C4graphGraph forms for C4 [ 360, 209 ] = BGCG(UG(Rmap(360,20){8,4|10}_10);K1;{7,9})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 209 ] = BGCG(UG(Rmap(360,20){8,4|10}_10);K1;{7,9}).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {179, 191}, {178, 189}, {161, 183}, {162, 187}, {167, 187}, {159, 191}, {158, 188}, {145, 183}, {144, 184}, {148, 188}, {159, 182}, {144, 187}, {149, 190}, {142, 187}, {140, 204}, {172, 237}, {168, 236}, {131, 196}, {150, 209}, {145, 216}, {159, 214}, {180, 254}, {176, 252}, {129, 204}, {148, 218}, {130, 205}, {139, 196}, {151, 216}, {138, 218}, {177, 225}, {155, 202}, {137, 219}, {174, 252}, {157, 207}, {150, 197}, {156, 207}, {168, 252}, {164, 241}, {145, 199}, {180, 226}, {138, 221}, {170, 253}, {153, 206}, {133, 220}, {134, 220}, {162, 249}, {133, 217}, {161, 252}, {133, 219}, {164, 250}, {136, 214}, {143, 209}, {130, 221}, {147, 204}, {153, 198}, {151, 247}, {154, 250}, {166, 196}, {163, 198}, {177, 212}, {141, 229}, {180, 220}, {128, 234}, {130, 233}, {163, 200}, {135, 235}, {136, 230}, {167, 200}, {178, 221}, {142, 254}, {177, 193}, {176, 192}, {150, 230}, {140, 253}, {143, 253}, {179, 193}, {151, 227}, {152, 237}, {147, 228}, {128, 248}, {132, 253}, {158, 231}, {143, 244}, {155, 224}, {149, 238}, {144, 236}, {158, 226}, {156, 224}, {166, 219}, {176, 205}, {158, 225}, {171, 212}, {53, 181}, {101, 229}, {54, 183}, {123, 249}, {80, 211}, {117, 246}, {122, 254}, {76, 201}, {116, 241}, {92, 218}, {68, 195}, {66, 202}, {79, 199}, {66, 203}, {64, 202}, {68, 200}, {52, 185}, {77, 192}, {125, 240}, {86, 217}, {79, 223}, {72, 217}, {114, 227}, {97, 243}, {112, 226}, {106, 249}, {44, 184}, {82, 198}, {40, 189}, {118, 227}, {104, 254}, {76, 212}, {110, 246}, {125, 231}, {118, 237}, {109, 241}, {37, 184}, {86, 200}, {95, 193}, {101, 251}, {74, 213}, {120, 231}, {74, 234}, {127, 223}, {67, 226}, {73, 232}, {107, 202}, {68, 230}, {93, 255}, {83, 241}, {77, 239}, {21, 182}, {83, 240}, {75, 232}, {69, 224}, {70, 227}, {103, 194}, {66, 229}, {100, 195}, {121, 222}, {17, 185}, {70, 239}, {115, 216}, {125, 214}, {67, 238}, {87, 250}, {116, 217}, {122, 215}, {20, 186}, {27, 181}, {65, 238}, {84, 251}, {102, 201}, {113, 193}, {13, 191}, {107, 216}, {85, 224}, {107, 222}, {67, 245}, {64, 247}, {116, 195}, {119, 192}, {66, 250}, {6, 191}, {77, 244}, {64, 249}, {97, 219}, {80, 235}, {123, 192}, {2, 190}, {91, 230}, {115, 206}, {81, 239}, {87, 233}, {110, 208}, {1, 190}, {121, 198}, {123, 196}, {18, 210}, {21, 213}, {10, 203}, {55, 246}, {51, 242}, {40, 233}, {127, 190}, {7, 197}, {39, 229}, {17, 211}, {18, 209}, {22, 211}, {54, 243}, {46, 235}, {1, 199}, {45, 235}, {2, 197}, {10, 194}, {62, 246}, {126, 182}, {4, 205}, {112, 185}, {51, 248}, {56, 244}, {63, 243}, {121, 181}, {42, 231}, {8, 199}, {114, 189}, {58, 234}, {12, 222}, {37, 247}, {104, 186}, {110, 189}, {7, 210}, {20, 194}, {45, 251}, {108, 186}, {24, 207}, {26, 205}, {25, 206}, {27, 195}, {47, 247}, {42, 242}, {40, 240}, {39, 255}, {13, 212}, {61, 228}, {55, 238}, {108, 181}, {33, 251}, {37, 255}, {43, 240}, {49, 237}, {57, 228}, {11, 213}, {58, 228}, {8, 215}, {12, 211}, {9, 232}, {54, 215}, {16, 242}, {50, 208}, {44, 206}, {41, 203}, {42, 201}, {51, 208}, {28, 248}, {62, 218}, {43, 207}, {23, 242}, {57, 220}, {10, 236}, {36, 194}, {35, 203}, {84, 188}, {5, 236}, {34, 201}, {59, 208}, {4, 232}, {91, 183}, {32, 204}, {30, 243}, {15, 225}, {27, 245}, {26, 245}, {5, 245}, {47, 223}, {39, 215}, {32, 209}, {71, 182}, {46, 223}, {38, 210}, {31, 234}, {14, 248}, {78, 184}, {35, 213}, {50, 197}, {12, 244}, {6, 255}, {21, 239}, {45, 214}, {21, 233}, {33, 221}, {29, 225}, {47, 210}, {71, 186}, {65, 188}, {33, 222}, {70, 185}, {6, 263}, {89, 344}, {7, 260}, {67, 327}, {85, 337}, {19, 278}, {48, 309}, {53, 307}, {78, 328}, {35, 292}, {76, 331}, {72, 335}, {60, 315}, {106, 354}, {41, 288}, {97, 360}, {14, 260}, {46, 293}, {57, 306}, {56, 307}, {62, 306}, {3, 270}, {89, 340}, {5, 264}, {23, 281}, {92, 338}, {32, 302}, {31, 272}, {24, 264}, {45, 317}, {38, 310}, {29, 269}, {8, 281}, {29, 268}, {14, 287}, {113, 352}, {88, 330}, {93, 335}, {24, 267}, {91, 328}, {53, 289}, {86, 322}, {113, 357}, {36, 305}, {93, 328}, {59, 302}, {48, 294}, {3, 276}, {56, 303}, {17, 264}, {50, 299}, {28, 261}, {22, 271}, {55, 301}, {89, 323}, {81, 331}, {69, 351}, {62, 292}, {18, 270}, {43, 311}, {30, 258}, {123, 359}, {13, 272}, {90, 327}, {94, 323}, {38, 312}, {9, 278}, {76, 339}, {51, 300}, {24, 263}, {11, 276}, {22, 310}, {56, 280}, {48, 272}, {59, 282}, {126, 351}, {36, 262}, {1, 290}, {75, 360}, {63, 284}, {15, 299}, {57, 285}, {39, 259}, {40, 269}, {69, 352}, {118, 339}, {11, 301}, {41, 271}, {99, 325}, {5, 290}, {26, 317}, {102, 321}, {124, 340}, {16, 313}, {52, 285}, {15, 293}, {20, 318}, {30, 306}, {79, 355}, {44, 256}, {49, 284}, {96, 334}, {101, 341}, {59, 266}, {119, 325}, {82, 353}, {100, 343}, {105, 346}, {19, 295}, {46, 282}, {41, 285}, {98, 342}, {109, 344}, {48, 262}, {83, 357}, {98, 340}, {60, 267}, {103, 336}, {114, 330}, {23, 302}, {88, 353}, {63, 262}, {96, 345}, {9, 307}, {43, 273}, {113, 330}, {117, 334}, {122, 326}, {4, 313}, {85, 360}, {27, 293}, {32, 286}, {31, 289}, {100, 346}, {71, 263}, {88, 280}, {117, 309}, {127, 319}, {74, 267}, {80, 273}, {19, 336}, {25, 349}, {87, 274}, {94, 283}, {75, 269}, {94, 281}, {96, 295}, {99, 292}, {119, 304}, {122, 317}, {1, 329}, {28, 340}, {105, 289}, {125, 309}, {4, 333}, {3, 329}, {11, 320}, {87, 284}, {95, 276}, {120, 307}, {19, 351}, {25, 343}, {2, 333}, {29, 338}, {101, 298}, {111, 288}, {55, 359}, {111, 319}, {16, 321}, {54, 356}, {77, 287}, {74, 280}, {6, 341}, {83, 256}, {31, 332}, {120, 299}, {26, 334}, {3, 341}, {112, 294}, {64, 279}, {15, 343}, {82, 266}, {106, 306}, {114, 298}, {18, 331}, {60, 357}, {22, 335}, {109, 308}, {7, 349}, {91, 257}, {117, 303}, {121, 291}, {58, 353}, {108, 311}, {115, 296}, {14, 338}, {124, 288}, {127, 291}, {13, 336}, {79, 274}, {17, 332}, {84, 266}, {8, 343}, {78, 273}, {65, 286}, {30, 321}, {9, 342}, {105, 310}, {88, 312}, {92, 316}, {90, 314}, {98, 258}, {33, 320}, {52, 341}, {99, 258}, {126, 284}, {49, 338}, {86, 309}, {61, 350}, {107, 264}, {36, 320}, {97, 261}, {104, 268}, {106, 270}, {112, 276}, {119, 275}, {124, 280}, {2, 359}, {84, 305}, {82, 311}, {61, 344}, {38, 323}, {102, 259}, {37, 323}, {93, 315}, {90, 316}, {73, 303}, {102, 256}, {61, 346}, {73, 302}, {95, 312}, {103, 256}, {109, 266}, {42, 322}, {80, 312}, {69, 300}, {72, 290}, {94, 308}, {108, 262}, {12, 359}, {78, 293}, {96, 267}, {104, 259}, {120, 275}, {52, 344}, {85, 313}, {118, 283}, {10, 356}, {71, 296}, {95, 304}, {49, 321}, {25, 360}, {63, 334}, {111, 286}, {20, 358}, {90, 296}, {53, 327}, {16, 355}, {92, 303}, {44, 351}, {99, 272}, {34, 342}, {23, 354}, {89, 300}, {81, 292}, {98, 279}, {124, 265}, {73, 319}, {115, 261}, {65, 310}, {116, 259}, {35, 347}, {70, 318}, {58, 322}, {50, 330}, {111, 279}, {72, 305}, {28, 358}, {100, 286}, {103, 285}, {105, 275}, {110, 277}, {34, 350}, {75, 311}, {60, 320}, {68, 313}, {81, 300}, {47, 337}, {34, 349}, {126, 257}, {154, 283}, {160, 289}, {171, 297}, {175, 301}, {146, 273}, {163, 295}, {177, 308}, {143, 265}, {165, 290}, {151, 287}, {172, 294}, {135, 268}, {165, 297}, {128, 269}, {140, 258}, {157, 275}, {149, 283}, {172, 316}, {134, 277}, {134, 274}, {156, 265}, {165, 304}, {173, 315}, {165, 317}, {131, 281}, {155, 257}, {140, 278}, {139, 279}, {169, 308}, {141, 274}, {164, 261}, {173, 271}, {160, 260}, {169, 268}, {142, 294}, {146, 314}, {147, 315}, {138, 291}, {137, 291}, {174, 260}, {148, 318}, {145, 314}, {129, 301}, {179, 287}, {163, 271}, {135, 298}, {135, 296}, {174, 257}, {168, 263}, {161, 270}, {129, 304}, {167, 278}, {152, 299}, {157, 297}, {139, 318}, {134, 305}, {173, 282}, {130, 314}, {153, 288}, {133, 319}, {175, 277}, {157, 295}, {178, 265}, {164, 282}, {131, 316}, {170, 277}, {149, 298}, {150, 297}, {155, 347}, {166, 356}, {129, 322}, {167, 356}, {153, 348}, {141, 331}, {139, 332}, {170, 355}, {132, 335}, {144, 348}, {132, 329}, {128, 336}, {137, 345}, {142, 350}, {137, 347}, {152, 333}, {146, 324}, {180, 354}, {156, 324}, {159, 326}, {131, 349}, {152, 326}, {132, 347}, {146, 333}, {166, 327}, {171, 328}, {178, 337}, {160, 324}, {169, 332}, {172, 325}, {176, 345}, {175, 326}, {136, 355}, {162, 329}, {138, 358}, {136, 357}, {168, 325}, {141, 352}, {161, 339}, {147, 352}, {170, 345}, {148, 353}, {171, 350}, {169, 348}, {179, 324}, {154, 354}, {174, 342}, {162, 346}, {154, 358}, {175, 339}, {173, 337}, {160, 348} }>;

(II) A more general form is to represent the graph as the orbit of {179, 191} under the group generated by the following permutations:

a: (1, 2, 150, 165)(3, 123, 143, 129)(4, 136, 122, 145)(5, 127, 50, 171)(6, 166, 178, 42)(7, 157, 72, 149)(8, 146, 68, 45)(9, 60, 180, 151)(10, 138, 51, 13)(11, 106, 77, 140)(12, 32, 95, 162)(14, 19, 36, 154)(15, 78, 27, 46)(16, 159, 54, 130)(17, 111, 88, 61)(18, 119, 132, 55)(20, 28, 128, 103)(21, 30)(22, 65, 38, 105)(23, 179, 167, 33)(24, 133, 114, 34)(25, 43, 116, 135)(26, 79, 152, 91)(29, 44, 108, 164)(31, 41, 148, 89)(35, 62, 81, 99)(37, 53, 173, 158)(39, 90, 85, 125)(40, 102, 71, 97)(47, 120, 93, 67)(48, 66, 92, 69)(49, 126, 63, 87)(52, 139, 124, 58)(56, 147, 112, 64)(57, 70, 98, 74)(59, 177, 144, 121)(73, 113, 142, 107)(75, 83, 104, 115)(76, 168, 137, 110)(80, 100)(82, 109, 169, 153)(84, 94, 160, 163)(86, 101, 131, 156)(96, 134, 118, 174)(117, 141, 172, 155)(161, 176, 170, 175)(181, 282, 225, 184)(182, 243, 233, 321)(183, 205, 355, 326)(185, 279, 280, 228)(186, 261, 269, 256)(187, 222, 302, 193)(188, 323, 289, 271)(189, 201, 263, 219)(190, 197, 297, 290)(191, 356, 221, 242)(192, 253, 301, 270)(194, 358, 248, 336)(195, 235, 343, 273)(196, 265, 322, 341)(198, 266, 308, 348)(199, 333, 230, 317)(200, 251, 281, 324)(202, 303, 352, 294)(203, 218, 300, 272)(204, 276, 249, 244)(206, 311, 241, 268)(207, 217, 298, 349)(208, 212, 236, 291)(209, 304, 329, 359)(210, 275, 335, 238)(211, 286, 312, 346)(213, 306, 239, 258)(214, 215, 314, 313)(216, 232, 357, 254)(220, 227, 342, 267)(223, 299, 328, 245)(224, 309, 229, 316)(226, 247, 307, 315)(231, 255, 327, 337)(234, 285, 318, 340)(237, 257, 334, 274)(240, 259, 296, 360)(246, 331, 325, 347)(250, 338, 351, 262)(252, 345, 277, 339)(260, 295, 305, 283)(264, 319, 330, 350)(278, 320, 354, 287)(288, 353, 344, 332)
b: (2, 149)(3, 165)(4, 154)(5, 162)(6, 171)(7, 135)(8, 145)(9, 20)(10, 167)(11, 129)(12, 65)(14, 29)(15, 151)(16, 87)(17, 105)(18, 45)(19, 103)(21, 42)(23, 130)(24, 61)(25, 115)(26, 106)(27, 64)(28, 75)(30, 63)(32, 33)(34, 71)(35, 86)(36, 140)(37, 78)(38, 80)(39, 91)(40, 51)(41, 163)(43, 89)(46, 47)(48, 99)(50, 114)(52, 157)(53, 139)(56, 148)(57, 96)(58, 74)(59, 178)(60, 147)(62, 117)(66, 68)(67, 123)(69, 83)(70, 120)(72, 132)(73, 138)(76, 159)(77, 158)(81, 125)(82, 124)(84, 143)(85, 164)(90, 131)(94, 146)(98, 108)(100, 107)(101, 150)(102, 126)(104, 174)(109, 156)(111, 121)(112, 119)(116, 155)(118, 152)(122, 161)(133, 137)(134, 170)(136, 141)(142, 168)(160, 169)(176, 180)(177, 179)(181, 279)(182, 201)(183, 215)(185, 275)(186, 342)(187, 236)(188, 244)(189, 208)(191, 212)(192, 226)(194, 278)(195, 202)(196, 327)(197, 298)(198, 288)(200, 203)(204, 320)(205, 354)(207, 344)(209, 251)(210, 235)(211, 310)(213, 322)(214, 331)(216, 343)(217, 347)(218, 303)(220, 345)(221, 302)(222, 286)(224, 241)(225, 287)(227, 299)(228, 267)(229, 230)(231, 239)(232, 358)(233, 242)(238, 359)(240, 300)(245, 249)(247, 293)(248, 269)(250, 313)(252, 254)(253, 305)(255, 328)(256, 351)(257, 259)(258, 262)(260, 268)(261, 360)(263, 350)(264, 346)(265, 266)(270, 317)(273, 323)(274, 355)(276, 304)(280, 353)(281, 314)(282, 337)(283, 333)(284, 321)(285, 295)(289, 332)(290, 329)(291, 319)(292, 309)(294, 325)(296, 349)(297, 341)(306, 334)(307, 318)(308, 324)(311, 340)(326, 339)(352, 357)
c: (2, 162)(3, 149)(4, 167)(5, 145)(6, 135)(7, 105)(8, 165)(10, 130)(11, 154)(12, 64)(13, 29)(14, 31)(15, 171)(16, 86)(17, 151)(18, 65)(19, 75)(20, 21)(22, 47)(23, 129)(24, 115)(25, 157)(26, 54)(27, 91)(28, 74)(30, 117)(33, 66)(34, 120)(35, 138)(36, 87)(37, 80)(39, 45)(40, 103)(41, 178)(43, 44)(46, 93)(48, 49)(50, 61)(51, 58)(52, 114)(53, 174)(55, 106)(56, 98)(57, 110)(59, 147)(60, 164)(67, 161)(69, 82)(72, 79)(73, 140)(76, 158)(77, 139)(81, 148)(84, 141)(85, 163)(88, 89)(90, 168)(92, 99)(94, 95)(96, 97)(100, 150)(102, 125)(104, 159)(108, 126)(109, 113)(111, 143)(112, 118)(116, 136)(119, 131)(121, 155)(127, 132)(133, 170)(142, 152)(144, 146)(153, 156)(166, 176)(169, 179)(175, 180)(181, 257)(182, 186)(183, 245)(184, 273)(185, 227)(187, 333)(188, 331)(189, 285)(190, 329)(191, 268)(192, 196)(193, 308)(194, 233)(195, 230)(197, 346)(198, 224)(199, 290)(200, 313)(201, 231)(202, 222)(203, 221)(204, 302)(205, 356)(206, 207)(208, 228)(209, 286)(210, 310)(211, 247)(212, 225)(213, 358)(214, 259)(215, 317)(216, 264)(217, 355)(218, 292)(219, 345)(220, 277)(223, 335)(226, 339)(229, 251)(232, 278)(234, 248)(235, 255)(236, 314)(237, 294)(238, 270)(239, 318)(240, 256)(241, 357)(242, 322)(243, 334)(244, 279)(246, 306)(249, 359)(250, 320)(252, 327)(253, 319)(254, 326)(258, 303)(260, 289)(261, 267)(262, 284)(263, 296)(265, 288)(266, 352)(269, 336)(271, 337)(272, 338)(274, 305)(275, 349)(276, 283)(280, 340)(281, 304)(282, 315)(287, 332)(291, 347)(293, 328)(295, 360)(297, 343)(298, 341)(299, 350)(300, 353)(301, 354)(307, 342)(309, 321)(311, 351)(312, 323)(316, 325)(324, 348)(330, 344)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 209 ]
360
-1 199 190 290 329
-2 190 333 359 197
-3 341 276 270 329
-4 232 333 313 205
-5 264 245 290 236
-6 341 255 191 263
-7 210 260 349 197
-8 199 343 215 281
-9 232 342 278 307
-10 356 203 236 194
-11 276 320 213 301
-12 211 222 244 359
-13 212 191 336 272
-14 287 248 260 338
-15 299 343 225 293
-16 242 321 355 313
-17 264 211 332 185
-18 209 210 331 270
-19 278 336 295 351
-20 358 194 186 318
-21 233 213 182 239
-22 211 310 335 271
-23 242 354 302 281
-24 264 267 207 263
-25 343 206 349 360
-26 245 334 205 317
-27 245 181 293 195
-28 248 358 261 340
-29 268 225 269 338
-30 243 321 258 306
-31 332 234 289 272
-32 209 286 302 204
-33 221 320 222 251
-34 342 201 349 350
-35 213 203 292 347
-36 320 194 305 262
-37 255 323 247 184
-38 210 310 312 323
-39 255 215 259 229
-40 189 233 269 240
-41 288 203 271 285
-42 231 242 201 322
-43 311 207 240 273
-44 256 184 206 351
-45 235 214 251 317
-46 223 235 282 293
-47 210 223 247 337
-48 309 272 294 262
-49 321 237 338 284
-50 330 299 197 208
-51 242 300 248 208
-52 341 344 185 285
-53 289 181 327 307
-54 243 356 215 183
-55 246 301 238 359
-56 244 280 303 307
-57 220 228 306 285
-58 353 234 322 228
-59 266 302 282 208
-60 320 267 357 315
-61 344 346 228 350
-62 246 292 218 306
-63 243 334 262 284
-64 202 279 247 249
-65 286 188 310 238
-66 202 203 250 229
-67 245 226 238 327
-68 200 313 195 230
-69 352 300 224 351
-70 227 239 185 318
-71 182 186 263 296
-72 290 335 217 305
-73 319 232 302 303
-74 234 267 213 280
-75 232 311 269 360
-76 331 201 212 339
-77 287 244 192 239
-78 293 184 273 328
-79 199 223 355 274
-80 211 235 312 273
-81 331 300 292 239
-82 198 353 266 311
-83 256 357 240 241
-84 188 266 305 251
-85 224 313 337 360
-86 309 200 322 217
-87 233 250 284 274
-88 330 353 312 280
-89 300 344 323 340
-90 314 316 327 296
-91 257 183 328 230
-92 303 316 338 218
-93 255 335 315 328
-94 308 323 281 283
-95 276 312 193 304
-96 267 334 345 295
-97 243 261 360 219
-98 342 279 258 340
-99 258 292 325 272
-100 286 343 346 195
-101 341 298 229 251
-102 321 201 256 259
-103 256 336 194 285
-104 254 268 259 186
-105 275 310 289 346
-106 354 270 249 306
-107 264 222 202 216
-108 311 181 262 186
-109 308 266 344 241
-110 189 277 246 208
-111 286 319 288 279
-112 276 226 294 185
-113 330 352 357 193
-114 330 298 189 227
-115 216 206 261 296
-116 259 195 217 241
-117 309 246 334 303
-118 237 227 283 339
-119 275 192 325 304
-120 231 275 299 307
-121 198 222 181 291
-122 254 215 326 317
-123 192 249 359 196
-124 265 288 280 340
-125 231 309 214 240
-126 257 182 284 351
-127 319 190 223 291
-128 234 269 248 336
-129 322 301 204 304
-130 221 233 314 205
-131 281 316 349 196
-132 253 335 347 329
-133 220 319 217 219
-134 220 277 305 274
-135 298 235 268 296
-136 355 214 357 230
-137 345 291 347 219
-138 221 291 358 218
-139 332 279 196 318
-140 253 278 258 204
-141 352 331 229 274
-142 187 254 294 350
-143 209 253 265 244
-144 187 236 348 184
-145 199 314 183 216
-146 333 324 314 273
-147 352 204 315 228
-148 188 353 218 318
-149 298 190 238 283
-150 209 297 197 230
-151 287 247 216 227
-152 299 333 237 326
-153 198 288 348 206
-154 354 358 250 283
-155 202 224 257 347
-156 265 224 324 207
-157 275 297 207 295
-158 231 188 225 226
-159 191 214 182 326
-160 289 324 260 348
-161 270 183 339 252
-162 187 346 249 329
-163 198 200 271 295
-164 282 250 261 241
-165 297 290 304 317
-166 356 327 196 219
-167 187 200 278 356
-168 236 325 252 263
-169 308 332 268 348
-170 253 277 355 345
-171 297 212 328 350
-172 237 325 294 316
-173 315 282 337 271
-174 342 257 260 252
-175 277 301 326 339
-176 345 192 205 252
-177 308 212 225 193
-178 221 265 189 337
-179 287 191 324 193
-180 220 254 354 226
-181 121 27 53 108
-182 71 126 159 21
-183 145 91 161 54
-184 44 78 144 37
-185 112 70 17 52
-186 71 104 20 108
-187 144 167 162 142
-188 158 148 84 65
-189 110 178 114 40
-190 1 2 127 149
-191 13 179 159 6
-192 77 176 123 119
-193 177 113 179 95
-194 36 103 20 10
-195 100 68 27 116
-196 166 123 139 131
-197 2 50 7 150
-198 121 82 163 153
-199 1 79 145 8
-200 68 167 86 163
-201 34 102 42 76
-202 66 155 107 64
-203 66 35 41 10
-204 147 129 140 32
-205 176 4 26 130
-206 44 25 115 153
-207 24 156 157 43
-208 110 59 50 51
-209 143 18 150 32
-210 47 38 7 18
-211 22 12 80 17
-212 177 13 171 76
-213 11 35 74 21
-214 45 125 136 159
-215 122 39 8 54
-216 145 115 107 151
-217 133 72 116 86
-218 92 148 138 62
-219 133 166 137 97
-220 133 57 134 180
-221 33 178 138 130
-222 33 121 12 107
-223 46 79 47 127
-224 155 156 69 85
-225 177 15 158 29
-226 67 112 158 180
-227 70 114 118 151
-228 57 58 147 61
-229 66 101 39 141
-230 68 91 136 150
-231 125 158 42 120
-232 4 73 9 75
-233 40 130 21 87
-234 58 128 74 31
-235 45 46 80 135
-236 144 168 5 10
-237 49 172 118 152
-238 55 67 149 65
-239 77 70 81 21
-240 125 83 40 43
-241 83 116 109 164
-242 23 16 51 42
-243 30 63 97 54
-244 77 143 12 56
-245 67 26 5 27
-246 55 110 62 117
-247 47 37 151 64
-248 14 28 51 128
-249 123 106 162 64
-250 66 154 87 164
-251 33 45 101 84
-252 176 168 161 174
-253 132 143 170 140
-254 122 180 104 142
-255 37 93 6 39
-256 44 102 103 83
-257 155 91 126 174
-258 99 30 140 98
-259 102 104 39 116
-260 14 160 7 174
-261 115 28 97 164
-262 36 48 63 108
-263 24 168 71 6
-264 24 5 17 107
-265 143 156 178 124
-266 59 82 84 109
-267 24 60 74 96
-268 135 169 104 29
-269 29 40 128 75
-270 3 18 106 161
-271 22 41 173 163
-272 99 13 48 31
-273 78 80 146 43
-274 79 134 141 87
-275 157 105 119 120
-276 11 112 3 95
-277 110 134 170 175
-278 167 19 140 9
-279 111 139 64 98
-280 88 56 124 74
-281 23 94 8 131
-282 46 59 173 164
-283 154 94 149 118
-284 49 126 63 87
-285 57 103 41 52
-286 100 111 32 65
-287 77 14 179 151
-288 111 124 41 153
-289 105 160 31 53
-290 165 1 5 72
-291 121 137 127 138
-292 99 35 81 62
-293 78 46 15 27
-294 112 48 172 142
-295 157 19 96 163
-296 90 135 71 115
-297 165 157 171 150
-298 101 135 114 149
-299 15 50 152 120
-300 89 69 81 51
-301 11 55 129 175
-302 23 59 73 32
-303 56 92 73 117
-304 165 95 129 119
-305 134 36 72 84
-306 57 62 106 30
-307 56 9 53 120
-308 177 169 94 109
-309 48 125 117 86
-310 22 38 105 65
-311 82 75 108 43
-312 88 80 38 95
-313 68 4 16 85
-314 90 145 146 130
-315 147 60 93 173
-316 90 92 172 131
-317 165 45 122 26
-318 70 148 139 20
-319 111 133 127 73
-320 11 33 36 60
-321 102 16 49 30
-322 58 129 42 86
-323 89 37 38 94
-324 156 146 179 160
-325 99 168 172 119
-326 122 159 152 175
-327 67 166 90 53
-328 78 91 93 171
-329 132 1 3 162
-330 88 113 114 50
-331 81 18 141 76
-332 169 17 139 31
-333 2 146 4 152
-334 26 117 63 96
-335 22 132 93 72
-336 13 103 128 19
-337 178 47 85 173
-338 14 92 49 29
-339 161 118 76 175
-340 89 124 28 98
-341 101 3 6 52
-342 34 9 174 98
-343 100 25 15 8
-344 89 61 52 109
-345 176 137 170 96
-346 100 61 105 162
-347 132 155 35 137
-348 144 169 160 153
-349 34 25 7 131
-350 34 61 171 142
-351 44 69 126 19
-352 69 113 147 141
-353 88 58 82 148
-354 154 23 180 106
-355 79 136 16 170
-356 166 167 10 54
-357 113 136 60 83
-358 154 28 138 20
-359 55 12 2 123
-360 25 85 75 97
0

**************