C4graphGraph forms for C4 [ 364, 10 ] = SDD(AT[91,2])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 364, 10 ] = SDD(AT[91,2]).

(I) Following is a form readable by MAGMA:

g:=Graph<364|{ {163, 251}, {164, 252}, {162, 251}, {165, 252}, {164, 253}, {160, 250}, {167, 253}, {161, 251}, {166, 253}, {161, 255}, {138, 234}, {136, 233}, {144, 241}, {139, 234}, {142, 236}, {143, 237}, {132, 231}, {151, 244}, {137, 234}, {130, 230}, {151, 243}, {150, 242}, {131, 231}, {149, 240}, {156, 249}, {128, 230}, {159, 249}, {158, 248}, {141, 235}, {129, 230}, {140, 235}, {157, 247}, {131, 232}, {156, 247}, {152, 243}, {133, 232}, {155, 246}, {153, 244}, {135, 233}, {134, 233}, {154, 245}, {142, 252}, {140, 248}, {137, 254}, {134, 254}, {128, 249}, {148, 239}, {146, 238}, {147, 239}, {144, 238}, {145, 238}, {83, 211}, {84, 212}, {82, 211}, {85, 212}, {106, 235}, {80, 210}, {86, 212}, {81, 211}, {87, 213}, {73, 207}, {120, 254}, {121, 255}, {72, 207}, {95, 216}, {70, 206}, {126, 246}, {68, 205}, {71, 206}, {94, 215}, {109, 228}, {93, 215}, {69, 206}, {92, 215}, {64, 204}, {90, 214}, {111, 227}, {65, 204}, {88, 213}, {91, 214}, {66, 204}, {67, 205}, {98, 236}, {123, 245}, {89, 214}, {104, 248}, {113, 224}, {118, 231}, {116, 224}, {117, 224}, {125, 232}, {101, 243}, {103, 241}, {119, 225}, {99, 244}, {118, 225}, {116, 236}, {124, 228}, {125, 229}, {107, 242}, {110, 247}, {122, 227}, {74, 208}, {120, 226}, {127, 229}, {69, 222}, {75, 208}, {121, 226}, {126, 229}, {77, 209}, {76, 209}, {79, 210}, {78, 209}, {114, 237}, {123, 228}, {90, 250}, {93, 253}, {83, 242}, {94, 255}, {82, 240}, {28, 191}, {27, 191}, {26, 191}, {24, 190}, {87, 241}, {25, 190}, {85, 242}, {88, 255}, {91, 252}, {21, 189}, {20, 189}, {23, 190}, {16, 187}, {22, 189}, {92, 247}, {67, 239}, {86, 250}, {89, 245}, {115, 223}, {17, 188}, {114, 223}, {18, 188}, {80, 254}, {76, 226}, {64, 238}, {112, 222}, {113, 223}, {19, 188}, {9, 185}, {81, 225}, {70, 246}, {68, 244}, {95, 239}, {108, 220}, {109, 221}, {8, 185}, {73, 248}, {66, 243}, {65, 240}, {11, 186}, {111, 222}, {75, 249}, {105, 219}, {4, 183}, {10, 185}, {104, 219}, {110, 221}, {3, 183}, {78, 250}, {15, 187}, {2, 183}, {14, 187}, {1, 183}, {12, 186}, {106, 220}, {8, 191}, {84, 227}, {13, 186}, {107, 220}, {96, 216}, {1, 184}, {7, 190}, {5, 188}, {3, 186}, {97, 216}, {99, 217}, {2, 185}, {6, 189}, {98, 217}, {71, 251}, {102, 218}, {103, 219}, {5, 184}, {77, 240}, {100, 217}, {6, 184}, {79, 241}, {72, 246}, {4, 187}, {74, 245}, {7, 184}, {101, 218}, {28, 216}, {31, 217}, {46, 233}, {9, 193}, {25, 209}, {24, 208}, {15, 199}, {10, 195}, {13, 196}, {47, 229}, {11, 192}, {43, 224}, {30, 213}, {14, 197}, {12, 194}, {45, 227}, {27, 212}, {60, 237}, {29, 207}, {63, 237}, {50, 225}, {62, 234}, {51, 230}, {57, 236}, {17, 198}, {53, 226}, {16, 200}, {18, 202}, {23, 206}, {61, 228}, {22, 205}, {48, 235}, {26, 198}, {59, 231}, {20, 201}, {29, 192}, {21, 203}, {54, 232}, {30, 192}, {19, 204}, {31, 192}, {33, 193}, {32, 193}, {35, 194}, {34, 193}, {44, 207}, {39, 195}, {38, 195}, {55, 210}, {36, 194}, {56, 222}, {37, 194}, {45, 197}, {44, 197}, {52, 221}, {47, 198}, {40, 195}, {46, 197}, {41, 196}, {42, 196}, {43, 196}, {58, 213}, {35, 211}, {58, 202}, {57, 201}, {56, 201}, {59, 202}, {32, 210}, {36, 215}, {51, 199}, {63, 203}, {50, 199}, {62, 203}, {42, 220}, {61, 203}, {60, 202}, {49, 199}, {48, 198}, {33, 214}, {40, 223}, {34, 218}, {41, 208}, {39, 221}, {49, 205}, {52, 200}, {38, 219}, {53, 200}, {54, 200}, {55, 201}, {37, 218}, {25, 281}, {26, 282}, {24, 281}, {56, 313}, {27, 282}, {41, 299}, {61, 319}, {88, 346}, {79, 332}, {86, 341}, {19, 279}, {31, 283}, {94, 346}, {18, 279}, {30, 283}, {93, 344}, {16, 278}, {77, 331}, {44, 298}, {29, 283}, {28, 282}, {17, 279}, {53, 317}, {64, 329}, {80, 345}, {67, 330}, {89, 336}, {58, 304}, {65, 331}, {68, 335}, {105, 354}, {20, 280}, {66, 334}, {52, 312}, {44, 288}, {91, 343}, {21, 280}, {45, 288}, {35, 302}, {32, 301}, {22, 280}, {50, 316}, {47, 289}, {46, 288}, {23, 281}, {92, 338}, {90, 341}, {108, 355}, {2, 274}, {50, 290}, {43, 315}, {38, 310}, {37, 309}, {33, 305}, {11, 283}, {3, 274}, {71, 342}, {51, 290}, {48, 289}, {12, 285}, {1, 275}, {40, 314}, {13, 287}, {8, 282}, {5, 279}, {4, 278}, {1, 274}, {55, 292}, {49, 290}, {45, 318}, {7, 275}, {10, 286}, {6, 275}, {54, 291}, {9, 284}, {95, 330}, {2, 276}, {53, 291}, {36, 306}, {5, 275}, {4, 274}, {3, 277}, {34, 309}, {70, 337}, {52, 291}, {13, 277}, {85, 333}, {62, 294}, {14, 278}, {12, 277}, {82, 331}, {72, 337}, {63, 294}, {60, 293}, {49, 296}, {15, 278}, {55, 301}, {74, 336}, {73, 339}, {61, 294}, {78, 341}, {87, 332}, {8, 276}, {56, 292}, {124, 352}, {9, 276}, {57, 292}, {42, 311}, {6, 280}, {83, 333}, {59, 293}, {11, 277}, {10, 276}, {7, 281}, {39, 312}, {75, 340}, {58, 293}, {127, 352}, {120, 345}, {121, 346}, {98, 327}, {122, 351}, {107, 333}, {119, 350}, {117, 351}, {31, 308}, {101, 334}, {103, 332}, {112, 347}, {123, 336}, {99, 335}, {106, 326}, {15, 290}, {115, 350}, {14, 288}, {30, 304}, {28, 307}, {126, 337}, {17, 289}, {20, 292}, {16, 291}, {24, 299}, {21, 294}, {116, 327}, {19, 295}, {43, 287}, {27, 303}, {118, 322}, {25, 300}, {42, 287}, {40, 286}, {41, 287}, {18, 293}, {29, 298}, {37, 285}, {38, 286}, {100, 348}, {36, 285}, {39, 286}, {114, 328}, {26, 289}, {96, 347}, {102, 349}, {104, 339}, {32, 284}, {110, 338}, {33, 284}, {125, 320}, {22, 296}, {35, 285}, {34, 284}, {23, 297}, {125, 323}, {126, 320}, {97, 350}, {127, 320}, {124, 319}, {121, 317}, {122, 318}, {123, 319}, {120, 317}, {114, 314}, {112, 313}, {115, 314}, {113, 315}, {118, 316}, {113, 314}, {119, 316}, {117, 315}, {116, 315}, {100, 308}, {101, 309}, {103, 310}, {111, 318}, {97, 307}, {109, 319}, {96, 307}, {102, 309}, {109, 312}, {98, 308}, {110, 312}, {111, 313}, {99, 308}, {108, 311}, {107, 311}, {106, 311}, {104, 310}, {105, 310}, {75, 299}, {76, 300}, {96, 256}, {74, 299}, {77, 300}, {72, 298}, {79, 301}, {78, 300}, {97, 259}, {73, 298}, {102, 258}, {108, 264}, {66, 295}, {100, 257}, {65, 295}, {64, 295}, {87, 304}, {88, 304}, {89, 305}, {46, 324}, {84, 318}, {91, 305}, {67, 296}, {90, 305}, {68, 296}, {69, 297}, {94, 306}, {95, 307}, {81, 316}, {71, 297}, {92, 306}, {105, 263}, {47, 320}, {70, 297}, {93, 306}, {112, 256}, {115, 259}, {76, 317}, {117, 260}, {51, 321}, {60, 328}, {119, 259}, {54, 323}, {48, 326}, {63, 328}, {59, 322}, {86, 303}, {124, 261}, {85, 303}, {127, 261}, {62, 325}, {84, 303}, {69, 313}, {82, 302}, {80, 301}, {83, 302}, {57, 327}, {122, 260}, {81, 302}, {139, 267}, {141, 268}, {136, 266}, {130, 262}, {129, 260}, {132, 257}, {135, 258}, {143, 264}, {133, 265}, {138, 262}, {158, 270}, {145, 256}, {148, 261}, {147, 258}, {159, 269}, {149, 262}, {157, 270}, {152, 268}, {153, 269}, {154, 268}, {155, 269}, {150, 266}, {146, 271}, {177, 273}, {170, 267}, {169, 266}, {179, 272}, {166, 259}, {171, 270}, {175, 265}, {182, 273}, {167, 271}, {175, 263}, {174, 262}, {173, 261}, {172, 260}, {169, 257}, {168, 256}, {160, 265}, {171, 258}, {162, 264}, {170, 257}, {172, 263}, {163, 272}, {165, 272}, {176, 263}, {180, 268}, {182, 270}, {181, 269}, {168, 273}, {179, 266}, {177, 264}, {181, 271}, {176, 267}, {178, 265}, {173, 272}, {178, 271}, {174, 273}, {180, 267}, {129, 321}, {131, 323}, {128, 321}, {162, 355}, {131, 322}, {134, 324}, {174, 364}, {171, 361}, {130, 321}, {135, 324}, {160, 356}, {168, 364}, {132, 322}, {173, 363}, {133, 323}, {143, 328}, {156, 340}, {163, 363}, {142, 327}, {140, 326}, {155, 337}, {154, 336}, {145, 347}, {141, 326}, {175, 356}, {159, 340}, {136, 324}, {170, 358}, {169, 357}, {137, 325}, {158, 339}, {175, 354}, {173, 352}, {167, 362}, {139, 325}, {172, 354}, {165, 363}, {156, 338}, {147, 349}, {138, 325}, {174, 353}, {157, 338}, {137, 345}, {176, 354}, {180, 358}, {177, 355}, {180, 359}, {128, 340}, {152, 334}, {179, 357}, {178, 356}, {176, 358}, {153, 335}, {132, 348}, {179, 363}, {178, 362}, {151, 335}, {145, 329}, {142, 343}, {151, 334}, {147, 330}, {144, 329}, {135, 349}, {182, 364}, {146, 329}, {150, 333}, {144, 332}, {177, 364}, {181, 360}, {129, 351}, {149, 331}, {148, 330}, {134, 345}, {182, 361}, {181, 362}, {140, 339}, {133, 356}, {130, 353}, {141, 359}, {138, 353}, {143, 355}, {136, 357}, {139, 358}, {153, 360}, {165, 343}, {150, 357}, {172, 351}, {168, 347}, {164, 343}, {155, 360}, {148, 352}, {162, 342}, {157, 361}, {149, 353}, {160, 341}, {169, 348}, {163, 342}, {170, 348}, {171, 349}, {158, 361}, {161, 342}, {159, 360}, {146, 362}, {166, 350}, {161, 346}, {164, 344}, {154, 359}, {166, 344}, {152, 359}, {167, 344} }>;

(II) A more general form is to represent the graph as the orbit of {163, 251} under the group generated by the following permutations:

a: (212, 303)
b: (210, 301)
c: (219, 310)
d: (262, 353)
e: (264, 355)
f: (245, 336)
g: (199, 290)
h: (215, 306)
m: (191, 282)
n1: (255, 346)
a1: (204, 295)
b1: (266, 357)
c1: (261, 352)
d1: (207, 298)
e1: (208, 299)
f1: (214, 305)
g1: (225, 316)
h1: (236, 327)
m1: (189, 280)
n2: (234, 325)
a2: (229, 320)
b2: (196, 287)
c2: (217, 308)
d2: (273, 364)
e2: (227, 318)
f2: (239, 330)
g2: (221, 312)
h2: (195, 286)
m2: (260, 351)
n3: (213, 304)
a3: (267, 358)
b3: (258, 349)
c3: (200, 291)
d3: (1, 2, 3)(5, 9, 13)(6, 10, 11)(7, 8, 12)(14, 15, 16)(17, 34, 41)(18, 32, 43)(19, 33, 42)(20, 40, 30)(21, 38, 31)(22, 39, 29)(23, 28, 36)(24, 26, 37)(25, 27, 35)(44, 49, 52)(45, 50, 53)(46, 51, 54)(47, 102, 75)(48, 101, 74)(55, 113, 58)(56, 115, 88)(57, 114, 87)(59, 80, 117)(60, 79, 116)(61, 104, 99)(62, 105, 100)(63, 103, 98)(64, 91, 108)(65, 90, 107)(66, 89, 106)(67, 110, 72)(68, 109, 73)(69, 97, 94)(70, 95, 92)(71, 96, 93)(76, 84, 81)(77, 86, 83)(78, 85, 82)(111, 119, 121)(112, 166, 161)(118, 120, 122)(123, 140, 151)(124, 158, 153)(125, 135, 128)(126, 147, 156)(127, 171, 159)(129, 131, 134)(130, 133, 136)(132, 137, 172)(138, 175, 169)(139, 176, 170)(141, 152, 154)(142, 143, 144)(145, 164, 162)(146, 165, 177)(148, 157, 155)(149, 160, 150)(163, 168, 167)(173, 182, 181)(174, 178, 179)(184, 185, 186)(188, 193, 196)(189, 195, 192)(190, 191, 194)(197, 199, 200)(198, 218, 208)(201, 223, 213)(202, 210, 224)(203, 219, 217)(204, 214, 220)(205, 221, 207)(206, 216, 215)(209, 212, 211)(222, 259, 255)(225, 226, 227)(228, 248, 244)(229, 258, 249)(230, 232, 233)(231, 254, 260)(234, 263, 257)(235, 243, 245)(236, 237, 241)(238, 252, 264)(239, 247, 246)(240, 250, 242)(251, 256, 253)(261, 270, 269)(262, 265, 266)(271, 272, 273)(275, 276, 277)(279, 284, 287)(280, 286, 283)(281, 282, 285)(288, 290, 291)(289, 309, 299)(292, 314, 304)(293, 301, 315)(294, 310, 308)(295, 305, 311)(296, 312, 298)(297, 307, 306)(300, 303, 302)(313, 350, 346)(316, 317, 318)(319, 339, 335)(320, 349, 340)(321, 323, 324)(322, 345, 351)(325, 354, 348)(326, 334, 336)(327, 328, 332)(329, 343, 355)(330, 338, 337)(331, 341, 333)(342, 347, 344)(352, 361, 360)(353, 356, 357)(362, 363, 364)
e3: (247, 338)
f3: (183, 274)
g3: (197, 288)
h3: (211, 302)
m3: (271, 362)
n4: (228, 319)
a4: (194, 285)
b4: (216, 307)
c4: (192, 283)
d4: (265, 356)
e4: (256, 347)
f4: (237, 328)
g4: (268, 359)
h4: (251, 342)
m4: (187, 278)
n5: (202, 293)
a5: (232, 323)
b5: (231, 322)
c5: (205, 296)
d5: (257, 348)
e5: (238, 329)
f5: (220, 311)
g5: (240, 331)
h5: (2, 5)(3, 6)(4, 7)(8, 17)(9, 18)(10, 19)(11, 20)(12, 21)(13, 22)(14, 23)(15, 24)(16, 25)(27, 47)(28, 48)(29, 56)(30, 55)(31, 57)(32, 58)(33, 59)(34, 60)(35, 61)(36, 62)(37, 63)(38, 64)(39, 65)(40, 66)(41, 49)(42, 67)(43, 68)(44, 69)(45, 70)(46, 71)(50, 74)(51, 75)(52, 77)(53, 76)(54, 78)(72, 111)(73, 112)(79, 87)(80, 88)(81, 123)(82, 109)(83, 124)(84, 126)(85, 127)(86, 125)(89, 118)(90, 131)(91, 132)(92, 138)(93, 139)(94, 137)(95, 106)(96, 140)(97, 141)(99, 116)(100, 142)(101, 114)(102, 143)(103, 144)(104, 145)(105, 146)(107, 148)(108, 147)(110, 149)(113, 151)(115, 152)(117, 153)(119, 154)(120, 121)(122, 155)(129, 159)(130, 156)(133, 160)(134, 161)(135, 162)(136, 163)(150, 173)(157, 174)(158, 168)(164, 170)(165, 169)(166, 180)(167, 176)(171, 177)(172, 181)(175, 178)(183, 184)(185, 188)(186, 189)(187, 190)(191, 198)(192, 201)(193, 202)(194, 203)(195, 204)(196, 205)(197, 206)(199, 208)(200, 209)(207, 222)(210, 213)(211, 228)(212, 229)(214, 231)(215, 234)(216, 235)(217, 236)(218, 237)(219, 238)(220, 239)(221, 240)(223, 243)(224, 244)(225, 245)(227, 246)(230, 249)(232, 250)(233, 251)(242, 261)(247, 262)(248, 256)(252, 257)(253, 267)(254, 255)(258, 264)(259, 268)(260, 269)(263, 271)(266, 272)(270, 273)(274, 275)(276, 279)(277, 280)(278, 281)(282, 289)(283, 292)(284, 293)(285, 294)(286, 295)(287, 296)(288, 297)(290, 299)(291, 300)(298, 313)(301, 304)(302, 319)(303, 320)(305, 322)(306, 325)(307, 326)(308, 327)(309, 328)(310, 329)(311, 330)(312, 331)(314, 334)(315, 335)(316, 336)(318, 337)(321, 340)(323, 341)(324, 342)(333, 352)(338, 353)(339, 347)(343, 348)(344, 358)(345, 346)(349, 355)(350, 359)(351, 360)(354, 362)(357, 363)(361, 364)
m5: (185, 276)
n6: (249, 340)
a6: (226, 317)
b6: (230, 321)
c6: (270, 361)
d6: (263, 354)
e6: (272, 363)
f6: (223, 314)
g6: (188, 279)
h6: (252, 343)
m6: (244, 335)
n7: (203, 294)
a7: (235, 326)
b7: (248, 339)
c7: (184, 275)
d7: (259, 350)
e7: (233, 324)
f7: (246, 337)
g7: (201, 292)
h7: (218, 309)
m7: (222, 313)
n8: (193, 284)
a8: (224, 315)
b8: (2, 4, 3)(5, 6, 7)(8, 15, 13)(9, 16, 11)(10, 14, 12)(17, 22, 24)(18, 20, 25)(19, 21, 23)(26, 49, 41)(27, 50, 43)(28, 51, 42)(29, 34, 52)(30, 32, 53)(31, 33, 54)(35, 40, 45)(36, 38, 46)(37, 39, 44)(47, 68, 74)(48, 67, 75)(55, 76, 58)(56, 77, 60)(57, 78, 59)(61, 70, 66)(62, 71, 64)(63, 69, 65)(72, 101, 109)(73, 102, 110)(79, 120, 88)(80, 121, 87)(81, 113, 84)(82, 114, 111)(83, 115, 122)(85, 119, 117)(86, 118, 116)(89, 125, 99)(90, 131, 98)(91, 133, 100)(92, 104, 135)(93, 105, 136)(94, 103, 134)(95, 128, 106)(96, 130, 108)(97, 129, 107)(112, 149, 143)(123, 126, 151)(124, 155, 152)(127, 153, 154)(132, 142, 160)(137, 161, 144)(138, 162, 145)(139, 163, 146)(140, 147, 156)(141, 148, 159)(150, 166, 172)(157, 158, 171)(164, 175, 169)(165, 178, 170)(167, 176, 179)(168, 174, 177)(173, 181, 180)(185, 187, 186)(188, 189, 190)(191, 199, 196)(192, 193, 200)(194, 195, 197)(198, 205, 208)(201, 209, 202)(203, 206, 204)(207, 218, 221)(210, 226, 213)(211, 223, 227)(212, 225, 224)(214, 232, 217)(215, 219, 233)(216, 230, 220)(222, 240, 237)(228, 246, 243)(229, 244, 245)(231, 236, 250)(234, 251, 238)(235, 239, 249)(241, 254, 255)(242, 259, 260)(247, 248, 258)(252, 265, 257)(253, 263, 266)(256, 262, 264)(261, 269, 268)(267, 272, 271)(276, 278, 277)(279, 280, 281)(282, 290, 287)(283, 284, 291)(285, 286, 288)(289, 296, 299)(292, 300, 293)(294, 297, 295)(298, 309, 312)(301, 317, 304)(302, 314, 318)(303, 316, 315)(305, 323, 308)(306, 310, 324)(307, 321, 311)(313, 331, 328)(319, 337, 334)(320, 335, 336)(322, 327, 341)(325, 342, 329)(326, 330, 340)(332, 345, 346)(333, 350, 351)(338, 339, 349)(343, 356, 348)(344, 354, 357)(347, 353, 355)(352, 360, 359)(358, 363, 362)
c8: (242, 333)
d8: (190, 281)
e8: (254, 345)
f8: (269, 360)
g8: (243, 334)
h8: (241, 332)
m8: (186, 277)
n9: (250, 341)
a9: (206, 297)
b9: (198, 289)
c9: (209, 300)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 364, 10 ]
364
-1 275 183 184 274
-2 276 183 185 274
-3 277 183 186 274
-4 187 278 183 274
-5 275 188 279 184
-6 275 189 280 184
-7 275 190 281 184
-8 276 191 282 185
-9 276 193 185 284
-10 286 276 195 185
-11 277 192 283 186
-12 277 194 186 285
-13 287 277 196 186
-14 187 288 278 197
-15 187 199 278 290
-16 187 200 278 291
-17 198 188 289 279
-18 188 202 279 293
-19 188 279 204 295
-20 189 201 280 292
-21 189 203 280 294
-22 189 280 205 296
-23 297 190 281 206
-24 299 190 281 208
-25 209 190 300 281
-26 198 289 191 282
-27 212 191 303 282
-28 191 216 282 307
-29 298 192 283 207
-30 213 192 304 283
-31 308 192 217 283
-32 210 301 193 284
-33 214 193 305 284
-34 309 193 218 284
-35 211 302 194 285
-36 215 194 306 285
-37 309 194 218 285
-38 286 310 195 219
-39 286 221 312 195
-40 286 223 314 195
-41 287 299 196 208
-42 220 287 311 196
-43 287 224 315 196
-44 298 288 207 197
-45 288 227 197 318
-46 233 288 324 197
-47 198 320 289 229
-48 198 289 235 326
-49 199 290 205 296
-50 199 290 225 316
-51 199 321 290 230
-52 221 200 312 291
-53 200 291 226 317
-54 232 200 323 291
-55 210 201 301 292
-56 222 201 313 292
-57 201 236 292 327
-58 202 213 293 304
-59 231 322 202 293
-60 202 237 293 328
-61 319 203 228 294
-62 234 203 325 294
-63 203 237 294 328
-64 204 238 295 329
-65 331 204 240 295
-66 243 334 204 295
-67 330 205 239 296
-68 244 335 205 296
-69 297 222 313 206
-70 297 246 337 206
-71 297 342 206 251
-72 298 246 337 207
-73 298 248 207 339
-74 299 245 336 208
-75 299 249 208 340
-76 209 300 226 317
-77 209 331 300 240
-78 209 341 300 250
-79 210 332 301 241
-80 210 254 301 345
-81 211 225 302 316
-82 331 211 302 240
-83 242 211 333 302
-84 212 303 227 318
-85 242 212 333 303
-86 341 212 303 250
-87 332 213 304 241
-88 255 213 346 304
-89 245 214 336 305
-90 341 214 250 305
-91 343 214 305 252
-92 247 215 338 306
-93 253 344 215 306
-94 255 346 215 306
-95 330 216 239 307
-96 256 347 216 307
-97 259 216 350 307
-98 308 236 217 327
-99 308 244 335 217
-100 308 257 348 217
-101 243 309 334 218
-102 309 258 349 218
-103 310 332 219 241
-104 310 248 339 219
-105 310 354 219 263
-106 220 311 235 326
-107 220 242 311 333
-108 220 264 311 355
-109 319 221 312 228
-110 221 312 247 338
-111 222 313 227 318
-112 222 256 313 347
-113 223 224 314 315
-114 223 237 314 328
-115 223 259 314 350
-116 224 236 315 327
-117 224 260 315 351
-118 231 322 225 316
-119 225 259 316 350
-120 254 345 226 317
-121 255 346 226 317
-122 227 260 318 351
-123 319 245 336 228
-124 319 352 228 261
-125 232 320 323 229
-126 320 246 337 229
-127 352 320 261 229
-128 321 249 230 340
-129 321 260 230 351
-130 353 321 262 230
-131 231 232 322 323
-132 231 322 257 348
-133 232 265 323 356
-134 254 233 345 324
-135 233 258 324 349
-136 233 266 324 357
-137 254 234 345 325
-138 353 234 325 262
-139 234 267 325 358
-140 235 248 326 339
-141 235 268 326 359
-142 343 236 327 252
-143 264 355 237 328
-144 332 238 241 329
-145 256 347 238 329
-146 238 271 329 362
-147 330 258 239 349
-148 330 352 239 261
-149 331 353 240 262
-150 242 266 333 357
-151 243 244 334 335
-152 243 268 334 359
-153 244 269 335 360
-154 245 268 336 359
-155 246 269 337 360
-156 247 249 338 340
-157 247 270 338 361
-158 248 270 339 361
-159 269 249 360 340
-160 341 265 356 250
-161 342 255 346 251
-162 264 342 355 251
-163 363 342 272 251
-164 253 343 344 252
-165 363 343 272 252
-166 253 344 259 350
-167 253 344 271 362
-168 364 256 347 273
-169 266 257 357 348
-170 267 257 358 348
-171 258 270 349 361
-172 354 260 263 351
-173 352 363 261 272
-174 353 364 262 273
-175 265 354 356 263
-176 354 267 358 263
-177 264 364 355 273
-178 265 356 271 362
-179 363 266 357 272
-180 267 268 358 359
-181 269 271 360 362
-182 364 270 273 361
-183 1 2 3 4
-184 1 5 6 7
-185 2 8 9 10
-186 11 12 13 3
-187 14 4 15 16
-188 5 17 18 19
-189 22 6 20 21
-190 23 24 25 7
-191 26 27 28 8
-192 11 29 30 31
-193 33 34 9 32
-194 12 35 36 37
-195 38 39 40 10
-196 13 41 42 43
-197 44 45 46 14
-198 47 26 48 17
-199 15 49 50 51
-200 16 52 53 54
-201 55 56 57 20
-202 58 59 60 18
-203 61 62 63 21
-204 66 19 64 65
-205 22 67 68 49
-206 23 69 70 71
-207 44 72 29 73
-208 24 41 74 75
-209 77 78 25 76
-210 55 79 80 32
-211 35 81 82 83
-212 27 84 85 86
-213 88 58 30 87
-214 33 89 90 91
-215 36 92 93 94
-216 28 95 96 97
-217 99 100 31 98
-218 34 101 102 37
-219 103 38 104 105
-220 106 107 42 108
-221 110 39 52 109
-222 56 111 112 69
-223 113 114 115 40
-224 113 116 117 43
-225 81 50 118 119
-226 121 53 76 120
-227 45 111 122 84
-228 123 124 61 109
-229 47 125 126 127
-230 51 128 129 130
-231 132 59 118 131
-232 133 125 54 131
-233 46 134 135 136
-234 137 138 62 139
-235 48 106 140 141
-236 57 116 98 142
-237 143 114 60 63
-238 144 145 146 64
-239 67 147 148 95
-240 77 82 149 65
-241 144 79 103 87
-242 83 150 85 107
-243 66 101 151 152
-244 99 68 151 153
-245 154 89 123 74
-246 155 70 126 72
-247 110 156 157 92
-248 158 104 73 140
-249 156 159 128 75
-250 78 90 160 86
-251 71 161 162 163
-252 165 91 142 164
-253 166 167 93 164
-254 134 80 137 120
-255 88 121 94 161
-256 112 145 168 96
-257 132 100 169 170
-258 102 135 147 171
-259 166 115 97 119
-260 122 117 172 129
-261 124 148 127 173
-262 138 149 130 174
-263 176 105 172 175
-264 143 177 162 108
-265 133 178 160 175
-266 179 136 169 150
-267 176 180 170 139
-268 154 180 141 152
-269 155 159 181 153
-270 157 158 171 182
-271 167 178 146 181
-272 165 179 173 163
-273 177 168 182 174
-274 1 2 3 4
-275 1 5 6 7
-276 2 8 9 10
-277 11 12 13 3
-278 14 4 15 16
-279 5 17 18 19
-280 22 6 20 21
-281 23 24 25 7
-282 26 27 28 8
-283 11 29 30 31
-284 33 34 9 32
-285 12 35 36 37
-286 38 39 40 10
-287 13 41 42 43
-288 44 45 46 14
-289 47 26 48 17
-290 15 49 50 51
-291 16 52 53 54
-292 55 56 57 20
-293 58 59 60 18
-294 61 62 63 21
-295 66 19 64 65
-296 22 67 68 49
-297 23 69 70 71
-298 44 72 29 73
-299 24 41 74 75
-300 77 78 25 76
-301 55 79 80 32
-302 35 81 82 83
-303 27 84 85 86
-304 88 58 30 87
-305 33 89 90 91
-306 36 92 93 94
-307 28 95 96 97
-308 99 100 31 98
-309 34 101 102 37
-310 103 38 104 105
-311 106 107 42 108
-312 110 39 52 109
-313 56 111 112 69
-314 113 114 115 40
-315 113 116 117 43
-316 81 50 118 119
-317 121 53 76 120
-318 45 111 122 84
-319 123 124 61 109
-320 47 125 126 127
-321 51 128 129 130
-322 132 59 118 131
-323 133 125 54 131
-324 46 134 135 136
-325 137 138 62 139
-326 48 106 140 141
-327 57 116 98 142
-328 143 114 60 63
-329 144 145 146 64
-330 67 147 148 95
-331 77 82 149 65
-332 144 79 103 87
-333 83 150 85 107
-334 66 101 151 152
-335 99 68 151 153
-336 154 89 123 74
-337 155 70 126 72
-338 110 156 157 92
-339 158 104 73 140
-340 156 159 128 75
-341 78 90 160 86
-342 71 161 162 163
-343 165 91 142 164
-344 166 167 93 164
-345 134 80 137 120
-346 88 121 94 161
-347 112 145 168 96
-348 132 100 169 170
-349 102 135 147 171
-350 166 115 97 119
-351 122 117 172 129
-352 124 148 127 173
-353 138 149 130 174
-354 176 105 172 175
-355 143 177 162 108
-356 133 178 160 175
-357 179 136 169 150
-358 176 180 170 139
-359 154 180 141 152
-360 155 159 181 153
-361 157 158 171 182
-362 167 178 146 181
-363 165 179 173 163
-364 177 168 182 174
0

**************