C4graphGraph forms for C4 [ 360, 211 ] = BGCG(UG(Rmap(360,345){6,4|10}_8);K1;{2,7})

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 211 ] = BGCG(UG(Rmap(360,345){6,4|10}_8);K1;{2,7}).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {168, 187}, {168, 188}, {161, 185}, {166, 185}, {152, 185}, {145, 183}, {138, 188}, {129, 189}, {134, 186}, {135, 186}, {163, 227}, {177, 241}, {164, 228}, {130, 192}, {177, 243}, {133, 198}, {160, 228}, {162, 230}, {148, 209}, {155, 222}, {129, 198}, {149, 210}, {146, 213}, {147, 219}, {170, 226}, {140, 197}, {162, 238}, {178, 226}, {156, 205}, {165, 244}, {131, 209}, {159, 205}, {159, 203}, {131, 214}, {139, 221}, {151, 193}, {142, 216}, {176, 232}, {128, 217}, {175, 246}, {136, 211}, {173, 246}, {140, 215}, {159, 194}, {174, 243}, {130, 220}, {180, 234}, {172, 242}, {145, 207}, {135, 216}, {167, 199}, {161, 192}, {138, 232}, {167, 197}, {172, 202}, {155, 252}, {173, 199}, {133, 233}, {156, 240}, {131, 238}, {160, 205}, {133, 232}, {170, 196}, {128, 239}, {168, 216}, {162, 211}, {174, 223}, {169, 219}, {178, 192}, {156, 239}, {173, 222}, {141, 249}, {156, 234}, {169, 223}, {171, 211}, {132, 253}, {179, 202}, {176, 201}, {149, 238}, {152, 228}, {90, 218}, {117, 244}, {55, 181}, {91, 217}, {61, 191}, {86, 213}, {114, 241}, {125, 254}, {82, 214}, {104, 237}, {48, 182}, {125, 251}, {63, 184}, {127, 248}, {93, 213}, {49, 184}, {88, 209}, {104, 225}, {120, 241}, {115, 249}, {53, 190}, {122, 241}, {64, 204}, {92, 208}, {114, 254}, {76, 193}, {91, 214}, {79, 192}, {45, 190}, {97, 242}, {100, 247}, {46, 186}, {45, 184}, {66, 215}, {121, 236}, {94, 200}, {101, 242}, {70, 222}, {76, 212}, {72, 209}, {115, 234}, {119, 238}, {36, 191}, {85, 206}, {64, 219}, {102, 253}, {65, 221}, {89, 197}, {68, 216}, {92, 193}, {102, 251}, {43, 181}, {89, 198}, {103, 248}, {73, 233}, {84, 245}, {109, 204}, {113, 208}, {96, 194}, {69, 230}, {84, 240}, {96, 197}, {65, 231}, {74, 236}, {116, 210}, {31, 184}, {82, 245}, {74, 237}, {22, 191}, {81, 248}, {77, 228}, {29, 182}, {71, 236}, {117, 222}, {80, 252}, {112, 220}, {98, 207}, {105, 196}, {113, 220}, {78, 224}, {88, 246}, {126, 208}, {105, 217}, {83, 225}, {84, 230}, {123, 201}, {4, 183}, {120, 203}, {2, 183}, {84, 225}, {66, 247}, {72, 254}, {111, 217}, {66, 250}, {68, 252}, {91, 227}, {65, 248}, {90, 227}, {95, 230}, {99, 218}, {106, 211}, {67, 249}, {108, 214}, {122, 193}, {94, 226}, {95, 227}, {99, 223}, {113, 205}, {98, 223}, {109, 208}, {118, 200}, {119, 201}, {9, 182}, {82, 237}, {115, 204}, {4, 196}, {3, 194}, {10, 203}, {13, 207}, {22, 212}, {1, 194}, {52, 247}, {117, 182}, {127, 188}, {11, 195}, {21, 221}, {18, 218}, {53, 255}, {60, 246}, {15, 195}, {38, 234}, {25, 213}, {36, 233}, {56, 245}, {41, 231}, {27, 212}, {40, 231}, {116, 187}, {42, 250}, {59, 235}, {43, 251}, {51, 226}, {58, 235}, {26, 200}, {41, 251}, {110, 188}, {111, 189}, {23, 196}, {104, 187}, {110, 189}, {19, 199}, {24, 206}, {37, 253}, {39, 255}, {11, 210}, {62, 231}, {99, 185}, {6, 221}, {33, 250}, {31, 195}, {36, 249}, {53, 232}, {9, 215}, {63, 225}, {59, 229}, {41, 247}, {25, 199}, {17, 206}, {35, 252}, {33, 254}, {21, 202}, {10, 235}, {45, 204}, {18, 243}, {7, 229}, {89, 187}, {62, 220}, {56, 218}, {5, 224}, {91, 190}, {45, 203}, {83, 181}, {92, 186}, {23, 255}, {60, 212}, {43, 195}, {29, 245}, {35, 202}, {23, 253}, {3, 239}, {23, 250}, {17, 255}, {81, 191}, {39, 201}, {28, 242}, {82, 189}, {16, 224}, {21, 229}, {22, 229}, {40, 219}, {4, 240}, {1, 244}, {30, 235}, {28, 233}, {25, 236}, {67, 181}, {57, 206}, {21, 237}, {62, 198}, {55, 207}, {49, 200}, {8, 244}, {75, 183}, {46, 210}, {14, 243}, {67, 190}, {29, 224}, {17, 239}, {15, 240}, {40, 215}, {24, 280}, {80, 336}, {76, 332}, {102, 358}, {1, 256}, {50, 307}, {98, 355}, {2, 256}, {34, 288}, {33, 290}, {58, 318}, {86, 339}, {46, 296}, {77, 331}, {38, 289}, {93, 346}, {96, 359}, {32, 296}, {51, 315}, {106, 354}, {35, 298}, {61, 308}, {60, 309}, {58, 307}, {34, 297}, {52, 319}, {79, 322}, {7, 265}, {64, 335}, {81, 350}, {30, 270}, {86, 326}, {32, 304}, {13, 284}, {51, 290}, {48, 289}, {31, 270}, {29, 268}, {94, 333}, {48, 292}, {52, 288}, {48, 296}, {56, 289}, {94, 327}, {40, 306}, {22, 269}, {47, 308}, {127, 356}, {88, 324}, {38, 315}, {72, 341}, {73, 343}, {53, 298}, {63, 288}, {5, 293}, {65, 353}, {106, 331}, {114, 339}, {123, 346}, {14, 300}, {27, 313}, {47, 268}, {8, 300}, {105, 332}, {13, 299}, {57, 287}, {20, 306}, {20, 307}, {69, 354}, {42, 269}, {113, 342}, {33, 265}, {46, 260}, {111, 325}, {74, 353}, {119, 348}, {7, 299}, {75, 359}, {50, 286}, {37, 264}, {42, 263}, {54, 280}, {108, 322}, {10, 293}, {71, 360}, {54, 281}, {1, 305}, {11, 314}, {54, 263}, {44, 285}, {5, 305}, {59, 271}, {49, 261}, {9, 316}, {41, 284}, {39, 274}, {101, 336}, {6, 304}, {61, 267}, {30, 296}, {109, 347}, {97, 342}, {108, 347}, {4, 316}, {59, 259}, {3, 314}, {30, 295}, {20, 301}, {126, 327}, {2, 312}, {8, 306}, {56, 259}, {95, 356}, {19, 303}, {92, 352}, {97, 349}, {47, 274}, {106, 343}, {32, 286}, {97, 351}, {7, 312}, {44, 275}, {28, 291}, {124, 323}, {12, 332}, {26, 346}, {16, 336}, {14, 334}, {118, 310}, {69, 260}, {73, 264}, {101, 292}, {36, 359}, {75, 264}, {117, 310}, {120, 315}, {14, 330}, {80, 276}, {24, 348}, {119, 307}, {121, 317}, {18, 343}, {107, 302}, {120, 317}, {6, 320}, {73, 271}, {24, 350}, {15, 329}, {31, 344}, {86, 273}, {101, 290}, {127, 312}, {32, 360}, {89, 273}, {79, 263}, {9, 320}, {111, 294}, {26, 336}, {27, 337}, {125, 311}, {6, 333}, {74, 257}, {19, 344}, {18, 345}, {71, 267}, {3, 333}, {90, 276}, {20, 346}, {12, 323}, {78, 257}, {16, 351}, {115, 316}, {2, 338}, {75, 283}, {25, 329}, {19, 323}, {77, 284}, {11, 345}, {87, 261}, {78, 284}, {51, 353}, {104, 314}, {114, 288}, {116, 294}, {67, 272}, {85, 262}, {121, 298}, {8, 349}, {52, 354}, {68, 275}, {72, 287}, {70, 273}, {66, 282}, {87, 271}, {109, 309}, {110, 310}, {5, 348}, {13, 340}, {96, 313}, {98, 315}, {118, 303}, {125, 292}, {62, 356}, {63, 357}, {122, 289}, {57, 357}, {87, 267}, {107, 311}, {68, 281}, {10, 340}, {83, 269}, {69, 283}, {12, 338}, {42, 330}, {43, 330}, {76, 301}, {71, 294}, {70, 295}, {57, 344}, {123, 282}, {39, 325}, {124, 286}, {64, 291}, {126, 285}, {12, 360}, {60, 344}, {93, 313}, {85, 304}, {44, 330}, {100, 258}, {116, 274}, {47, 328}, {79, 295}, {90, 306}, {102, 270}, {103, 271}, {108, 260}, {103, 270}, {93, 311}, {15, 356}, {126, 277}, {88, 308}, {37, 328}, {34, 332}, {77, 291}, {105, 263}, {70, 297}, {122, 277}, {55, 327}, {99, 274}, {112, 257}, {124, 269}, {35, 337}, {85, 295}, {55, 325}, {44, 351}, {61, 334}, {100, 279}, {121, 266}, {28, 360}, {49, 325}, {16, 357}, {50, 327}, {95, 298}, {112, 262}, {118, 256}, {17, 358}, {54, 321}, {110, 281}, {38, 350}, {78, 311}, {87, 302}, {37, 351}, {83, 297}, {100, 287}, {107, 272}, {112, 267}, {58, 326}, {81, 301}, {26, 359}, {50, 335}, {27, 358}, {34, 349}, {80, 303}, {103, 280}, {107, 276}, {123, 260}, {124, 259}, {145, 272}, {169, 299}, {133, 262}, {158, 285}, {150, 277}, {148, 279}, {138, 265}, {153, 285}, {134, 259}, {135, 258}, {143, 266}, {157, 283}, {163, 293}, {153, 286}, {172, 299}, {172, 294}, {155, 272}, {137, 261}, {141, 256}, {143, 258}, {132, 266}, {177, 319}, {163, 301}, {161, 303}, {136, 280}, {170, 314}, {151, 262}, {134, 276}, {147, 257}, {129, 277}, {131, 278}, {129, 279}, {159, 261}, {167, 317}, {141, 278}, {134, 282}, {169, 309}, {150, 266}, {148, 264}, {139, 278}, {164, 313}, {171, 309}, {128, 287}, {130, 290}, {179, 275}, {150, 310}, {136, 297}, {177, 275}, {175, 268}, {149, 305}, {153, 317}, {157, 312}, {132, 300}, {138, 291}, {148, 318}, {165, 265}, {157, 304}, {146, 316}, {163, 268}, {142, 318}, {167, 279}, {166, 278}, {161, 273}, {149, 292}, {139, 319}, {154, 302}, {174, 283}, {137, 319}, {180, 258}, {132, 318}, {146, 302}, {153, 293}, {137, 308}, {164, 281}, {140, 305}, {147, 300}, {165, 282}, {142, 335}, {143, 334}, {141, 334}, {151, 338}, {130, 324}, {144, 342}, {150, 337}, {157, 341}, {137, 320}, {170, 352}, {144, 347}, {158, 341}, {151, 348}, {140, 321}, {158, 339}, {154, 343}, {173, 355}, {154, 341}, {146, 321}, {158, 328}, {154, 333}, {135, 350}, {139, 338}, {152, 323}, {155, 320}, {128, 349}, {180, 340}, {160, 324}, {175, 331}, {162, 324}, {178, 340}, {164, 322}, {176, 345}, {171, 321}, {136, 355}, {174, 322}, {143, 354}, {142, 352}, {166, 328}, {160, 335}, {144, 353}, {145, 352}, {180, 326}, {144, 355}, {165, 342}, {179, 326}, {147, 357}, {175, 345}, {176, 329}, {178, 331}, {171, 337}, {179, 329}, {168, 339}, {166, 347}, {152, 358} }>;

(II) A more general form is to represent the graph as the orbit of {168, 187} under the group generated by the following permutations:

a: (1, 2)(3, 4)(5, 7)(6, 9)(8, 12)(10, 13)(11, 15)(14, 19)(16, 22)(17, 23)(18, 25)(20, 28)(21, 29)(24, 33)(26, 36)(27, 37)(30, 41)(31, 43)(32, 40)(35, 47)(38, 51)(39, 53)(42, 57)(44, 60)(45, 55)(46, 62)(48, 65)(49, 67)(50, 64)(52, 70)(54, 72)(56, 74)(58, 77)(59, 78)(61, 80)(63, 83)(66, 85)(68, 88)(69, 89)(71, 90)(73, 93)(75, 96)(76, 97)(79, 100)(81, 101)(84, 104)(86, 106)(87, 107)(91, 111)(92, 113)(94, 115)(95, 116)(98, 120)(99, 121)(103, 125)(105, 128)(108, 129)(109, 126)(110, 131)(112, 134)(114, 136)(117, 139)(118, 141)(119, 138)(122, 144)(123, 133)(124, 147)(127, 149)(130, 135)(132, 152)(137, 155)(140, 157)(142, 160)(143, 161)(145, 159)(146, 154)(148, 164)(150, 166)(151, 165)(153, 169)(156, 170)(158, 171)(162, 168)(163, 172)(167, 174)(173, 177)(175, 179)(178, 180)(181, 184)(182, 221)(183, 194)(185, 266)(186, 220)(187, 230)(188, 238)(189, 214)(190, 325)(191, 336)(192, 258)(193, 342)(196, 239)(197, 283)(198, 260)(199, 243)(200, 249)(201, 232)(202, 268)(203, 207)(204, 327)(205, 352)(206, 250)(209, 281)(210, 356)(211, 339)(212, 351)(213, 343)(215, 304)(216, 324)(218, 236)(219, 286)(222, 319)(223, 317)(224, 229)(226, 234)(227, 294)(228, 318)(231, 296)(233, 346)(235, 284)(237, 245)(240, 314)(241, 355)(242, 301)(244, 338)(246, 275)(247, 295)(248, 292)(251, 270)(252, 308)(253, 358)(254, 280)(257, 259)(261, 272)(262, 282)(263, 287)(264, 313)(265, 348)(267, 276)(269, 357)(271, 311)(273, 354)(274, 298)(277, 347)(278, 310)(279, 322)(285, 309)(288, 297)(289, 353)(290, 350)(291, 307)(293, 299)(300, 323)(303, 334)(305, 312)(306, 360)(316, 333)(321, 341)(326, 331)(328, 337)(329, 345)(330, 344)(332, 349)
b: (2, 165)(3, 149)(4, 123)(5, 159)(6, 101)(8, 141)(9, 26)(12, 144)(13, 59)(15, 176)(16, 137)(17, 162)(18, 43)(19, 173)(20, 115)(21, 172)(22, 169)(23, 69)(24, 160)(27, 171)(28, 65)(29, 49)(30, 178)(31, 175)(32, 51)(33, 157)(34, 166)(36, 40)(37, 52)(38, 50)(39, 84)(41, 73)(42, 174)(44, 177)(45, 163)(46, 170)(47, 63)(48, 94)(53, 95)(54, 164)(55, 56)(57, 88)(58, 180)(61, 147)(62, 133)(64, 81)(66, 75)(67, 90)(70, 161)(71, 74)(76, 109)(77, 103)(78, 87)(80, 155)(82, 111)(83, 99)(85, 130)(93, 146)(96, 140)(97, 139)(98, 124)(100, 148)(102, 106)(104, 116)(105, 108)(113, 151)(114, 158)(117, 118)(119, 156)(120, 153)(122, 126)(125, 154)(127, 138)(128, 131)(132, 143)(134, 145)(135, 142)(136, 152)(181, 218)(182, 200)(183, 282)(184, 268)(185, 297)(186, 352)(190, 227)(191, 219)(192, 295)(193, 208)(194, 305)(195, 345)(196, 260)(201, 240)(203, 293)(204, 301)(205, 348)(206, 324)(207, 259)(209, 287)(210, 314)(211, 358)(212, 309)(214, 217)(215, 359)(220, 262)(221, 242)(222, 303)(223, 269)(224, 261)(225, 274)(226, 296)(228, 280)(229, 299)(230, 255)(231, 233)(232, 356)(234, 307)(235, 340)(237, 294)(238, 239)(241, 285)(243, 330)(244, 256)(245, 325)(246, 344)(247, 264)(248, 291)(249, 306)(250, 283)(251, 343)(253, 354)(254, 341)(257, 267)(258, 318)(263, 322)(265, 312)(270, 331)(271, 284)(272, 276)(278, 349)(286, 315)(288, 328)(289, 327)(290, 304)(292, 333)(300, 334)(302, 311)(308, 357)(313, 321)(316, 346)(319, 351)(320, 336)(323, 355)(332, 347)(335, 350)(338, 342)(353, 360)
c: (2, 3)(4, 6)(5, 8)(7, 11)(10, 14)(12, 17)(13, 18)(15, 21)(16, 20)(19, 27)(22, 31)(23, 32)(24, 34)(25, 35)(28, 39)(29, 40)(30, 42)(33, 46)(36, 49)(37, 50)(38, 52)(41, 56)(43, 59)(44, 58)(45, 61)(47, 64)(48, 66)(51, 69)(53, 71)(54, 70)(55, 73)(57, 76)(62, 82)(63, 81)(65, 84)(67, 87)(68, 86)(72, 92)(74, 95)(75, 94)(77, 99)(78, 90)(80, 93)(83, 103)(85, 105)(88, 109)(89, 110)(91, 112)(96, 118)(97, 119)(98, 106)(100, 122)(101, 123)(102, 124)(104, 127)(108, 130)(111, 133)(113, 131)(114, 135)(115, 137)(116, 138)(117, 140)(120, 143)(125, 134)(126, 148)(128, 151)(132, 153)(139, 156)(141, 159)(142, 158)(144, 162)(145, 154)(146, 155)(147, 163)(149, 165)(150, 167)(157, 170)(160, 166)(161, 164)(169, 175)(171, 173)(172, 176)(174, 178)(177, 180)(181, 271)(182, 215)(183, 333)(184, 191)(185, 228)(186, 254)(187, 188)(189, 198)(190, 267)(192, 322)(193, 287)(194, 256)(195, 229)(196, 304)(197, 310)(199, 337)(200, 359)(201, 242)(202, 329)(203, 334)(204, 308)(205, 278)(206, 332)(207, 343)(208, 209)(210, 265)(211, 355)(212, 344)(213, 252)(214, 220)(216, 339)(217, 262)(218, 284)(219, 268)(221, 240)(222, 321)(223, 331)(224, 306)(225, 248)(226, 283)(227, 257)(230, 353)(231, 245)(232, 294)(233, 325)(234, 319)(235, 330)(236, 298)(237, 356)(238, 342)(239, 338)(241, 258)(243, 340)(244, 305)(246, 309)(247, 289)(249, 261)(250, 296)(251, 259)(253, 286)(255, 360)(260, 290)(263, 295)(264, 327)(266, 317)(269, 270)(272, 302)(273, 281)(274, 291)(275, 326)(276, 311)(277, 279)(280, 297)(282, 292)(285, 318)(288, 350)(293, 300)(299, 345)(301, 357)(303, 313)(307, 351)(312, 314)(315, 354)(316, 320)(323, 358)(324, 347)(328, 335)(336, 346)(341, 352)(348, 349)
d: (2, 159)(3, 141)(4, 137)(5, 165)(6, 115)(7, 10)(8, 149)(11, 14)(12, 160)(13, 59)(15, 177)(16, 123)(17, 166)(18, 43)(19, 164)(20, 101)(21, 180)(22, 178)(23, 47)(24, 144)(25, 68)(27, 161)(28, 50)(29, 66)(30, 169)(31, 174)(32, 64)(33, 163)(34, 162)(35, 86)(36, 94)(37, 39)(38, 65)(40, 48)(41, 56)(42, 175)(44, 176)(45, 157)(46, 147)(49, 75)(51, 81)(52, 84)(53, 158)(54, 173)(55, 73)(57, 108)(58, 172)(60, 79)(61, 170)(62, 122)(63, 69)(67, 154)(70, 171)(71, 142)(72, 91)(74, 135)(76, 130)(77, 124)(78, 134)(80, 93)(82, 100)(83, 106)(85, 109)(87, 145)(88, 105)(89, 150)(90, 125)(92, 112)(95, 114)(96, 118)(97, 119)(98, 103)(99, 102)(104, 143)(110, 167)(111, 148)(113, 151)(116, 132)(117, 140)(120, 127)(121, 168)(126, 133)(128, 131)(138, 153)(139, 156)(146, 155)(181, 343)(182, 215)(183, 261)(184, 283)(185, 358)(186, 257)(187, 266)(188, 317)(189, 279)(190, 341)(191, 226)(192, 212)(193, 220)(194, 256)(195, 243)(196, 308)(197, 310)(198, 277)(199, 281)(200, 359)(201, 351)(202, 326)(203, 312)(204, 304)(205, 338)(206, 347)(207, 271)(208, 262)(209, 217)(210, 300)(211, 297)(213, 252)(214, 287)(216, 236)(218, 251)(219, 296)(221, 234)(222, 321)(223, 270)(224, 282)(225, 354)(227, 254)(228, 323)(229, 340)(230, 288)(231, 289)(232, 285)(233, 327)(235, 299)(237, 258)(238, 349)(239, 278)(240, 319)(241, 356)(242, 307)(244, 305)(245, 247)(246, 263)(248, 315)(249, 333)(250, 268)(253, 274)(255, 328)(259, 284)(260, 357)(264, 325)(265, 293)(267, 352)(269, 331)(272, 302)(273, 337)(275, 329)(276, 311)(280, 355)(286, 291)(290, 301)(292, 306)(294, 318)(295, 309)(298, 339)(303, 313)(314, 334)(316, 320)(322, 344)(324, 332)(330, 345)(335, 360)(336, 346)(342, 348)(350, 353)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 211 ]
360
-1 244 256 194 305
-2 256 312 183 338
-3 333 314 194 239
-4 183 316 196 240
-5 224 293 348 305
-6 221 320 333 304
-7 265 299 312 229
-8 244 300 349 306
-9 320 182 215 316
-10 235 203 293 340
-11 210 345 314 195
-12 332 323 338 360
-13 299 207 284 340
-14 330 243 300 334
-15 356 195 240 329
-16 224 357 336 351
-17 255 358 206 239
-18 243 343 345 218
-19 199 344 323 303
-20 301 346 306 307
-21 221 202 237 229
-22 212 191 269 229
-23 253 255 250 196
-24 280 348 206 350
-25 199 213 236 329
-26 200 346 336 359
-27 212 313 358 337
-28 242 233 291 360
-29 245 224 268 182
-30 235 270 295 296
-31 344 270 184 195
-32 286 304 360 296
-33 254 265 290 250
-34 297 288 332 349
-35 298 202 337 252
-36 233 191 249 359
-37 253 264 328 351
-38 234 289 315 350
-39 255 201 325 274
-40 231 215 306 219
-41 231 247 251 284
-42 330 269 250 263
-43 330 181 195 251
-44 275 330 285 351
-45 190 203 204 184
-46 210 260 186 296
-47 308 268 328 274
-48 289 182 292 296
-49 200 325 184 261
-50 286 335 327 307
-51 353 290 226 315
-52 319 288 354 247
-53 232 298 255 190
-54 321 280 281 263
-55 181 325 327 207
-56 245 289 259 218
-57 287 344 357 206
-58 235 326 307 318
-59 235 259 271 229
-60 309 212 344 246
-61 308 267 191 334
-62 198 220 231 356
-63 288 225 357 184
-64 291 335 204 219
-65 231 221 353 248
-66 247 215 282 250
-67 190 181 249 272
-68 275 281 216 252
-69 354 260 283 230
-70 297 222 273 295
-71 267 236 294 360
-72 209 341 254 287
-73 264 233 343 271
-74 353 257 236 237
-75 264 183 359 283
-76 332 212 301 193
-77 331 291 228 284
-78 311 224 257 284
-79 322 192 295 263
-80 276 303 336 252
-81 191 301 248 350
-82 189 245 214 237
-83 297 181 225 269
-84 245 225 240 230
-85 304 206 262 295
-86 213 326 273 339
-87 267 302 271 261
-88 209 308 246 324
-89 187 198 273 197
-90 276 227 218 306
-91 190 214 227 217
-92 352 193 186 208
-93 311 213 313 346
-94 200 333 226 327
-95 298 356 227 230
-96 313 194 359 197
-97 242 342 349 351
-98 223 355 315 207
-99 223 185 218 274
-100 287 279 247 258
-101 242 290 292 336
-102 253 270 358 251
-103 280 248 270 271
-104 187 225 237 314
-105 332 217 196 263
-106 331 211 343 354
-107 276 311 302 272
-108 322 214 347 260
-109 309 204 347 208
-110 188 189 310 281
-111 189 325 217 294
-112 220 267 257 262
-113 220 342 205 208
-114 254 288 339 241
-115 234 204 249 316
-116 187 210 294 274
-117 222 244 310 182
-118 200 310 256 303
-119 201 238 348 307
-120 203 315 317 241
-121 298 266 236 317
-122 277 289 193 241
-123 201 346 260 282
-124 286 323 269 259
-125 254 311 292 251
-126 277 327 208 285
-127 188 312 356 248
-128 287 217 239 349
-129 198 189 277 279
-130 220 290 192 324
-131 209 278 214 238
-132 253 266 300 318
-133 198 232 233 262
-134 276 259 282 186
-135 258 216 350 186
-136 297 211 355 280
-137 308 319 320 261
-138 188 232 265 291
-139 319 221 278 338
-140 321 215 305 197
-141 256 278 334 249
-142 352 335 216 318
-143 266 354 334 258
-144 342 353 355 347
-145 352 183 272 207
-146 321 213 302 316
-147 300 257 357 219
-148 209 264 279 318
-149 210 292 238 305
-150 266 277 310 337
-151 193 348 338 262
-152 323 358 228 185
-153 286 293 317 285
-154 341 343 333 302
-155 320 222 272 252
-156 234 205 239 240
-157 341 312 304 283
-158 341 328 339 285
-159 203 194 205 261
-160 324 335 205 228
-161 192 303 185 273
-162 211 324 238 230
-163 268 301 227 293
-164 322 313 281 228
-165 265 342 244 282
-166 278 347 185 328
-167 199 279 317 197
-168 187 188 216 339
-169 309 299 223 219
-170 352 226 314 196
-171 309 211 321 337
-172 242 299 202 294
-173 199 222 355 246
-174 243 223 322 283
-175 331 246 268 345
-176 232 201 345 329
-177 275 319 243 241
-178 331 192 226 340
-179 275 202 326 329
-180 234 258 326 340
-181 55 67 83 43
-182 48 29 117 9
-183 2 145 4 75
-184 45 49 63 31
-185 99 166 161 152
-186 46 134 135 92
-187 89 168 104 116
-188 110 168 127 138
-189 110 111 82 129
-190 45 67 91 53
-191 22 36 81 61
-192 79 178 161 130
-193 122 92 151 76
-194 1 3 159 96
-195 11 15 31 43
-196 23 4 170 105
-197 89 167 96 140
-198 89 133 62 129
-199 167 25 19 173
-200 26 49 94 118
-201 176 123 39 119
-202 35 179 172 21
-203 45 159 10 120
-204 45 115 64 109
-205 156 113 159 160
-206 24 57 17 85
-207 55 13 145 98
-208 113 92 126 109
-209 88 148 72 131
-210 11 46 116 149
-211 136 171 106 162
-212 22 27 60 76
-213 25 146 93 86
-214 91 82 108 131
-215 66 40 140 9
-216 68 135 168 142
-217 111 91 105 128
-218 99 56 90 18
-219 147 169 40 64
-220 112 113 62 130
-221 6 139 21 65
-222 155 70 117 173
-223 99 169 174 98
-224 78 5 16 29
-225 104 83 84 63
-226 178 170 94 51
-227 90 91 95 163
-228 77 160 152 164
-229 22 59 7 21
-230 69 84 95 162
-231 40 62 41 65
-232 176 133 138 53
-233 133 36 28 73
-234 156 180 38 115
-235 58 59 30 10
-236 121 25 71 74
-237 82 104 74 21
-238 149 162 119 131
-239 156 3 17 128
-240 156 4 15 84
-241 122 177 114 120
-242 101 28 172 97
-243 177 14 18 174
-244 165 1 117 8
-245 56 82 29 84
-246 88 60 173 175
-247 66 100 41 52
-248 81 103 127 65
-249 67 36 115 141
-250 33 66 23 42
-251 102 125 41 43
-252 155 35 68 80
-253 132 23 102 37
-254 33 114 125 72
-255 23 17 39 53
-256 1 2 118 141
-257 78 112 147 74
-258 143 100 135 180
-259 56 134 124 59
-260 46 123 69 108
-261 49 137 159 87
-262 133 112 85 151
-263 79 105 42 54
-264 37 148 73 75
-265 33 165 138 7
-266 121 132 143 150
-267 112 71 61 87
-268 47 29 163 175
-269 22 124 83 42
-270 102 103 30 31
-271 59 103 73 87
-272 67 155 145 107
-273 89 70 161 86
-274 99 47 39 116
-275 44 177 68 179
-276 90 134 80 107
-277 122 126 150 129
-278 166 139 141 131
-279 100 167 148 129
-280 24 103 136 54
-281 110 68 54 164
-282 66 165 123 134
-283 69 157 75 174
-284 77 78 13 41
-285 44 158 126 153
-286 124 50 32 153
-287 100 57 72 128
-288 34 114 52 63
-289 56 122 48 38
-290 33 101 51 130
-291 77 28 138 64
-292 101 48 125 149
-293 5 163 10 153
-294 111 71 116 172
-295 79 70 30 85
-296 46 48 30 32
-297 34 70 136 83
-298 121 35 95 53
-299 13 169 7 172
-300 132 14 147 8
-301 81 20 163 76
-302 154 146 107 87
-303 80 161 19 118
-304 157 6 85 32
-305 1 5 149 140
-306 90 40 8 20
-307 58 50 20 119
-308 88 47 137 61
-309 169 60 171 109
-310 110 117 150 118
-311 78 125 93 107
-312 2 157 127 7
-313 27 93 96 164
-314 11 3 104 170
-315 38 51 98 120
-316 146 4 115 9
-317 121 167 120 153
-318 132 58 148 142
-319 177 137 139 52
-320 155 137 6 9
-321 146 171 140 54
-322 79 108 174 164
-323 12 124 19 152
-324 88 160 162 130
-325 55 111 49 39
-326 58 179 180 86
-327 55 126 50 94
-328 166 47 37 158
-329 176 25 179 15
-330 44 14 42 43
-331 77 178 106 175
-332 12 34 105 76
-333 154 3 6 94
-334 143 14 61 141
-335 50 160 64 142
-336 101 80 26 16
-337 35 27 171 150
-338 12 2 139 151
-339 168 114 158 86
-340 13 178 180 10
-341 154 157 158 72
-342 165 144 113 97
-343 154 18 73 106
-344 57 60 19 31
-345 11 176 18 175
-346 123 26 93 20
-347 144 166 108 109
-348 24 5 151 119
-349 34 128 8 97
-350 24 135 81 38
-351 44 37 16 97
-352 145 92 170 142
-353 144 51 74 65
-354 143 69 106 52
-355 144 136 173 98
-356 15 127 62 95
-357 57 147 16 63
-358 102 27 17 152
-359 36 26 96 75
-360 12 71 28 32
0

**************