[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 378, 19 ]. See Glossary for some
detail.
AMC( 42, 3, [ 0. 1: 2. 2]) = UG(ATD[378, 49]) = UG(ATD[378, 50])
= UG(ATD[378, 51]) = MG(Rmap(378, 3) { 6, 42| 6}_ 42) = DG(Rmap(378, 3) {
6, 42| 6}_ 42)
= MG(Rmap(378, 6) { 6, 42| 6}_ 42) = DG(Rmap(378, 6) { 6, 42| 6}_ 42) =
DG(Rmap(378, 7) { 42, 6| 6}_ 42)
= DG(Rmap(378, 8) { 42, 6| 6}_ 42) = DG(Rmap(189, 3) { 6, 21| 6}_ 42) =
B(AMC( 21, 3, [ 0. 1: 2. 2]))
= BGCG(AMC( 21, 3, [ 0. 1: 2. 2]); K1;3) = AT[378, 7]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | - | 0 | - | 0 | - |
2 | - | 1 41 | - | - | - | - | 0 | 2 | - |
3 | 0 | - | - | 3 | 1 | - | 3 | - | - |
4 | 0 | - | 39 | 1 41 | - | - | - | - | - |
5 | - | - | 41 | - | - | 39 | 41 | - | 41 |
6 | 0 | - | - | - | 3 | - | - | 3 | 41 |
7 | - | 0 | 39 | - | 1 | - | - | 41 | - |
8 | 0 | 40 | - | - | - | 39 | 1 | - | - |
9 | - | - | - | - | 1 | 1 | - | - | 1 41 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | - | 0 | - | - | 0 2 | - |
2 | - | - | 40 | - | 2 | - | - | - | 0 40 |
3 | 0 | 2 | - | 1 | - | 1 | - | - | - |
4 | - | - | 41 | 1 41 | - | - | 41 | - | - |
5 | 0 | 40 | - | - | - | - | - | 41 | 41 |
6 | - | - | 41 | - | - | 1 41 | 3 | - | - |
7 | - | - | - | 1 | - | 39 | - | 1 | 39 |
8 | 0 40 | - | - | - | 1 | - | 41 | - | - |
9 | - | 0 2 | - | - | 1 | - | 3 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | 0 | 0 | - | 0 | - | 0 |
2 | - | - | 0 2 | - | - | 0 | - | 0 | - |
3 | - | 0 40 | - | - | - | 39 | - | 1 | - |
4 | 0 | - | - | - | 1 3 | - | - | 3 | - |
5 | 0 | - | - | 39 41 | - | - | - | 41 | - |
6 | - | 0 | 3 | - | - | - | 41 | - | 3 |
7 | 0 | - | - | - | - | 1 | - | - | 1 3 |
8 | - | 0 | 41 | 39 | 1 | - | - | - | - |
9 | 0 | - | - | - | - | 39 | 39 41 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 0 | 0 | - | 28 |
3 | - | - | - | 0 | 0 | - | 28 | 14 | - |
4 | - | 0 | 0 | - | - | - | 1 15 | - | - |
5 | 0 | - | 0 | - | - | - | - | 15 29 | - |
6 | 0 | 0 | - | - | - | - | - | - | 1 15 |
7 | - | 0 | 14 | 27 41 | - | - | - | - | - |
8 | 0 | - | 28 | - | 13 27 | - | - | - | - |
9 | 0 | 14 | - | - | - | 27 41 | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | 0 | - | 0 | 0 |
2 | - | - | - | 0 | - | 14 | 0 | - | 28 |
3 | - | - | - | 14 | 28 | - | 28 | 14 | - |
4 | - | 0 | 28 | - | - | - | - | 15 | 1 |
5 | 0 | - | 14 | - | - | - | 15 | - | 15 |
6 | 0 | 28 | - | - | - | - | 1 | 15 | - |
7 | - | 0 | 14 | - | 27 | 41 | - | - | - |
8 | 0 | - | 28 | 27 | - | 27 | - | - | - |
9 | 0 | 14 | - | 41 | 27 | - | - | - | - |