C4graphGraph forms for C4 [ 360, 210 ] = BGCG(UG(Rmap(360,345){6,4|10}_8);K1;1)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 210 ] = BGCG(UG(Rmap(360,345){6,4|10}_8);K1;1).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {180, 186}, {167, 182}, {166, 181}, {171, 190}, {171, 188}, {152, 184}, {154, 187}, {159, 190}, {147, 181}, {156, 186}, {147, 186}, {150, 188}, {145, 188}, {153, 182}, {133, 183}, {138, 185}, {129, 183}, {135, 189}, {134, 189}, {139, 181}, {145, 209}, {174, 236}, {135, 196}, {177, 242}, {163, 231}, {169, 236}, {165, 227}, {174, 232}, {139, 204}, {129, 201}, {137, 192}, {154, 211}, {148, 223}, {150, 221}, {155, 215}, {164, 232}, {131, 206}, {155, 213}, {176, 224}, {163, 242}, {152, 202}, {164, 246}, {154, 200}, {179, 224}, {160, 244}, {163, 244}, {129, 217}, {171, 243}, {132, 221}, {160, 250}, {169, 243}, {149, 206}, {155, 192}, {151, 204}, {152, 197}, {145, 207}, {151, 247}, {163, 194}, {170, 203}, {133, 231}, {136, 234}, {149, 246}, {137, 237}, {168, 204}, {134, 227}, {179, 214}, {173, 200}, {146, 250}, {156, 244}, {153, 240}, {162, 203}, {172, 199}, {166, 202}, {170, 198}, {175, 194}, {158, 240}, {169, 199}, {147, 252}, {167, 200}, {162, 210}, {178, 192}, {166, 213}, {180, 192}, {141, 248}, {173, 216}, {145, 228}, {165, 210}, {175, 216}, {132, 252}, {149, 237}, {139, 242}, {158, 228}, {172, 214}, {159, 226}, {153, 231}, {95, 223}, {103, 230}, {108, 238}, {116, 246}, {98, 225}, {123, 248}, {63, 187}, {96, 230}, {98, 228}, {64, 201}, {57, 181}, {76, 193}, {92, 209}, {95, 210}, {116, 249}, {65, 207}, {76, 220}, {78, 222}, {115, 227}, {125, 237}, {68, 213}, {83, 194}, {43, 185}, {111, 252}, {113, 226}, {34, 182}, {67, 215}, {43, 191}, {44, 185}, {45, 184}, {94, 200}, {126, 232}, {46, 183}, {93, 196}, {93, 199}, {72, 211}, {109, 241}, {81, 207}, {34, 189}, {100, 196}, {127, 223}, {82, 243}, {82, 240}, {88, 250}, {99, 193}, {100, 198}, {105, 203}, {70, 229}, {98, 193}, {102, 197}, {107, 207}, {84, 241}, {126, 219}, {100, 195}, {117, 210}, {119, 208}, {105, 193}, {114, 218}, {123, 211}, {127, 215}, {87, 254}, {113, 219}, {66, 233}, {92, 247}, {113, 218}, {86, 250}, {86, 251}, {95, 242}, {100, 201}, {115, 222}, {73, 231}, {104, 198}, {112, 222}, {85, 229}, {103, 215}, {81, 224}, {86, 228}, {81, 226}, {65, 245}, {101, 209}, {121, 205}, {91, 238}, {112, 197}, {92, 234}, {94, 232}, {111, 217}, {117, 195}, {76, 244}, {109, 213}, {116, 204}, {66, 251}, {83, 234}, {71, 254}, {66, 248}, {67, 248}, {77, 246}, {119, 203}, {123, 199}, {8, 182}, {89, 230}, {13, 205}, {58, 251}, {22, 212}, {59, 249}, {125, 191}, {58, 249}, {46, 234}, {124, 184}, {24, 221}, {58, 255}, {51, 245}, {57, 255}, {120, 190}, {27, 220}, {38, 225}, {36, 227}, {38, 238}, {56, 241}, {4, 206}, {36, 239}, {55, 252}, {16, 220}, {49, 253}, {23, 219}, {7, 202}, {60, 241}, {28, 209}, {25, 212}, {34, 236}, {31, 208}, {107, 187}, {42, 251}, {106, 190}, {47, 249}, {5, 221}, {23, 206}, {39, 253}, {15, 212}, {49, 237}, {52, 233}, {61, 224}, {27, 196}, {40, 247}, {12, 236}, {4, 229}, {11, 233}, {50, 208}, {91, 184}, {41, 205}, {62, 218}, {45, 201}, {10, 239}, {63, 218}, {58, 223}, {27, 254}, {21, 240}, {62, 216}, {3, 235}, {63, 214}, {3, 233}, {51, 217}, {15, 229}, {11, 225}, {5, 239}, {20, 255}, {33, 202}, {19, 255}, {60, 208}, {6, 235}, {29, 243}, {53, 219}, {17, 254}, {84, 187}, {41, 198}, {5, 245}, {74, 186}, {44, 220}, {40, 216}, {36, 212}, {25, 235}, {69, 183}, {14, 253}, {48, 195}, {28, 239}, {1, 245}, {75, 191}, {39, 211}, {8, 253}, {55, 194}, {20, 226}, {24, 238}, {75, 188}, {19, 235}, {61, 197}, {53, 205}, {38, 222}, {33, 217}, {31, 230}, {64, 185}, {57, 195}, {69, 191}, {45, 214}, {70, 189}, {9, 247}, {31, 225}, {1, 256}, {65, 320}, {47, 302}, {70, 325}, {94, 349}, {30, 282}, {62, 314}, {32, 292}, {24, 285}, {93, 344}, {45, 299}, {79, 329}, {56, 318}, {37, 290}, {8, 256}, {46, 294}, {104, 352}, {60, 309}, {111, 358}, {18, 280}, {50, 312}, {87, 348}, {17, 285}, {71, 331}, {59, 311}, {41, 293}, {94, 338}, {109, 353}, {33, 300}, {73, 324}, {57, 308}, {106, 359}, {91, 341}, {48, 319}, {83, 348}, {79, 320}, {77, 322}, {52, 315}, {90, 341}, {37, 309}, {79, 351}, {93, 332}, {32, 306}, {72, 346}, {61, 302}, {86, 325}, {85, 326}, {62, 301}, {59, 303}, {25, 271}, {73, 351}, {50, 292}, {54, 289}, {60, 293}, {35, 313}, {24, 259}, {43, 304}, {39, 316}, {74, 342}, {81, 333}, {14, 275}, {15, 273}, {71, 345}, {19, 269}, {40, 311}, {82, 333}, {63, 288}, {47, 304}, {124, 355}, {9, 297}, {70, 358}, {68, 356}, {111, 335}, {121, 345}, {10, 299}, {71, 358}, {35, 258}, {30, 316}, {51, 273}, {22, 309}, {68, 359}, {42, 265}, {103, 324}, {108, 329}, {52, 274}, {105, 335}, {110, 328}, {97, 326}, {126, 342}, {8, 289}, {12, 295}, {78, 357}, {67, 360}, {119, 347}, {11, 294}, {29, 304}, {22, 315}, {112, 349}, {61, 275}, {96, 335}, {6, 310}, {46, 286}, {34, 274}, {16, 288}, {124, 332}, {114, 323}, {125, 332}, {120, 330}, {99, 336}, {6, 306}, {49, 261}, {40, 284}, {29, 297}, {104, 348}, {15, 314}, {54, 259}, {23, 290}, {20, 289}, {10, 316}, {41, 287}, {30, 296}, {97, 343}, {105, 350}, {127, 328}, {1, 312}, {89, 352}, {53, 268}, {26, 291}, {2, 312}, {54, 268}, {43, 273}, {21, 303}, {13, 310}, {28, 295}, {23, 300}, {7, 315}, {89, 357}, {22, 298}, {10, 310}, {118, 330}, {92, 353}, {103, 346}, {32, 286}, {104, 342}, {9, 310}, {5, 325}, {25, 344}, {108, 301}, {127, 318}, {113, 306}, {110, 298}, {117, 305}, {122, 318}, {69, 256}, {74, 271}, {116, 305}, {7, 321}, {39, 353}, {18, 340}, {90, 284}, {26, 349}, {27, 339}, {44, 356}, {107, 290}, {121, 307}, {3, 328}, {80, 283}, {21, 350}, {18, 345}, {120, 307}, {13, 321}, {78, 258}, {75, 263}, {14, 322}, {3, 334}, {88, 277}, {13, 323}, {1, 334}, {77, 258}, {107, 292}, {4, 340}, {85, 261}, {2, 339}, {73, 280}, {106, 315}, {21, 327}, {66, 272}, {97, 307}, {2, 337}, {48, 356}, {84, 256}, {97, 309}, {122, 302}, {16, 325}, {90, 271}, {20, 321}, {108, 313}, {7, 337}, {123, 301}, {4, 339}, {6, 350}, {31, 327}, {17, 328}, {14, 340}, {80, 266}, {101, 319}, {26, 321}, {56, 355}, {76, 272}, {82, 270}, {118, 298}, {9, 340}, {80, 269}, {53, 360}, {95, 258}, {28, 322}, {106, 308}, {99, 316}, {87, 311}, {110, 270}, {118, 278}, {121, 281}, {47, 334}, {85, 308}, {72, 297}, {56, 345}, {52, 341}, {51, 338}, {48, 337}, {2, 352}, {112, 274}, {98, 257}, {12, 360}, {65, 293}, {35, 327}, {96, 260}, {115, 279}, {68, 289}, {96, 262}, {79, 296}, {115, 276}, {42, 322}, {87, 319}, {75, 291}, {54, 350}, {11, 354}, {80, 313}, {59, 338}, {120, 273}, {42, 320}, {78, 292}, {69, 303}, {122, 272}, {32, 331}, {37, 334}, {36, 335}, {101, 270}, {126, 277}, {12, 352}, {99, 271}, {102, 266}, {119, 281}, {72, 295}, {17, 353}, {35, 339}, {18, 354}, {114, 259}, {16, 354}, {110, 284}, {67, 304}, {118, 261}, {55, 323}, {89, 301}, {124, 265}, {49, 327}, {38, 337}, {74, 317}, {64, 311}, {122, 269}, {26, 354}, {64, 312}, {29, 357}, {90, 290}, {91, 291}, {77, 308}, {83, 298}, {102, 287}, {109, 276}, {30, 356}, {44, 342}, {37, 351}, {19, 360}, {50, 329}, {33, 346}, {84, 296}, {102, 282}, {117, 265}, {88, 293}, {55, 329}, {101, 283}, {125, 259}, {88, 295}, {114, 269}, {133, 261}, {148, 276}, {138, 267}, {138, 264}, {157, 287}, {144, 275}, {150, 277}, {146, 279}, {160, 294}, {140, 267}, {128, 264}, {133, 268}, {162, 299}, {143, 260}, {130, 270}, {134, 266}, {141, 257}, {132, 266}, {143, 257}, {151, 281}, {130, 274}, {148, 263}, {156, 264}, {140, 282}, {143, 281}, {165, 306}, {142, 278}, {180, 300}, {158, 262}, {159, 262}, {136, 275}, {141, 278}, {137, 277}, {173, 305}, {140, 272}, {172, 305}, {146, 268}, {135, 280}, {179, 300}, {150, 265}, {143, 303}, {171, 267}, {168, 264}, {166, 262}, {164, 260}, {159, 319}, {128, 291}, {157, 318}, {131, 288}, {136, 299}, {161, 263}, {177, 279}, {149, 317}, {128, 297}, {144, 313}, {176, 283}, {173, 257}, {141, 288}, {179, 286}, {144, 317}, {129, 302}, {178, 285}, {177, 286}, {168, 280}, {180, 260}, {140, 317}, {174, 287}, {175, 285}, {128, 307}, {167, 276}, {142, 314}, {175, 283}, {156, 296}, {178, 263}, {160, 278}, {164, 284}, {174, 279}, {176, 267}, {167, 282}, {132, 314}, {152, 294}, {161, 357}, {158, 347}, {157, 347}, {131, 331}, {170, 355}, {135, 333}, {151, 349}, {139, 320}, {131, 333}, {146, 348}, {178, 355}, {136, 346}, {134, 338}, {153, 332}, {144, 326}, {147, 324}, {142, 343}, {130, 344}, {138, 336}, {157, 326}, {137, 341}, {130, 351}, {148, 331}, {142, 359}, {161, 330}, {176, 347}, {168, 323}, {169, 324}, {161, 336}, {165, 336}, {162, 344}, {172, 343}, {177, 330}, {154, 359}, {170, 343}, {155, 358} }>;

(II) A more general form is to represent the graph as the orbit of {180, 186} under the group generated by the following permutations:

a: (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 13)(11, 15)(14, 19)(16, 22)(17, 23)(18, 25)(20, 28)(21, 29)(24, 33)(26, 36)(27, 37)(30, 41)(31, 43)(32, 40)(35, 47)(38, 51)(39, 53)(42, 57)(44, 60)(45, 55)(46, 62)(48, 65)(49, 67)(50, 64)(52, 70)(54, 72)(56, 74)(58, 77)(59, 78)(61, 80)(63, 83)(66, 85)(68, 88)(69, 89)(71, 90)(73, 93)(75, 96)(76, 97)(79, 100)(81, 101)(84, 104)(86, 106)(87, 107)(91, 111)(92, 113)(94, 115)(95, 116)(98, 120)(99, 121)(103, 125)(105, 128)(108, 129)(109, 126)(110, 131)(112, 134)(114, 136)(117, 139)(118, 141)(119, 138)(122, 144)(123, 133)(124, 147)(127, 149)(130, 135)(132, 152)(137, 155)(140, 157)(142, 160)(143, 161)(145, 159)(146, 154)(148, 164)(150, 166)(151, 165)(153, 169)(156, 170)(158, 171)(162, 168)(163, 172)(167, 174)(173, 177)(175, 179)(178, 180)(181, 265)(182, 236)(183, 301)(184, 252)(185, 208)(186, 355)(187, 348)(188, 262)(189, 274)(190, 228)(191, 230)(193, 307)(194, 214)(195, 320)(196, 351)(197, 266)(198, 296)(199, 231)(200, 279)(201, 329)(202, 221)(203, 264)(204, 210)(205, 316)(206, 328)(207, 319)(209, 226)(211, 268)(212, 354)(213, 277)(215, 237)(216, 286)(217, 238)(218, 234)(219, 353)(220, 309)(222, 338)(223, 246)(224, 283)(225, 273)(227, 349)(229, 233)(232, 276)(235, 340)(239, 321)(240, 243)(241, 342)(242, 305)(244, 343)(245, 337)(247, 306)(248, 261)(249, 258)(250, 359)(251, 308)(253, 360)(254, 290)(255, 322)(256, 352)(257, 330)(259, 346)(260, 263)(267, 347)(269, 275)(270, 333)(271, 345)(272, 326)(280, 344)(281, 336)(282, 287)(284, 331)(285, 300)(288, 298)(289, 295)(291, 335)(292, 311)(293, 356)(294, 314)(297, 350)(299, 323)(302, 313)(303, 357)(304, 327)(315, 325)(317, 318)(324, 332)(334, 339)(341, 358)
b: (2, 3)(4, 6)(5, 8)(7, 11)(10, 14)(12, 17)(13, 18)(15, 21)(16, 20)(19, 27)(22, 31)(23, 32)(24, 34)(25, 35)(28, 39)(29, 40)(30, 42)(33, 46)(36, 49)(37, 50)(38, 52)(41, 56)(43, 59)(44, 58)(45, 61)(47, 64)(48, 66)(51, 69)(53, 71)(54, 70)(55, 73)(57, 76)(62, 82)(63, 81)(65, 84)(67, 87)(68, 86)(72, 92)(74, 95)(75, 94)(77, 99)(78, 90)(80, 93)(83, 103)(85, 105)(88, 109)(89, 110)(91, 112)(96, 118)(97, 119)(98, 106)(100, 122)(101, 123)(102, 124)(104, 127)(108, 130)(111, 133)(113, 131)(114, 135)(115, 137)(116, 138)(117, 140)(120, 143)(125, 134)(126, 148)(128, 151)(132, 153)(139, 156)(141, 159)(142, 158)(144, 162)(145, 154)(146, 155)(147, 163)(149, 165)(150, 167)(157, 170)(160, 166)(161, 164)(169, 175)(171, 173)(172, 176)(174, 178)(177, 180)(181, 244)(182, 221)(183, 217)(184, 197)(185, 249)(186, 242)(187, 207)(188, 200)(189, 259)(190, 257)(191, 338)(192, 279)(193, 308)(194, 324)(195, 272)(196, 269)(198, 318)(199, 283)(201, 302)(202, 294)(203, 326)(204, 264)(205, 345)(206, 306)(208, 309)(209, 211)(210, 317)(212, 327)(213, 250)(214, 224)(215, 348)(216, 243)(218, 333)(219, 331)(220, 255)(222, 341)(223, 342)(225, 315)(226, 288)(227, 237)(228, 359)(229, 350)(230, 298)(231, 252)(232, 263)(233, 337)(234, 346)(235, 339)(236, 285)(238, 274)(239, 253)(240, 314)(241, 293)(245, 256)(246, 336)(247, 297)(248, 319)(251, 356)(254, 360)(258, 271)(260, 330)(261, 335)(262, 278)(265, 282)(266, 332)(267, 305)(268, 358)(270, 301)(273, 303)(275, 299)(276, 277)(280, 323)(281, 307)(284, 357)(286, 300)(287, 355)(289, 325)(290, 292)(291, 349)(295, 353)(296, 320)(304, 311)(310, 340)(312, 334)(313, 344)(316, 322)(321, 354)(328, 352)(329, 351)(343, 347)
c: (3, 5)(4, 7)(6, 10)(9, 13)(11, 16)(14, 20)(15, 22)(17, 24)(18, 26)(19, 28)(21, 30)(23, 33)(25, 36)(27, 38)(29, 41)(31, 44)(32, 45)(35, 48)(37, 51)(39, 54)(40, 55)(42, 58)(43, 60)(46, 63)(47, 65)(49, 68)(50, 64)(52, 70)(53, 72)(56, 75)(57, 77)(59, 79)(61, 81)(62, 83)(66, 86)(67, 88)(69, 84)(71, 91)(73, 94)(74, 96)(76, 98)(78, 100)(80, 101)(82, 102)(85, 106)(87, 108)(89, 104)(90, 111)(92, 114)(93, 115)(95, 117)(97, 120)(99, 105)(103, 126)(107, 129)(109, 125)(110, 132)(112, 135)(113, 136)(116, 139)(118, 142)(119, 138)(121, 128)(122, 145)(123, 146)(124, 148)(127, 150)(130, 134)(131, 152)(133, 154)(137, 155)(140, 158)(141, 160)(143, 156)(144, 159)(147, 164)(149, 166)(151, 168)(153, 167)(157, 171)(161, 170)(162, 165)(163, 173)(169, 174)(172, 177)(181, 246)(183, 187)(184, 331)(185, 208)(186, 260)(188, 318)(189, 274)(190, 326)(191, 241)(194, 216)(195, 258)(196, 222)(197, 333)(198, 357)(199, 279)(200, 231)(201, 292)(202, 206)(203, 336)(205, 297)(207, 302)(209, 269)(211, 268)(213, 237)(214, 286)(215, 277)(217, 290)(218, 234)(219, 346)(220, 225)(221, 328)(223, 265)(226, 275)(227, 344)(228, 272)(229, 315)(230, 342)(232, 324)(233, 325)(235, 239)(238, 254)(240, 282)(242, 305)(243, 287)(244, 257)(245, 334)(247, 323)(248, 250)(249, 320)(252, 284)(253, 289)(255, 322)(259, 353)(261, 359)(262, 317)(263, 355)(264, 281)(266, 270)(267, 347)(271, 335)(273, 309)(276, 332)(280, 349)(288, 294)(291, 345)(293, 304)(295, 360)(296, 303)(298, 314)(299, 306)(301, 348)(311, 329)(313, 319)(316, 350)(321, 340)(327, 356)(330, 343)(337, 339)(338, 351)(341, 358)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 210 ]
360
-1 245 256 312 334
-2 352 312 337 339
-3 233 235 334 328
-4 206 229 339 340
-5 221 245 325 239
-6 310 235 306 350
-7 321 202 315 337
-8 253 256 289 182
-9 297 310 247 340
-10 299 310 239 316
-11 233 354 225 294
-12 352 236 360 295
-13 310 321 323 205
-14 253 275 322 340
-15 212 314 229 273
-16 220 288 354 325
-17 254 353 328 285
-18 354 345 280 340
-19 255 235 269 360
-20 255 321 289 226
-21 303 327 240 350
-22 298 309 212 315
-23 300 290 206 219
-24 221 259 238 285
-25 212 344 235 271
-26 321 354 291 349
-27 220 254 196 339
-28 209 322 239 295
-29 297 243 357 304
-30 356 282 316 296
-31 225 327 208 230
-32 286 331 292 306
-33 300 202 346 217
-34 189 236 182 274
-35 258 313 327 339
-36 212 335 227 239
-37 309 290 334 351
-38 222 225 238 337
-39 253 353 211 316
-40 311 247 216 284
-41 198 287 205 293
-42 265 320 322 251
-43 191 304 185 273
-44 220 342 356 185
-45 299 201 214 184
-46 286 234 183 294
-47 334 302 249 304
-48 319 356 337 195
-49 253 237 261 327
-50 312 292 208 329
-51 245 217 338 273
-52 341 233 315 274
-53 268 205 360 219
-54 289 268 259 350
-55 323 194 252 329
-56 355 345 241 318
-57 308 255 181 195
-58 255 223 249 251
-59 311 303 249 338
-60 309 293 208 241
-61 275 224 302 197
-62 301 314 216 218
-63 187 288 214 218
-64 201 311 312 185
-65 320 245 293 207
-66 233 248 272 251
-67 215 248 304 360
-68 289 213 356 359
-69 256 191 303 183
-70 189 325 358 229
-71 254 331 345 358
-72 297 211 346 295
-73 231 280 324 351
-74 342 271 317 186
-75 188 191 291 263
-76 220 244 193 272
-77 308 322 246 258
-78 222 258 357 292
-79 320 296 329 351
-80 266 269 313 283
-81 333 224 226 207
-82 243 333 270 240
-83 298 234 194 348
-84 187 256 241 296
-85 308 326 261 229
-86 325 228 250 251
-87 319 254 311 348
-88 277 293 250 295
-89 352 301 357 230
-90 341 290 271 284
-91 341 291 238 184
-92 209 353 234 247
-93 199 332 344 196
-94 232 200 338 349
-95 242 210 223 258
-96 335 260 262 230
-97 309 343 326 307
-98 257 225 193 228
-99 193 336 271 316
-100 198 201 195 196
-101 209 319 270 283
-102 287 266 282 197
-103 324 346 215 230
-104 198 352 342 348
-105 203 335 193 350
-106 308 190 315 359
-107 187 290 292 207
-108 301 313 238 329
-109 276 353 213 241
-110 298 270 284 328
-111 335 358 217 252
-112 222 349 197 274
-113 226 218 306 219
-114 323 269 259 218
-115 276 222 279 227
-116 246 204 249 305
-117 210 265 195 305
-118 330 298 278 261
-119 203 281 347 208
-120 330 190 273 307
-121 345 281 205 307
-122 269 302 272 318
-123 199 211 301 248
-124 265 332 355 184
-125 332 191 237 259
-126 232 342 277 219
-127 223 215 328 318
-128 264 297 291 307
-129 201 302 183 217
-130 344 270 274 351
-131 331 288 333 206
-132 221 266 314 252
-133 231 268 183 261
-134 189 266 227 338
-135 189 333 280 196
-136 275 299 234 346
-137 341 277 192 237
-138 264 267 336 185
-139 242 320 181 204
-140 267 282 272 317
-141 288 278 257 248
-142 343 278 314 359
-143 257 281 303 260
-144 275 313 326 317
-145 209 188 228 207
-146 268 279 348 250
-147 181 324 186 252
-148 276 331 223 263
-149 246 237 206 317
-150 188 221 265 277
-151 247 204 281 349
-152 202 184 294 197
-153 231 332 182 240
-154 187 200 211 359
-155 213 192 215 358
-156 264 244 186 296
-157 287 347 326 318
-158 347 228 240 262
-159 319 190 226 262
-160 244 278 250 294
-161 330 357 336 263
-162 210 299 344 203
-163 231 242 244 194
-164 232 246 260 284
-165 210 336 227 306
-166 202 213 181 262
-167 276 200 182 282
-168 264 323 280 204
-169 199 243 236 324
-170 198 343 355 203
-171 188 243 190 267
-172 199 343 214 305
-173 200 257 216 305
-174 232 287 279 236
-175 194 216 283 285
-176 267 224 347 283
-177 242 286 330 279
-178 355 192 263 285
-179 286 300 224 214
-180 300 192 260 186
-181 166 57 147 139
-182 34 167 8 153
-183 133 46 69 129
-184 45 91 124 152
-185 44 138 64 43
-186 156 147 180 74
-187 154 84 63 107
-188 145 171 150 75
-189 34 134 135 70
-190 159 171 106 120
-191 69 125 75 43
-192 155 178 180 137
-193 99 105 76 98
-194 55 83 163 175
-195 100 57 48 117
-196 100 135 27 93
-197 112 102 61 152
-198 100 104 170 41
-199 123 169 93 172
-200 154 167 94 173
-201 45 100 129 64
-202 33 166 7 152
-203 170 105 162 119
-204 168 116 139 151
-205 121 13 41 53
-206 23 4 149 131
-207 145 81 107 65
-208 60 50 31 119
-209 101 145 92 28
-210 165 95 117 162
-211 154 123 39 72
-212 22 25 36 15
-213 155 166 68 109
-214 45 179 172 63
-215 67 155 103 127
-216 40 62 173 175
-217 33 111 51 129
-218 113 114 62 63
-219 23 113 126 53
-220 44 16 27 76
-221 132 24 5 150
-222 78 112 38 115
-223 58 148 127 95
-224 176 179 81 61
-225 11 38 31 98
-226 113 81 159 20
-227 165 134 36 115
-228 145 158 86 98
-229 4 15 70 85
-230 89 103 96 31
-231 133 73 163 153
-232 126 94 174 164
-233 11 66 3 52
-234 46 92 136 83
-235 3 25 6 19
-236 12 34 169 174
-237 125 49 137 149
-238 24 91 38 108
-239 36 5 28 10
-240 158 82 21 153
-241 56 60 84 109
-242 177 95 139 163
-243 169 82 171 29
-244 156 160 163 76
-245 1 5 51 65
-246 77 116 149 164
-247 92 40 151 9
-248 66 67 123 141
-249 47 58 59 116
-250 88 146 160 86
-251 66 58 42 86
-252 55 132 111 147
-253 14 49 39 8
-254 27 71 17 87
-255 57 58 19 20
-256 1 69 84 8
-257 143 173 141 98
-258 77 78 35 95
-259 24 114 125 54
-260 143 180 96 164
-261 133 49 85 118
-262 166 158 159 96
-263 178 148 161 75
-264 156 168 138 128
-265 124 117 150 42
-266 132 134 80 102
-267 176 138 171 140
-268 133 146 53 54
-269 122 80 114 19
-270 110 101 82 130
-271 99 90 25 74
-272 66 122 140 76
-273 15 51 43 120
-274 34 112 52 130
-275 144 14 136 61
-276 167 115 148 109
-277 88 126 137 150
-278 160 118 141 142
-279 177 146 115 174
-280 135 168 18 73
-281 121 143 151 119
-282 167 102 30 140
-283 176 101 80 175
-284 110 90 40 164
-285 24 178 17 175
-286 177 46 179 32
-287 102 157 41 174
-288 16 63 141 131
-289 68 8 20 54
-290 23 90 37 107
-291 91 26 128 75
-292 78 50 107 32
-293 88 60 41 65
-294 11 46 160 152
-295 88 12 28 72
-296 79 156 84 30
-297 72 29 128 9
-298 22 110 83 118
-299 45 136 162 10
-300 33 23 179 180
-301 89 123 62 108
-302 122 47 61 129
-303 143 69 59 21
-304 67 47 29 43
-305 116 117 172 173
-306 165 113 6 32
-307 121 128 97 120
-308 77 57 106 85
-309 22 37 60 97
-310 13 6 9 10
-311 59 40 64 87
-312 1 2 50 64
-313 144 35 80 108
-314 132 15 62 142
-315 22 7 106 52
-316 99 39 30 10
-317 144 149 74 140
-318 56 122 157 127
-319 101 48 159 87
-320 79 139 42 65
-321 13 26 7 20
-322 77 14 28 42
-323 55 13 168 114
-324 103 147 169 73
-325 70 5 16 86
-326 144 157 85 97
-327 35 49 31 21
-328 110 3 17 127
-329 55 79 50 108
-330 177 161 118 120
-331 71 148 32 131
-332 124 125 93 153
-333 135 81 82 131
-334 1 3 47 37
-335 111 36 105 96
-336 99 165 138 161
-337 2 48 38 7
-338 134 59 94 51
-339 2 35 4 27
-340 14 4 18 9
-341 90 91 137 52
-342 44 104 126 74
-343 170 172 97 142
-344 25 93 162 130
-345 121 56 71 18
-346 33 103 136 72
-347 176 157 158 119
-348 146 104 83 87
-349 112 26 94 151
-350 6 105 21 54
-351 79 37 73 130
-352 12 89 2 104
-353 92 17 39 109
-354 11 26 16 18
-355 56 178 124 170
-356 44 68 48 30
-357 78 89 29 161
-358 111 155 70 71
-359 154 68 106 142
-360 12 67 19 53
0

**************