C4graphConstructions for C4[ 378, 18 ] = CPM(3,2,21,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 378, 18 ]. See Glossary for some detail.

CPM( 3, 2, 21, 1) = AMC( 42, 3, [ 0. 1: 2. 0]) = UG(ATD[378, 29])

      = UG(ATD[378, 30]) = ATD[ 9, 1]#ATD[ 21, 4] = ATD[ 9, 1]#ATD[ 63, 7]

      = ATD[ 21, 4]#ATD[ 63, 7] = ATD[ 63, 7]#DCyc[ 3] = ATD[ 63, 7]#ATD[ 63, 7]

      = UG(Rmap(756, 9) { 42, 4| 6}_ 84) = MG(Rmap(378, 5) { 6, 42| 6}_ 42) = DG(Rmap(378, 5) { 6, 42| 6}_ 42)

      = DG(Rmap(378, 9) { 42, 6| 6}_ 42) = MG(Rmap(378, 53) { 6, 84| 6}_ 84) = DG(Rmap(378, 56) { 84, 6| 6}_ 84)

      = BGCG(DW( 3, 3), C_ 21, 1) = BGCG(DW( 21, 3), C_ 3, 1) = AT[378, 2]

     

Cyclic coverings

mod 42:
123456789
1 - - - 0 - - 0 - 0 2
2 - - - - 0 0 26 28 - -
3 - - 1 41 - - - - 0 27
4 0 - - - - - 3 18 20 -
5 - 0 - - 1 41 - - - 25
6 - 0 - - - 1 41 - 4 -
7 0 14 16 - 39 - - - - -
8 - - 0 22 24 - 38 - - -
9 0 40 - 15 - 17 - - - -

mod 42:
123456789
1 - 0 - 0 - 0 - 0 -
2 0 - 1 - 1 - - 11 -
3 - 41 - - 25 - 14 - 14
4 0 - - - - 11 - 39 4
5 - 41 17 - - 13 28 - -
6 0 - - 31 29 - 32 - -
7 - - 28 - 14 10 - - 17
8 0 31 - 3 - - - - 18
9 - - 28 38 - - 25 24 -

mod 42:
123456789
1 - 0 - 0 - - - 0 0
2 0 - 27 - - - 27 - 1
3 - 15 - 19 37 - 1 - -
4 0 - 23 - 19 - - 41 -
5 - - 5 23 - 28 - 19 -
6 - - - - 14 - 16 32 36
7 - 15 41 - - 26 - - 19
8 0 - - 1 23 10 - - -
9 0 41 - - - 6 23 - -