C4graphGraph forms for C4 [ 360, 212 ] = BGCG(UG(Rmap(360,345){6,4|10}_8);K1;4)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 360, 212 ] = BGCG(UG(Rmap(360,345){6,4|10}_8);K1;4).

(I) Following is a form readable by MAGMA:

g:=Graph<360|{ {171, 187}, {162, 181}, {145, 188}, {141, 189}, {128, 186}, {130, 191}, {136, 181}, {131, 189}, {129, 190}, {132, 196}, {167, 230}, {152, 219}, {155, 223}, {128, 198}, {169, 239}, {144, 214}, {177, 246}, {148, 220}, {166, 238}, {163, 235}, {168, 226}, {170, 224}, {173, 230}, {160, 236}, {157, 208}, {149, 197}, {152, 201}, {146, 198}, {163, 247}, {137, 223}, {133, 221}, {171, 241}, {176, 234}, {140, 215}, {152, 195}, {153, 194}, {151, 203}, {161, 252}, {166, 251}, {138, 234}, {141, 237}, {139, 233}, {143, 237}, {132, 231}, {172, 207}, {145, 242}, {135, 227}, {177, 213}, {172, 200}, {164, 192}, {157, 249}, {154, 254}, {158, 251}, {161, 199}, {169, 207}, {131, 228}, {158, 249}, {154, 240}, {170, 193}, {159, 243}, {142, 224}, {153, 247}, {143, 225}, {130, 237}, {148, 228}, {150, 231}, {155, 234}, {154, 235}, {129, 242}, {178, 193}, {161, 210}, {178, 199}, {143, 248}, {164, 211}, {135, 255}, {134, 255}, {159, 229}, {129, 250}, {179, 200}, {174, 213}, {160, 219}, {135, 252}, {147, 232}, {147, 239}, {140, 241}, {133, 250}, {165, 218}, {58, 186}, {99, 227}, {75, 202}, {121, 248}, {86, 212}, {109, 238}, {92, 217}, {89, 222}, {50, 187}, {82, 219}, {53, 191}, {118, 252}, {89, 210}, {120, 243}, {55, 187}, {52, 185}, {77, 192}, {112, 253}, {55, 185}, {90, 212}, {120, 246}, {57, 182}, {109, 226}, {81, 193}, {98, 242}, {112, 224}, {114, 226}, {87, 198}, {111, 254}, {115, 226}, {70, 212}, {95, 205}, {73, 218}, {41, 189}, {84, 192}, {73, 221}, {44, 184}, {105, 253}, {66, 215}, {107, 254}, {74, 220}, {93, 203}, {100, 242}, {91, 204}, {92, 203}, {105, 254}, {100, 252}, {83, 202}, {99, 250}, {45, 183}, {84, 206}, {74, 214}, {77, 209}, {105, 245}, {91, 198}, {111, 241}, {123, 229}, {64, 223}, {106, 245}, {108, 243}, {90, 250}, {108, 204}, {79, 237}, {91, 249}, {102, 196}, {104, 202}, {72, 235}, {90, 249}, {87, 244}, {75, 232}, {114, 209}, {69, 225}, {25, 188}, {66, 229}, {65, 233}, {109, 197}, {93, 246}, {113, 218}, {70, 234}, {69, 232}, {78, 224}, {94, 240}, {96, 206}, {19, 188}, {102, 201}, {127, 208}, {116, 197}, {81, 227}, {87, 229}, {71, 244}, {93, 238}, {88, 236}, {95, 235}, {104, 220}, {109, 217}, {71, 241}, {125, 203}, {77, 245}, {76, 245}, {97, 216}, {79, 244}, {79, 243}, {80, 236}, {103, 218}, {110, 211}, {124, 194}, {124, 195}, {24, 216}, {61, 253}, {20, 214}, {16, 211}, {60, 255}, {39, 227}, {20, 210}, {29, 219}, {121, 191}, {126, 184}, {4, 195}, {32, 231}, {127, 184}, {48, 248}, {14, 199}, {46, 231}, {5, 207}, {3, 200}, {54, 253}, {9, 194}, {126, 181}, {15, 195}, {26, 214}, {18, 222}, {9, 196}, {28, 209}, {1, 207}, {6, 201}, {35, 236}, {32, 239}, {26, 202}, {57, 232}, {106, 187}, {111, 190}, {100, 182}, {35, 240}, {1, 213}, {5, 208}, {20, 193}, {3, 213}, {15, 217}, {5, 211}, {111, 185}, {17, 200}, {29, 196}, {8, 210}, {10, 208}, {101, 191}, {97, 186}, {102, 189}, {21, 201}, {107, 182}, {42, 244}, {31, 255}, {62, 222}, {4, 230}, {85, 183}, {7, 228}, {2, 230}, {50, 215}, {30, 248}, {58, 220}, {56, 222}, {95, 184}, {6, 239}, {36, 206}, {40, 194}, {27, 240}, {94, 181}, {33, 205}, {91, 183}, {90, 182}, {86, 186}, {12, 225}, {50, 223}, {48, 221}, {27, 246}, {35, 205}, {63, 209}, {54, 216}, {7, 247}, {78, 190}, {63, 206}, {70, 183}, {9, 251}, {43, 217}, {27, 233}, {22, 228}, {77, 190}, {2, 247}, {58, 204}, {25, 238}, {75, 188}, {59, 204}, {32, 215}, {17, 233}, {56, 192}, {60, 197}, {61, 199}, {38, 221}, {66, 185}, {40, 212}, {28, 225}, {37, 216}, {51, 205}, {4, 251}, {6, 262}, {23, 279}, {57, 312}, {98, 355}, {13, 271}, {26, 280}, {99, 352}, {32, 292}, {68, 320}, {52, 304}, {42, 302}, {3, 262}, {16, 277}, {8, 270}, {76, 330}, {72, 334}, {33, 295}, {101, 354}, {7, 271}, {30, 278}, {25, 273}, {16, 280}, {12, 261}, {72, 321}, {54, 316}, {15, 260}, {93, 342}, {18, 286}, {43, 293}, {86, 344}, {61, 307}, {1, 270}, {57, 310}, {14, 257}, {2, 274}, {52, 292}, {18, 258}, {11, 283}, {55, 294}, {67, 338}, {58, 299}, {34, 304}, {45, 319}, {44, 318}, {115, 353}, {1, 274}, {59, 296}, {30, 269}, {18, 257}, {94, 330}, {11, 286}, {19, 261}, {46, 312}, {28, 266}, {8, 287}, {65, 342}, {3, 283}, {68, 348}, {56, 289}, {88, 321}, {73, 336}, {26, 256}, {67, 345}, {80, 331}, {82, 329}, {10, 278}, {45, 305}, {33, 317}, {31, 259}, {49, 300}, {80, 334}, {40, 264}, {2, 291}, {65, 352}, {29, 316}, {122, 347}, {125, 351}, {36, 263}, {101, 326}, {41, 268}, {67, 358}, {27, 317}, {110, 328}, {48, 279}, {69, 354}, {110, 329}, {112, 343}, {118, 337}, {79, 358}, {114, 347}, {63, 277}, {116, 350}, {11, 288}, {49, 282}, {39, 268}, {19, 312}, {25, 309}, {104, 324}, {22, 315}, {114, 351}, {123, 342}, {16, 318}, {36, 266}, {115, 349}, {116, 346}, {119, 345}, {12, 291}, {50, 285}, {24, 311}, {21, 314}, {23, 295}, {31, 303}, {24, 297}, {5, 311}, {80, 354}, {56, 266}, {49, 259}, {37, 279}, {98, 336}, {119, 325}, {113, 322}, {6, 306}, {108, 344}, {123, 335}, {120, 333}, {42, 284}, {84, 354}, {117, 323}, {60, 267}, {101, 338}, {119, 320}, {127, 328}, {17, 297}, {15, 309}, {62, 260}, {9, 306}, {10, 305}, {96, 347}, {97, 349}, {105, 341}, {34, 287}, {49, 268}, {20, 299}, {54, 265}, {46, 273}, {34, 285}, {31, 288}, {40, 360}, {107, 298}, {24, 346}, {13, 329}, {82, 278}, {37, 353}, {38, 355}, {89, 284}, {35, 356}, {95, 280}, {22, 350}, {64, 264}, {29, 341}, {103, 303}, {106, 290}, {22, 351}, {46, 359}, {41, 352}, {97, 296}, {14, 324}, {7, 332}, {81, 282}, {73, 258}, {12, 327}, {8, 324}, {14, 322}, {47, 353}, {106, 292}, {67, 275}, {113, 289}, {84, 261}, {113, 288}, {53, 358}, {88, 267}, {71, 276}, {21, 321}, {69, 273}, {98, 310}, {76, 281}, {99, 310}, {53, 355}, {62, 360}, {120, 302}, {78, 281}, {121, 302}, {19, 331}, {122, 290}, {125, 293}, {103, 318}, {28, 326}, {117, 303}, {10, 337}, {75, 272}, {74, 273}, {70, 285}, {65, 282}, {104, 307}, {13, 337}, {17, 333}, {85, 264}, {124, 289}, {13, 339}, {94, 256}, {126, 288}, {41, 329}, {124, 284}, {4, 357}, {61, 348}, {96, 257}, {48, 338}, {81, 307}, {117, 279}, {60, 351}, {85, 310}, {71, 292}, {110, 269}, {112, 275}, {122, 281}, {55, 339}, {92, 312}, {34, 327}, {51, 342}, {45, 328}, {74, 301}, {103, 256}, {39, 335}, {83, 315}, {82, 314}, {42, 322}, {100, 268}, {86, 319}, {39, 333}, {89, 307}, {119, 285}, {102, 269}, {117, 286}, {11, 359}, {88, 308}, {66, 302}, {44, 320}, {118, 282}, {33, 332}, {121, 276}, {59, 340}, {123, 276}, {64, 304}, {122, 266}, {21, 356}, {92, 301}, {76, 317}, {52, 325}, {23, 357}, {78, 316}, {43, 345}, {107, 281}, {47, 348}, {23, 355}, {115, 263}, {37, 336}, {83, 294}, {72, 317}, {47, 346}, {53, 323}, {63, 328}, {30, 358}, {83, 299}, {68, 316}, {108, 276}, {51, 330}, {36, 350}, {59, 321}, {47, 341}, {125, 263}, {38, 349}, {44, 343}, {118, 269}, {38, 346}, {62, 322}, {43, 343}, {96, 284}, {126, 258}, {68, 313}, {116, 265}, {51, 333}, {64, 319}, {87, 296}, {85, 298}, {127, 256}, {144, 272}, {169, 297}, {167, 295}, {138, 267}, {140, 271}, {166, 293}, {148, 272}, {179, 311}, {151, 275}, {177, 311}, {174, 297}, {147, 283}, {157, 277}, {155, 275}, {138, 259}, {165, 300}, {150, 262}, {179, 291}, {149, 263}, {160, 306}, {176, 291}, {150, 258}, {131, 278}, {164, 305}, {157, 264}, {136, 272}, {156, 261}, {149, 271}, {158, 260}, {146, 265}, {162, 313}, {167, 315}, {168, 308}, {153, 260}, {159, 257}, {132, 283}, {174, 305}, {178, 274}, {158, 319}, {175, 270}, {151, 309}, {155, 313}, {129, 290}, {136, 299}, {131, 294}, {172, 265}, {137, 300}, {180, 274}, {134, 300}, {168, 259}, {180, 287}, {179, 287}, {171, 262}, {139, 293}, {165, 267}, {133, 298}, {135, 308}, {149, 294}, {142, 314}, {136, 318}, {140, 315}, {144, 296}, {154, 290}, {150, 303}, {138, 304}, {162, 280}, {130, 313}, {174, 277}, {165, 286}, {145, 298}, {142, 306}, {145, 301}, {137, 308}, {132, 314}, {176, 270}, {159, 289}, {153, 295}, {139, 309}, {147, 301}, {161, 352}, {139, 335}, {143, 331}, {133, 323}, {163, 357}, {148, 339}, {134, 334}, {156, 340}, {144, 344}, {146, 344}, {175, 357}, {137, 325}, {171, 359}, {128, 334}, {169, 359}, {166, 360}, {134, 340}, {142, 348}, {130, 343}, {151, 320}, {156, 326}, {141, 337}, {141, 338}, {173, 332}, {175, 332}, {128, 356}, {175, 327}, {163, 330}, {170, 324}, {173, 323}, {152, 360}, {172, 349}, {180, 326}, {146, 353}, {160, 340}, {167, 339}, {176, 325}, {178, 327}, {168, 350}, {156, 356}, {162, 345}, {173, 336}, {177, 335}, {164, 347}, {180, 331}, {170, 341} }>;

(II) A more general form is to represent the graph as the orbit of {171, 187} under the group generated by the following permutations:

a: (3, 5)(4, 7)(6, 10)(9, 13)(11, 16)(14, 20)(15, 22)(17, 24)(18, 26)(19, 28)(21, 30)(23, 33)(25, 36)(27, 38)(29, 41)(31, 44)(32, 45)(35, 48)(37, 51)(39, 54)(40, 55)(42, 58)(43, 60)(46, 63)(47, 65)(49, 68)(50, 64)(52, 70)(53, 72)(56, 75)(57, 77)(59, 79)(61, 81)(62, 83)(66, 86)(67, 88)(69, 84)(71, 91)(73, 94)(74, 96)(76, 98)(78, 100)(80, 101)(82, 102)(85, 106)(87, 108)(89, 104)(90, 111)(92, 114)(93, 115)(95, 117)(97, 120)(99, 105)(103, 126)(107, 129)(109, 125)(110, 132)(112, 135)(113, 136)(116, 139)(118, 142)(119, 138)(121, 128)(122, 145)(123, 146)(124, 148)(127, 150)(130, 134)(131, 152)(133, 154)(137, 155)(140, 158)(141, 160)(143, 156)(144, 159)(147, 164)(149, 166)(151, 168)(153, 167)(157, 171)(161, 170)(162, 165)(163, 173)(169, 174)(172, 177)(181, 218)(182, 190)(183, 292)(184, 303)(185, 212)(186, 302)(187, 264)(188, 266)(189, 219)(191, 334)(192, 232)(193, 199)(194, 339)(195, 228)(196, 329)(197, 293)(198, 276)(200, 311)(201, 278)(202, 222)(203, 226)(204, 244)(205, 279)(206, 273)(207, 213)(208, 262)(209, 312)(210, 324)(211, 283)(214, 257)(215, 319)(216, 333)(217, 351)(220, 284)(221, 240)(224, 252)(225, 261)(227, 253)(229, 344)(230, 247)(231, 328)(233, 346)(234, 325)(235, 323)(236, 338)(237, 340)(238, 263)(239, 305)(241, 249)(242, 281)(243, 296)(245, 310)(246, 349)(248, 356)(250, 254)(251, 271)(255, 343)(256, 258)(259, 320)(260, 315)(265, 335)(267, 345)(268, 316)(269, 314)(272, 289)(275, 308)(277, 359)(280, 286)(282, 348)(285, 304)(288, 318)(290, 298)(294, 360)(299, 322)(300, 313)(301, 347)(306, 337)(309, 350)(317, 355)(321, 358)(326, 331)(330, 336)(332, 357)(341, 352)(342, 353)
b: (1, 2, 4, 9, 6, 3)(5, 12, 23, 40, 21, 11)(7, 15, 29, 32, 17, 8)(10, 19, 37, 64, 35, 18)(13, 25, 47, 50, 27, 14)(16, 28, 53, 90, 59, 31)(20, 22, 43, 78, 71, 39)(24, 34, 33, 62, 82, 46)(26, 36, 67, 107, 87, 49)(30, 57, 97, 138, 95, 56)(38, 70, 72, 113, 110, 69)(41, 74, 116, 119, 76, 42)(44, 77, 121, 99, 58, 60)(45, 80, 73)(48, 85, 128, 165, 127, 84)(51, 89, 131, 92, 54, 52)(55, 93, 61)(63, 101, 133, 91, 134, 103)(65, 104, 149, 151, 105, 66)(68, 106, 120, 161, 148, 109)(75, 115, 155, 154, 159, 118)(79, 100, 144, 168, 162, 122)(81, 83, 125, 112, 111, 123)(86, 88, 126, 164, 143, 98)(94, 96, 141, 145, 146, 137)(102, 147, 172, 176, 163, 124)(108, 135, 136, 114, 130, 129)(117, 157, 156)(132, 169, 179, 175, 153, 152)(139, 170, 140)(142, 171, 177, 178, 167, 166)(150, 174, 180, 173, 158, 160)(181, 347, 237, 242, 344, 308)(182, 296, 259, 280, 266, 358)(183, 334, 218, 328, 354, 221)(184, 192, 248, 310, 186, 267)(185, 342, 307, 294, 203, 253)(187, 246, 199, 339, 238, 348)(188, 353, 223, 240, 257, 337)(189, 301, 265, 325, 330, 284)(190, 276, 227, 299, 351, 343)(191, 250, 204, 255, 318, 209)(193, 315, 293, 224, 241, 335)(194, 201, 283, 207, 291, 357)(195, 196, 239, 200, 270, 247)(197, 320, 245, 302, 352, 220)(198, 300, 256, 206, 338, 298)(202, 263, 275, 254, 229, 282)(205, 222, 278, 312, 216, 304)(208, 261, 279, 264, 356, 286)(210, 228, 217, 316, 292, 333)(211, 225, 355, 212, 321, 288)(213, 274, 230, 251, 306, 262)(214, 350, 345, 281, 244, 268)(215, 233, 324, 271, 309, 341)(219, 231, 297, 287, 332, 260)(226, 313, 290, 243, 252, 272)(232, 349, 234, 235, 289, 269)(236, 258, 305, 331, 336, 319)(249, 340, 303, 277, 326, 323)(273, 346, 285, 317, 322, 329)(295, 360, 314, 359, 311, 327)
c: (2, 3)(4, 6)(5, 8)(7, 11)(10, 14)(12, 17)(13, 18)(15, 21)(16, 20)(19, 27)(22, 31)(23, 32)(24, 34)(25, 35)(28, 39)(29, 40)(30, 42)(33, 46)(36, 49)(37, 50)(38, 52)(41, 56)(43, 59)(44, 58)(45, 61)(47, 64)(48, 66)(51, 69)(53, 71)(54, 70)(55, 73)(57, 76)(62, 82)(63, 81)(65, 84)(67, 87)(68, 86)(72, 92)(74, 95)(75, 94)(77, 99)(78, 90)(80, 93)(83, 103)(85, 105)(88, 109)(89, 110)(91, 112)(96, 118)(97, 119)(98, 106)(100, 122)(101, 123)(102, 124)(104, 127)(108, 130)(111, 133)(113, 131)(114, 135)(115, 137)(116, 138)(117, 140)(120, 143)(125, 134)(126, 148)(128, 151)(132, 153)(139, 156)(141, 159)(142, 158)(144, 162)(145, 154)(146, 155)(147, 163)(149, 165)(150, 167)(157, 170)(160, 166)(161, 164)(169, 175)(171, 173)(172, 176)(174, 178)(177, 180)(181, 272)(182, 281)(183, 253)(184, 220)(185, 221)(186, 320)(187, 336)(188, 240)(189, 289)(190, 250)(191, 276)(192, 352)(193, 277)(194, 196)(195, 201)(197, 267)(198, 275)(199, 305)(200, 291)(202, 256)(203, 334)(204, 343)(205, 273)(206, 282)(207, 270)(208, 324)(209, 227)(210, 211)(212, 316)(213, 274)(214, 280)(215, 279)(216, 285)(217, 321)(218, 294)(219, 360)(222, 329)(223, 353)(224, 249)(225, 333)(226, 308)(228, 288)(229, 338)(230, 262)(231, 295)(232, 330)(233, 261)(234, 265)(235, 301)(236, 238)(237, 243)(239, 357)(241, 323)(242, 290)(244, 358)(245, 310)(246, 331)(247, 283)(248, 302)(251, 306)(252, 347)(254, 298)(255, 351)(257, 337)(258, 339)(259, 350)(260, 314)(263, 300)(264, 341)(266, 268)(269, 284)(271, 286)(278, 322)(287, 311)(292, 355)(293, 340)(296, 345)(297, 327)(299, 318)(303, 315)(304, 346)(307, 328)(309, 356)(312, 317)(313, 344)(319, 348)(325, 349)(326, 335)(332, 359)(342, 354)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 360, 212 ]
360
-1 213 270 207 274
-2 247 291 230 274
-3 200 213 283 262
-4 357 195 251 230
-5 211 311 207 208
-6 201 239 262 306
-7 332 247 271 228
-8 210 287 324 270
-9 194 196 251 306
-10 278 337 305 208
-11 286 288 359 283
-12 225 291 261 327
-13 271 337 339 329
-14 199 322 257 324
-15 309 260 195 217
-16 211 277 280 318
-17 297 200 233 333
-18 286 222 257 258
-19 188 331 312 261
-20 210 299 214 193
-21 321 201 356 314
-22 315 228 350 351
-23 355 279 357 295
-24 297 311 346 216
-25 188 309 238 273
-26 256 202 214 280
-27 233 246 240 317
-28 209 266 225 326
-29 341 316 196 219
-30 278 269 248 358
-31 255 288 259 303
-32 231 215 292 239
-33 332 205 295 317
-34 287 304 327 285
-35 356 236 205 240
-36 266 206 350 263
-37 353 279 336 216
-38 221 355 346 349
-39 333 268 335 227
-40 264 212 194 360
-41 352 189 268 329
-42 244 322 302 284
-43 343 345 293 217
-44 320 343 184 318
-45 319 183 305 328
-46 231 312 359 273
-47 341 353 346 348
-48 221 279 248 338
-49 300 268 259 282
-50 187 223 215 285
-51 330 342 333 205
-52 292 325 304 185
-53 355 191 323 358
-54 253 265 216 316
-55 187 294 185 339
-56 222 266 289 192
-57 232 310 312 182
-58 220 299 204 186
-59 321 204 296 340
-60 255 267 197 351
-61 253 199 348 307
-62 222 322 260 360
-63 209 277 206 328
-64 264 319 223 304
-65 352 342 233 282
-66 302 215 185 229
-67 275 345 358 338
-68 320 313 348 316
-69 232 354 225 273
-70 212 234 183 285
-71 276 244 292 241
-72 321 235 334 317
-73 221 258 336 218
-74 220 301 214 273
-75 188 232 202 272
-76 330 245 281 317
-77 209 190 245 192
-78 190 224 281 316
-79 243 244 237 358
-80 331 354 334 236
-81 193 227 282 307
-82 278 314 219 329
-83 299 202 315 294
-84 354 192 206 261
-85 264 298 310 183
-86 319 212 344 186
-87 198 244 229 296
-88 308 321 267 236
-89 210 222 284 307
-90 212 182 249 250
-91 198 204 183 249
-92 301 312 203 217
-93 342 246 203 238
-94 330 256 181 240
-95 235 280 205 184
-96 257 347 206 284
-97 216 349 186 296
-98 242 310 355 336
-99 352 310 227 250
-100 242 268 182 252
-101 354 191 326 338
-102 189 201 269 196
-103 256 303 218 318
-104 220 202 324 307
-105 253 341 254 245
-106 187 245 290 292
-107 254 298 182 281
-108 243 276 344 204
-109 226 238 217 197
-110 211 269 328 329
-111 254 190 185 241
-112 253 275 343 224
-113 288 289 322 218
-114 209 226 347 351
-115 353 226 349 263
-116 265 346 350 197
-117 286 279 323 303
-118 269 282 337 252
-119 320 345 325 285
-120 243 333 246 302
-121 276 191 302 248
-122 266 290 281 347
-123 276 342 335 229
-124 289 194 195 284
-125 203 293 263 351
-126 288 181 258 184
-127 256 184 328 208
-128 198 334 356 186
-129 242 190 290 250
-130 343 191 313 237
-131 189 278 228 294
-132 231 314 283 196
-133 221 298 323 250
-134 255 300 334 340
-135 308 255 227 252
-136 299 181 272 318
-137 308 223 300 325
-138 234 267 259 304
-139 309 233 335 293
-140 215 271 315 241
-141 189 237 337 338
-142 224 314 348 306
-143 331 225 237 248
-144 344 214 272 296
-145 242 188 298 301
-146 198 265 353 344
-147 232 301 239 283
-148 220 228 272 339
-149 271 294 197 263
-150 231 258 303 262
-151 275 309 320 203
-152 201 195 360 219
-153 247 194 260 295
-154 254 235 290 240
-155 275 223 234 313
-156 356 326 261 340
-157 264 277 249 208
-158 319 249 260 251
-159 243 289 257 229
-160 236 306 219 340
-161 352 199 210 252
-162 345 181 280 313
-163 330 235 247 357
-164 211 192 347 305
-165 286 267 300 218
-166 238 293 360 251
-167 315 295 339 230
-168 308 226 259 350
-169 297 359 239 207
-170 341 224 324 193
-171 187 359 262 241
-172 265 200 349 207
-173 332 323 336 230
-174 297 277 213 305
-175 332 357 270 327
-176 234 291 270 325
-177 311 213 246 335
-178 199 193 327 274
-179 287 200 311 291
-180 287 331 326 274
-181 136 126 94 162
-182 100 57 90 107
-183 45 91 70 85
-184 44 126 127 95
-185 55 66 111 52
-186 58 128 86 97
-187 55 50 171 106
-188 145 25 19 75
-189 102 41 141 131
-190 77 78 111 129
-191 121 101 53 130
-192 77 56 84 164
-193 178 81 170 20
-194 124 40 9 153
-195 124 4 15 152
-196 132 102 29 9
-197 60 116 149 109
-198 91 146 128 87
-199 178 14 61 161
-200 3 179 17 172
-201 102 6 152 21
-202 26 104 83 75
-203 92 125 93 151
-204 58 91 59 108
-205 33 35 51 95
-206 36 84 63 96
-207 1 169 5 172
-208 157 5 127 10
-209 77 114 28 63
-210 89 161 8 20
-211 110 5 16 164
-212 90 70 40 86
-213 1 177 3 174
-214 144 26 74 20
-215 66 50 140 32
-216 24 37 97 54
-217 15 92 43 109
-218 165 113 103 73
-219 82 160 29 152
-220 58 104 148 74
-221 133 48 38 73
-222 56 89 18 62
-223 155 137 50 64
-224 78 112 170 142
-225 143 12 69 28
-226 168 114 115 109
-227 99 135 81 39
-228 22 148 7 131
-229 66 123 159 87
-230 2 167 4 173
-231 132 46 150 32
-232 57 69 147 75
-233 27 17 139 65
-234 176 155 70 138
-235 154 72 95 163
-236 88 35 80 160
-237 143 79 130 141
-238 166 25 93 109
-239 147 169 6 32
-240 154 35 27 94
-241 111 71 171 140
-242 100 145 129 98
-243 79 159 108 120
-244 79 71 42 87
-245 77 105 106 76
-246 177 27 93 120
-247 2 7 163 153
-248 121 143 48 30
-249 90 91 157 158
-250 99 133 90 129
-251 166 4 158 9
-252 100 135 161 118
-253 112 61 105 54
-254 154 111 105 107
-255 134 135 60 31
-256 26 103 94 127
-257 14 159 18 96
-258 126 18 73 150
-259 168 49 138 31
-260 15 158 62 153
-261 12 156 84 19
-262 3 6 171 150
-263 36 125 115 149
-264 157 40 85 64
-265 146 116 172 54
-266 56 122 36 28
-267 88 165 60 138
-268 100 49 39 41
-269 110 102 30 118
-270 176 1 8 175
-271 13 149 7 140
-272 144 136 148 75
-273 46 25 69 74
-274 1 2 178 180
-275 67 155 112 151
-276 121 123 71 108
-277 157 16 63 174
-278 82 30 10 131
-279 23 37 48 117
-280 26 16 95 162
-281 78 122 107 76
-282 81 49 118 65
-283 11 132 3 147
-284 89 124 96 42
-285 34 70 50 119
-286 11 165 18 117
-287 34 179 180 8
-288 11 113 126 31
-289 56 113 124 159
-290 154 122 106 129
-291 176 12 2 179
-292 71 106 52 32
-293 166 125 139 43
-294 55 83 149 131
-295 33 23 167 153
-296 144 59 97 87
-297 24 169 17 174
-298 133 145 85 107
-299 58 136 83 20
-300 165 134 49 137
-301 145 92 147 74
-302 66 121 42 120
-303 103 117 150 31
-304 34 138 52 64
-305 45 174 10 164
-306 6 160 9 142
-307 89 81 104 61
-308 88 135 168 137
-309 25 15 139 151
-310 99 57 85 98
-311 177 24 179 5
-312 46 57 92 19
-313 155 68 162 130
-314 132 82 21 142
-315 22 167 83 140
-316 78 68 29 54
-317 33 27 72 76
-318 44 103 136 16
-319 45 158 64 86
-320 44 68 151 119
-321 88 59 72 21
-322 14 113 62 42
-323 133 117 173 53
-324 14 104 170 8
-325 176 137 52 119
-326 101 156 180 28
-327 12 34 178 175
-328 110 45 127 63
-329 110 13 82 41
-330 94 51 163 76
-331 143 80 180 19
-332 33 7 173 175
-333 17 39 51 120
-334 134 80 72 128
-335 177 123 39 139
-336 37 73 173 98
-337 13 118 141 10
-338 67 101 48 141
-339 55 13 167 148
-340 134 156 59 160
-341 47 170 105 29
-342 123 93 51 65
-343 44 112 130 43
-344 144 146 86 108
-345 67 162 119 43
-346 24 47 38 116
-347 122 114 96 164
-348 68 47 61 142
-349 38 115 172 97
-350 22 36 168 116
-351 22 114 125 60
-352 99 161 41 65
-353 47 146 37 115
-354 101 69 80 84
-355 23 38 53 98
-356 35 156 128 21
-357 23 4 163 175
-358 67 79 30 53
-359 11 46 169 171
-360 166 40 62 152
0

**************