106 288 192 238 249
-107 244 277 355 329
-108 257 346 273 186
-109 354 322 228 305
-110 248 251 241 351
-111 264 357 359 329
-112 344 218 317 296
-113 198 209 296 351
-114 209 266 358 307
-115 200 334 217 239
-116 289 202 181 252
-117 331 325 183 195
-118 233 213 335 228
-119 220 309 245 226
-120 211 234 300 214
-121 188 199 246 282
-122 299 267 185 219
-123 299 214 269 306
-124 287 224 236 295
-125 221 243 279 357
-126 231 298 247 313
-127 289 205 238 261
-128 200 355 258 346
-129 332 201 204 347
-130 255 355 247 182
-131 303 227 261 273
-132 191 203 214 186
-133 232 292 207 284
-134 212 280 272 251
-135 319 240 208 241
-136 243 353 233 323
-137 352 210 183 295
-138 209 280 304 295
-139 309 314 271 207
-140 334 283 328 252
-141 310 345 291 358
-142 253 254 245 317
-143 308 288 314 195
-144 277 213 290 196
-145 267 282 250 305
-146 319 224 359 296
-147 344 181 326 241
-148 198 231 336 329
-149 231 266 192 348
-150 188 333 347 206
-151 355 257 324 205
-152 356 269 315 326
-153 308 320 343 186
-154 276 290 203 227
-155 256 270 284 307
-156 231 278 304 340
-157 221 232 322 184
-158 287 281 272 208
-159 234 235 248 263
-160 309 270 293 294
-161 310 256 204 239
-162 254 182 216 294
-163 232 353 356 283
-164 210 332 272 350
-165 321 267 315 318
-166 321 245 333 225
-167 222 256 322 215
-168 265 343 216 227
-169 308 352 327 328
-170 268 181 283 186
-171 264 212 235 196
-172 200 216 327 218
-173 341 290 323 324
-174 325 206 228 318
-175 313 215 282 294
-176 341 289 214 291
-177 268 227 239 350
-178 234 278 240 219
-179 281 336 196 219
-180 314 282 348 184
-181 147 170 116 30
-182 4 16 162 130
-183 77 137 117 64
-184 157 180 5 18
-185 122 2 7 85
-186 132 170 108 153
-187 37 38 28 51
-188 121 70 150 98
-189 99 61 20 98
-190 70 27 20 53
-191 132 57 27 104
-192 24 149 106 65
-193 23 35 57 39
-194 13 93 72 19
-195 143 34 117 10
-196 144 179 171 75
-197 99 19 63 9
-198 113 148 42 53
-199 121 27 82 76
-200 104 115 128 172
-201 99 129 53 76
-202 69 91 59 116
-203 132 154 1 8
-204 11 35 161 129
-205 26 59 127 151
-206 103 49 150 174
-207 133 92 139 32
-208 135 158 62 85
-209 89 113 114 138
-210 22 137 63 164
-211 45 14 94 120
-212 134 69 15 171
-213 33 144 118 9
-214 132 176 123 120
-215 167 3 18 175
-216 168 172 162 76
-217 35 47 91 115
-218 67 24 112 172
-219 122 178 179 98
-220 12 82 119 32
-221 157 103 125 39
-222 79 101 167 28
-223 11 16 29 21
-224 88 124 146 65
-225 166 94 84 74
-226 29 84 52 119
-227 154 177 168 131
-228 118 97 174 109
-229 2 4 62 98
-230 71 62 97 21
-231 156 126 148 149
-232 133 57 157 163
-233 78 136 63 118
-234 55 178 159 120
-235 159 171 74 97
-236 124 59 95 87
-237 100 20 64 10
-238 83 105 127 106
-239 177 115 29 161
-240 178 135 26 7
-241 77 110 135 147
-242 22 66 102 38
-243 89 35 125 136
-244 55 70 39 107
-245 166 85 119 142
-246 121 1 3 84
-247 88 34 126 130
-248 110 23 69 159
-249 56 38 93 106
-250 100 145 60 19
-251 44 110 134 61
-252 66 48 116 140
-253 29 51 73 142
-254 24 6 162 142
-255 70 40 130 54
-256 78 155 167 161
-257 55 71 151 108
-258 105 18 128 43
-259 44 15 8 74
-260 45 3 6 75
-261 127 51 75 131
-262 77 47 32 54
-263 159 17 50 87
-264 11 111 36 171
-265 67 13 102 168
-266 114 72 149 31
-267 165 122 145 93
-268 12 177 170 8
-269 100 123 72 152
-270 22 155 92 160
-271 68 25 139 65
-272 134 102 158 164
-273 1 2 108 131
-274 23 61 8 97
-275 24 14 7 40
-276 154 78 81 19
-277 11 144 3 107
-278 156 178 50 10
-279 88 125 95 43
-280 134 58 138 63
-281 179 4 26 158
-282 121 145 180 175
-283 170 41 140 163
-284 133 155 60 82
-285 79 36 58 49
-286 34 56 4 9
-287 58 124 158 38
-288 143 25 7 106
-289 176 67 116 127
-290 99 154 144 173
-291 176 45 104 141
-292 89 133 103 64
-293 88 16 49 160
-294 56 160 162 175
-295 66 124 137 138
-296 112 47 113 146
-297 93 28 83 75
-298 89 126 31 53
-299 44 122 13 123
-300 5 17 83 120
-301 25 17 30 41
-302 71 39 52 54
-303 56 37 105 131
-304 156 72 138 42
-305 1 145 5 109
-306 123 14 27 86
-307 155 46 79 114
-308 143 100 169 153
-309 160 139 96 119
-310 46 15 161 141
-311 67 90 26 42
-312 22 12 60 96
-313 49 126 9 175
-314 143 180 40 139
-315 44 165 60 152
-316 68 80 103 50
-317 46 112 102 142
-318 165 58 50 174
-319 80 135 146 54
-320 77 90 20 153
-321 165 166 68 79
-322 167 157 84 109
-323 33 81 136 173
-324 90 91 151 173
-325 62 117 96 174
-326 66 25 147 152
-327 92 169 172 31
-328 81 169 105 140
-329 45 111 148 107
-330 33 55 5 10
-331 71 95 117 41
-332 47 16 129 164
-333 166 36 80 150
-334 92 115 140 43
-335 37 95 118 21
-336 36 179 148 6
-337 94 73 30 52
-338 81 104 18 31
-339 101 73 43 65
-340 33 156 83 87
-341 176 69 173 42
-342 13 46 6 76
-343 12 2 168 153
-344 112 147 86 32
-345 57 94 86 141
-346 40 128 52 108
-347 82 61 150 129
-348 68 14 180 149
-349 78 15 48 28
-350 177 91 21 164
-351 110 80 113 86
-352 34 90 169 137
-353 23 136 64 163
-354 37 41 96 109
-355 128 107 151 130
-356 48 17 152 163
-357 111 101 125 87
-358 101 48 114 141
-359 111 146 59 73
-360 51 30 74 85
0

**************