C4graphGraph forms for C4 [ 384, 3 ] = C_384(1,127)

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 3 ] = C_384(1,127).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {2, 3}, {382, 383}, {380, 381}, {378, 379}, {376, 377}, {374, 375}, {372, 373}, {370, 371}, {368, 369}, {366, 367}, {364, 365}, {362, 363}, {360, 361}, {358, 359}, {356, 357}, {354, 355}, {352, 353}, {350, 351}, {348, 349}, {346, 347}, {344, 345}, {342, 343}, {340, 341}, {338, 339}, {336, 337}, {334, 335}, {332, 333}, {330, 331}, {328, 329}, {326, 327}, {324, 325}, {322, 323}, {320, 321}, {318, 319}, {316, 317}, {314, 315}, {312, 313}, {310, 311}, {308, 309}, {306, 307}, {304, 305}, {302, 303}, {300, 301}, {298, 299}, {296, 297}, {294, 295}, {292, 293}, {290, 291}, {288, 289}, {286, 287}, {284, 285}, {282, 283}, {280, 281}, {278, 279}, {276, 277}, {274, 275}, {272, 273}, {270, 271}, {268, 269}, {266, 267}, {264, 265}, {262, 263}, {260, 261}, {258, 259}, {256, 257}, {254, 255}, {252, 253}, {250, 251}, {248, 249}, {246, 247}, {244, 245}, {242, 243}, {240, 241}, {238, 239}, {236, 237}, {234, 235}, {232, 233}, {230, 231}, {228, 229}, {226, 227}, {224, 225}, {222, 223}, {110, 111}, {108, 109}, {106, 107}, {104, 105}, {102, 103}, {100, 101}, {98, 99}, {96, 97}, {94, 95}, {92, 93}, {90, 91}, {88, 89}, {86, 87}, {84, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71}, {68, 69}, {4, 5}, {6, 7}, {8, 9}, {10, 11}, {12, 13}, {14, 15}, {16, 17}, {18, 19}, {20, 21}, {22, 23}, {24, 25}, {26, 27}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39}, {40, 41}, {42, 43}, {44, 45}, {46, 47}, {48, 49}, {50, 51}, {52, 53}, {54, 55}, {56, 57}, {58, 59}, {60, 61}, {62, 63}, {64, 65}, {66, 67}, {112, 113}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123}, {124, 125}, {126, 127}, {128, 129}, {130, 131}, {132, 133}, {134, 135}, {136, 137}, {138, 139}, {140, 141}, {142, 143}, {144, 145}, {146, 147}, {148, 149}, {150, 151}, {152, 153}, {154, 155}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165}, {166, 167}, {168, 169}, {170, 171}, {172, 173}, {174, 175}, {176, 177}, {178, 179}, {180, 181}, {182, 183}, {184, 185}, {186, 187}, {188, 189}, {190, 191}, {192, 193}, {194, 195}, {196, 197}, {198, 199}, {200, 201}, {202, 203}, {204, 205}, {206, 207}, {208, 209}, {210, 211}, {212, 213}, {214, 215}, {216, 217}, {218, 219}, {220, 221}, {1, 2}, {381, 382}, {377, 378}, {373, 374}, {369, 370}, {365, 366}, {361, 362}, {357, 358}, {353, 354}, {349, 350}, {345, 346}, {341, 342}, {337, 338}, {333, 334}, {329, 330}, {325, 326}, {321, 322}, {317, 318}, {313, 314}, {309, 310}, {305, 306}, {301, 302}, {297, 298}, {293, 294}, {289, 290}, {285, 286}, {281, 282}, {277, 278}, {273, 274}, {269, 270}, {265, 266}, {261, 262}, {257, 258}, {253, 254}, {249, 250}, {245, 246}, {241, 242}, {237, 238}, {233, 234}, {229, 230}, {225, 226}, {109, 110}, {105, 106}, {101, 102}, {97, 98}, {93, 94}, {89, 90}, {85, 86}, {81, 82}, {77, 78}, {73, 74}, {69, 70}, {5, 6}, {9, 10}, {13, 14}, {17, 18}, {21, 22}, {25, 26}, {29, 30}, {33, 34}, {37, 38}, {41, 42}, {45, 46}, {49, 50}, {53, 54}, {57, 58}, {61, 62}, {65, 66}, {113, 114}, {117, 118}, {121, 122}, {125, 126}, {129, 130}, {133, 134}, {137, 138}, {141, 142}, {145, 146}, {149, 150}, {153, 154}, {157, 158}, {161, 162}, {165, 166}, {169, 170}, {173, 174}, {177, 178}, {181, 182}, {185, 186}, {189, 190}, {193, 194}, {197, 198}, {201, 202}, {205, 206}, {209, 210}, {213, 214}, {217, 218}, {221, 222}, {3, 4}, {379, 380}, {371, 372}, {363, 364}, {355, 356}, {347, 348}, {339, 340}, {331, 332}, {323, 324}, {315, 316}, {307, 308}, {299, 300}, {291, 292}, {283, 284}, {275, 276}, {267, 268}, {259, 260}, {251, 252}, {243, 244}, {235, 236}, {227, 228}, {107, 108}, {99, 100}, {91, 92}, {83, 84}, {75, 76}, {67, 68}, {11, 12}, {19, 20}, {27, 28}, {35, 36}, {43, 44}, {51, 52}, {59, 60}, {115, 116}, {123, 124}, {131, 132}, {139, 140}, {147, 148}, {155, 156}, {163, 164}, {171, 172}, {179, 180}, {187, 188}, {195, 196}, {203, 204}, {211, 212}, {219, 220}, {7, 8}, {375, 376}, {359, 360}, {343, 344}, {327, 328}, {311, 312}, {295, 296}, {279, 280}, {263, 264}, {247, 248}, {231, 232}, {103, 104}, {87, 88}, {71, 72}, {23, 24}, {39, 40}, {55, 56}, {119, 120}, {135, 136}, {151, 152}, {167, 168}, {183, 184}, {199, 200}, {215, 216}, {15, 16}, {367, 368}, {335, 336}, {303, 304}, {271, 272}, {239, 240}, {79, 80}, {47, 48}, {111, 112}, {143, 144}, {175, 176}, {207, 208}, {31, 32}, {351, 352}, {287, 288}, {223, 224}, {95, 96}, {159, 160}, {63, 64}, {319, 320}, {256, 383}, {128, 255}, {191, 192}, {1, 128}, {257, 384}, {109, 236}, {107, 234}, {105, 232}, {103, 230}, {101, 228}, {99, 226}, {97, 224}, {95, 222}, {93, 220}, {91, 218}, {89, 216}, {87, 214}, {85, 212}, {83, 210}, {81, 208}, {79, 206}, {77, 204}, {75, 202}, {73, 200}, {71, 198}, {69, 196}, {67, 194}, {3, 130}, {5, 132}, {7, 134}, {9, 136}, {11, 138}, {13, 140}, {15, 142}, {17, 144}, {19, 146}, {21, 148}, {23, 150}, {25, 152}, {27, 154}, {29, 156}, {31, 158}, {33, 160}, {35, 162}, {37, 164}, {39, 166}, {41, 168}, {43, 170}, {45, 172}, {47, 174}, {49, 176}, {51, 178}, {53, 180}, {55, 182}, {57, 184}, {59, 186}, {61, 188}, {63, 190}, {65, 192}, {111, 238}, {113, 240}, {115, 242}, {117, 244}, {119, 246}, {121, 248}, {123, 250}, {125, 252}, {127, 254}, {2, 129}, {110, 237}, {106, 233}, {102, 229}, {98, 225}, {94, 221}, {90, 217}, {86, 213}, {82, 209}, {78, 205}, {74, 201}, {70, 197}, {66, 193}, {6, 133}, {10, 137}, {14, 141}, {18, 145}, {22, 149}, {26, 153}, {30, 157}, {34, 161}, {38, 165}, {42, 169}, {46, 173}, {50, 177}, {54, 181}, {58, 185}, {62, 189}, {114, 241}, {118, 245}, {122, 249}, {126, 253}, {4, 131}, {108, 235}, {100, 227}, {92, 219}, {84, 211}, {76, 203}, {68, 195}, {12, 139}, {20, 147}, {28, 155}, {36, 163}, {44, 171}, {52, 179}, {60, 187}, {116, 243}, {124, 251}, {8, 135}, {104, 231}, {88, 215}, {72, 199}, {24, 151}, {40, 167}, {56, 183}, {120, 247}, {16, 143}, {80, 207}, {48, 175}, {112, 239}, {32, 159}, {96, 223}, {64, 191}, {383, 384}, {127, 128}, {2, 259}, {108, 365}, {106, 363}, {104, 361}, {102, 359}, {100, 357}, {98, 355}, {96, 353}, {94, 351}, {92, 349}, {90, 347}, {88, 345}, {86, 343}, {84, 341}, {82, 339}, {80, 337}, {78, 335}, {76, 333}, {74, 331}, {72, 329}, {70, 327}, {68, 325}, {66, 323}, {4, 261}, {6, 263}, {8, 265}, {10, 267}, {12, 269}, {14, 271}, {16, 273}, {18, 275}, {20, 277}, {22, 279}, {24, 281}, {26, 283}, {28, 285}, {30, 287}, {32, 289}, {34, 291}, {36, 293}, {38, 295}, {40, 297}, {42, 299}, {44, 301}, {46, 303}, {48, 305}, {50, 307}, {52, 309}, {54, 311}, {56, 313}, {58, 315}, {60, 317}, {62, 319}, {64, 321}, {110, 367}, {112, 369}, {114, 371}, {116, 373}, {118, 375}, {120, 377}, {122, 379}, {124, 381}, {126, 383}, {1, 258}, {109, 366}, {105, 362}, {101, 358}, {97, 354}, {93, 350}, {89, 346}, {85, 342}, {81, 338}, {77, 334}, {73, 330}, {69, 326}, {5, 262}, {9, 266}, {13, 270}, {17, 274}, {21, 278}, {25, 282}, {29, 286}, {33, 290}, {37, 294}, {41, 298}, {45, 302}, {49, 306}, {53, 310}, {57, 314}, {61, 318}, {65, 322}, {113, 370}, {117, 374}, {121, 378}, {125, 382}, {3, 260}, {107, 364}, {99, 356}, {91, 348}, {83, 340}, {75, 332}, {67, 324}, {11, 268}, {19, 276}, {27, 284}, {35, 292}, {43, 300}, {51, 308}, {59, 316}, {115, 372}, {123, 380}, {7, 264}, {103, 360}, {87, 344}, {71, 328}, {23, 280}, {39, 296}, {55, 312}, {119, 376}, {15, 272}, {79, 336}, {47, 304}, {111, 368}, {31, 288}, {95, 352}, {63, 320}, {1, 384}, {255, 382}, {253, 380}, {251, 378}, {249, 376}, {247, 374}, {245, 372}, {243, 370}, {241, 368}, {239, 366}, {237, 364}, {235, 362}, {233, 360}, {231, 358}, {229, 356}, {227, 354}, {225, 352}, {223, 350}, {129, 256}, {131, 258}, {133, 260}, {135, 262}, {137, 264}, {139, 266}, {141, 268}, {143, 270}, {145, 272}, {147, 274}, {149, 276}, {151, 278}, {153, 280}, {155, 282}, {157, 284}, {159, 286}, {161, 288}, {163, 290}, {165, 292}, {167, 294}, {169, 296}, {171, 298}, {173, 300}, {175, 302}, {177, 304}, {179, 306}, {181, 308}, {183, 310}, {185, 312}, {187, 314}, {189, 316}, {191, 318}, {193, 320}, {195, 322}, {197, 324}, {199, 326}, {201, 328}, {203, 330}, {205, 332}, {207, 334}, {209, 336}, {211, 338}, {213, 340}, {215, 342}, {217, 344}, {219, 346}, {221, 348}, {130, 257}, {254, 381}, {250, 377}, {246, 373}, {242, 369}, {238, 365}, {234, 361}, {230, 357}, {226, 353}, {222, 349}, {134, 261}, {138, 265}, {142, 269}, {146, 273}, {150, 277}, {154, 281}, {158, 285}, {162, 289}, {166, 293}, {170, 297}, {174, 301}, {178, 305}, {182, 309}, {186, 313}, {190, 317}, {194, 321}, {198, 325}, {202, 329}, {206, 333}, {210, 337}, {214, 341}, {218, 345}, {132, 259}, {252, 379}, {244, 371}, {236, 363}, {228, 355}, {140, 267}, {148, 275}, {156, 283}, {164, 291}, {172, 299}, {180, 307}, {188, 315}, {196, 323}, {204, 331}, {212, 339}, {220, 347}, {136, 263}, {248, 375}, {232, 359}, {152, 279}, {168, 295}, {184, 311}, {200, 327}, {216, 343}, {144, 271}, {240, 367}, {176, 303}, {208, 335}, {160, 287}, {224, 351}, {127, 384}, {255, 256}, {192, 319} }>;

(II) A more general form is to represent the graph as the orbit of {2, 3} under the group generated by the following permutations:

a: (2, 258)(3, 131)(5, 261)(6, 134)(8, 264)(9, 137)(11, 267)(12, 140)(14, 270)(15, 143)(17, 273)(18, 146)(20, 276)(21, 149)(23, 279)(24, 152)(26, 282)(27, 155)(29, 285)(30, 158)(32, 288)(33, 161)(35, 291)(36, 164)(38, 294)(39, 167)(41, 297)(42, 170)(44, 300)(45, 173)(47, 303)(48, 176)(50, 306)(51, 179)(53, 309)(54, 182)(56, 312)(57, 185)(59, 315)(60, 188)(62, 318)(63, 191)(65, 321)(66, 194)(68, 324)(69, 197)(71, 327)(72, 200)(74, 330)(75, 203)(77, 333)(78, 206)(80, 336)(81, 209)(83, 339)(84, 212)(86, 342)(87, 215)(89, 345)(90, 218)(92, 348)(93, 221)(95, 351)(96, 224)(98, 354)(99, 227)(101, 357)(102, 230)(104, 360)(105, 233)(107, 363)(108, 236)(110, 366)(111, 239)(113, 369)(114, 242)(116, 372)(117, 245)(119, 375)(120, 248)(122, 378)(123, 251)(125, 381)(126, 254)(128, 384)(129, 257)(132, 260)(135, 263)(138, 266)(141, 269)(144, 272)(147, 275)(150, 278)(153, 281)(156, 284)(159, 287)(162, 290)(165, 293)(168, 296)(171, 299)(174, 302)(177, 305)(180, 308)(183, 311)(186, 314)(189, 317)(192, 320)(195, 323)(198, 326)(201, 329)(204, 332)(207, 335)(210, 338)(213, 341)(216, 344)(219, 347)(222, 350)(225, 353)(228, 356)(231, 359)(234, 362)(237, 365)(240, 368)(243, 371)(246, 374)(249, 377)(252, 380)(255, 383)
b: (2, 128)(3, 255)(4, 382)(5, 125)(6, 252)(7, 379)(8, 122)(9, 249)(10, 376)(11, 119)(12, 246)(13, 373)(14, 116)(15, 243)(16, 370)(17, 113)(18, 240)(19, 367)(20, 110)(21, 237)(22, 364)(23, 107)(24, 234)(25, 361)(26, 104)(27, 231)(28, 358)(29, 101)(30, 228)(31, 355)(32, 98)(33, 225)(34, 352)(35, 95)(36, 222)(37, 349)(38, 92)(39, 219)(40, 346)(41, 89)(42, 216)(43, 343)(44, 86)(45, 213)(46, 340)(47, 83)(48, 210)(49, 337)(50, 80)(51, 207)(52, 334)(53, 77)(54, 204)(55, 331)(56, 74)(57, 201)(58, 328)(59, 71)(60, 198)(61, 325)(62, 68)(63, 195)(64, 322)(66, 192)(67, 319)(69, 189)(70, 316)(72, 186)(73, 313)(75, 183)(76, 310)(78, 180)(79, 307)(81, 177)(82, 304)(84, 174)(85, 301)(87, 171)(88, 298)(90, 168)(91, 295)(93, 165)(94, 292)(96, 162)(97, 289)(99, 159)(100, 286)(102, 156)(103, 283)(105, 153)(106, 280)(108, 150)(109, 277)(111, 147)(112, 274)(114, 144)(115, 271)(117, 141)(118, 268)(120, 138)(121, 265)(123, 135)(124, 262)(126, 132)(127, 259)(130, 256)(131, 383)(133, 253)(134, 380)(136, 250)(137, 377)(139, 247)(140, 374)(142, 244)(143, 371)(145, 241)(146, 368)(148, 238)(149, 365)(151, 235)(152, 362)(154, 232)(155, 359)(157, 229)(158, 356)(160, 226)(161, 353)(163, 223)(164, 350)(166, 220)(167, 347)(169, 217)(170, 344)(172, 214)(173, 341)(175, 211)(176, 338)(178, 208)(179, 335)(181, 205)(182, 332)(184, 202)(185, 329)(187, 199)(188, 326)(190, 196)(191, 323)(194, 320)(197, 317)(200, 314)(203, 311)(206, 308)(209, 305)(212, 302)(215, 299)(218, 296)(221, 293)(224, 290)(227, 287)(230, 284)(233, 281)(236, 278)(239, 275)(242, 272)(245, 269)(248, 266)(251, 263)(254, 260)(258, 384)(261, 381)(264, 378)(267, 375)(270, 372)(273, 369)(276, 366)(279, 363)(282, 360)(285, 357)(288, 354)(291, 351)(294, 348)(297, 345)(300, 342)(303, 339)(306, 336)(309, 333)(312, 330)(315, 327)(318, 324)
c: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199, 200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213, 214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276, 277, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 290, 291, 292, 293, 294, 295, 296, 297, 298, 299, 300, 301, 302, 303, 304, 305, 306, 307, 308, 309, 310, 311, 312, 313, 314, 315, 316, 317, 318, 319, 320, 321, 322, 323, 324, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334, 335, 336, 337, 338, 339, 340, 341, 342, 343, 344, 345, 346, 347, 348, 349, 350, 351, 352, 353, 354, 355, 356, 357, 358, 359, 360, 361, 362, 363, 364, 365, 366, 367, 368, 369, 370, 371, 372, 373, 374, 375, 376, 377, 378, 379, 380, 381, 382, 383, 384)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 3 ]
384
-1 2 258 128 384
-2 1 3 259 129
-3 2 4 260 130
-4 3 5 261 131
-5 132 4 6 262
-6 133 5 7 263
-7 264 134 6 8
-8 265 135 7 9
-9 266 136 8 10
-10 11 267 137 9
-11 12 268 138 10
-12 11 13 269 139
-13 12 14 270 140
-14 13 15 271 141
-15 14 16 272 142
-16 143 15 17 273
-17 144 16 18 274
-18 275 145 17 19
-19 276 146 18 20
-20 277 147 19 21
-21 22 278 148 20
-22 23 279 149 21
-23 22 24 280 150
-24 23 25 281 151
-25 24 26 282 152
-26 25 27 283 153
-27 154 26 28 284
-28 155 27 29 285
-29 286 156 28 30
-30 287 157 29 31
-31 288 158 30 32
-32 33 289 159 31
-33 34 290 160 32
-34 33 35 291 161
-35 34 36 292 162
-36 35 37 293 163
-37 36 38 294 164
-38 165 37 39 295
-39 166 38 40 296
-40 297 167 39 41
-41 298 168 40 42
-42 299 169 41 43
-43 44 300 170 42
-44 45 301 171 43
-45 44 46 302 172
-46 45 47 303 173
-47 46 48 304 174
-48 47 49 305 175
-49 176 48 50 306
-50 177 49 51 307
-51 308 178 50 52
-52 309 179 51 53
-53 310 180 52 54
-54 55 311 181 53
-55 56 312 182 54
-56 55 57 313 183
-57 56 58 314 184
-58 57 59 315 185
-59 58 60 316 186
-60 187 59 61 317
-61 188 60 62 318
-62 319 189 61 63
-63 320 190 62 64
-64 321 191 63 65
-65 66 322 192 64
-66 67 323 193 65
-67 66 68 324 194
-68 67 69 325 195
-69 68 70 326 196
-70 69 71 327 197
-71 198 70 72 328
-72 199 71 73 329
-73 330 200 72 74
-74 331 201 73 75
-75 332 202 74 76
-76 77 333 203 75
-77 78 334 204 76
-78 77 79 335 205
-79 78 80 336 206
-80 79 81 337 207
-81 80 82 338 208
-82 209 81 83 339
-83 210 82 84 340
-84 341 211 83 85
-85 342 212 84 86
-86 343 213 85 87
-87 88 344 214 86
-88 89 345 215 87
-89 88 90 346 216
-90 89 91 347 217
-91 90 92 348 218
-92 91 93 349 219
-93 220 92 94 350
-94 221 93 95 351
-95 352 222 94 96
-96 353 223 95 97
-97 354 224 96 98
-98 99 355 225 97
-99 100 356 226 98
-100 99 101 357 227
-101 100 102 358 228
-102 101 103 359 229
-103 102 104 360 230
-104 231 103 105 361
-105 232 104 106 362
-106 363 233 105 107
-107 364 234 106 108
-108 365 235 107 109
-109 110 366 236 108
-110 111 367 237 109
-111 110 112 368 238
-112 111 113 369 239
-113 112 114 370 240
-114 113 115 371 241
-115 242 114 116 372
-116 243 115 117 373
-117 374 244 116 118
-118 375 245 117 119
-119 376 246 118 120
-120 121 377 247 119
-121 122 378 248 120
-122 121 123 379 249
-123 122 124 380 250
-124 123 125 381 251
-125 124 126 382 252
-126 253 125 127 383
-127 254 126 128 384
-128 1 255 127 129
-129 2 256 128 130
-130 3 257 129 131
-131 132 4 258 130
-132 133 5 259 131
-133 132 134 6 260
-134 133 135 7 261
-135 134 136 8 262
-136 135 137 9 263
-137 264 136 138 10
-138 11 265 137 139
-139 12 266 138 140
-140 13 267 139 141
-141 14 268 140 142
-142 143 15 269 141
-143 144 16 270 142
-144 143 145 17 271
-145 144 146 18 272
-146 145 147 19 273
-147 146 148 20 274
-148 275 147 149 21
-149 22 276 148 150
-150 23 277 149 151
-151 24 278 150 152
-152 25 279 151 153
-153 154 26 280 152
-154 155 27 281 153
-155 154 156 28 282
-156 155 157 29 283
-157 156 158 30 284
-158 157 159 31 285
-159 286 158 160 32
-160 33 287 159 161
-161 34 288 160 162
-162 35 289 161 163
-163 36 290 162 164
-164 165 37 291 163
-165 166 38 292 164
-166 165 167 39 293
-167 166 168 40 294
-168 167 169 41 295
-169 168 170 42 296
-170 297 169 171 43
-171 44 298 170 172
-172 45 299 171 173
-173 46 300 172 174
-174 47 301 173 175
-175 176 48 302 174
-176 177 49 303 175
-177 176 178 50 304
-178 177 179 51 305
-179 178 180 52 306
-180 179 181 53 307
-181 308 180 182 54
-182 55 309 181 183
-183 56 310 182 184
-184 57 311 183 185
-185 58 312 184 186
-186 187 59 313 185
-187 188 60 314 186
-188 187 189 61 315
-189 188 190 62 316
-190 189 191 63 317
-191 190 192 64 318
-192 319 191 193 65
-193 66 320 192 194
-194 67 321 193 195
-195 68 322 194 196
-196 69 323 195 197
-197 198 70 324 196
-198 199 71 325 197
-199 198 200 72 326
-200 199 201 73 327
-201 200 202 74 328
-202 201 203 75 329
-203 330 202 204 76
-204 77 331 203 205
-205 78 332 204 206
-206 79 333 205 207
-207 80 334 206 208
-208 209 81 335 207
-209 210 82 336 208
-210 209 211 83 337
-211 210 212 84 338
-212 211 213 85 339
-213 212 214 86 340
-214 341 213 215 87
-215 88 342 214 216
-216 89 343 215 217
-217 90 344 216 218
-218 91 345 217 219
-219 220 92 346 218
-220 221 93 347 219
-221 220 222 94 348
-222 221 223 95 349
-223 222 224 96 350
-224 223 225 97 351
-225 352 224 226 98
-226 99 353 225 227
-227 100 354 226 228
-228 101 355 227 229
-229 102 356 228 230
-230 231 103 357 229
-231 232 104 358 230
-232 231 233 105 359
-233 232 234 106 360
-234 233 235 107 361
-235 234 236 108 362
-236 363 235 237 109
-237 110 364 236 238
-238 111 365 237 239
-239 112 366 238 240
-240 113 367 239 241
-241 242 114 368 240
-242 243 115 369 241
-243 242 244 116 370
-244 243 245 117 371
-245 244 246 118 372
-246 245 247 119 373
-247 374 246 248 120
-248 121 375 247 249
-249 122 376 248 250
-250 123 377 249 251
-251 124 378 250 252
-252 253 125 379 251
-253 254 126 380 252
-254 253 255 127 381
-255 254 256 128 382
-256 255 257 129 383
-257 256 258 130 384
-258 1 257 259 131
-259 132 2 258 260
-260 133 3 259 261
-261 134 4 260 262
-262 135 5 261 263
-263 264 136 6 262
-264 265 137 7 263
-265 264 266 138 8
-266 265 267 139 9
-267 266 268 140 10
-268 11 267 269 141
-269 12 268 270 142
-270 143 13 269 271
-271 144 14 270 272
-272 145 15 271 273
-273 146 16 272 274
-274 275 147 17 273
-275 276 148 18 274
-276 275 277 149 19
-277 276 278 150 20
-278 277 279 151 21
-279 22 278 280 152
-280 23 279 281 153
-281 154 24 280 282
-282 155 25 281 283
-283 156 26 282 284
-284 157 27 283 285
-285 286 158 28 284
-286 287 159 29 285
-287 286 288 160 30
-288 287 289 161 31
-289 288 290 162 32
-290 33 289 291 163
-291 34 290 292 164
-292 165 35 291 293
-293 166 36 292 294
-294 167 37 293 295
-295 168 38 294 296
-296 297 169 39 295
-297 298 170 40 296
-298 297 299 171 41
-299 298 300 172 42
-300 299 301 173 43
-301 44 300 302 174
-302 45 301 303 175
-303 176 46 302 304
-304 177 47 303 305
-305 178 48 304 306
-306 179 49 305 307
-307 308 180 50 306
-308 309 181 51 307
-309 308 310 182 52
-310 309 311 183 53
-311 310 312 184 54
-312 55 311 313 185
-313 56 312 314 186
-314 187 57 313 315
-315 188 58 314 316
-316 189 59 315 317
-317 190 60 316 318
-318 319 191 61 317
-319 320 192 62 318
-320 319 321 193 63
-321 320 322 194 64
-322 321 323 195 65
-323 66 322 324 196
-324 67 323 325 197
-325 198 68 324 326
-326 199 69 325 327
-327 200 70 326 328
-328 201 71 327 329
-329 330 202 72 328
-330 331 203 73 329
-331 330 332 204 74
-332 331 333 205 75
-333 332 334 206 76
-334 77 333 335 207
-335 78 334 336 208
-336 209 79 335 337
-337 210 80 336 338
-338 211 81 337 339
-339 212 82 338 340
-340 341 213 83 339
-341 342 214 84 340
-342 341 343 215 85
-343 342 344 216 86
-344 343 345 217 87
-345 88 344 346 218
-346 89 345 347 219
-347 220 90 346 348
-348 221 91 347 349
-349 222 92 348 350
-350 223 93 349 351
-351 352 224 94 350
-352 353 225 95 351
-353 352 354 226 96
-354 353 355 227 97
-355 354 356 228 98
-356 99 355 357 229
-357 100 356 358 230
-358 231 101 357 359
-359 232 102 358 360
-360 233 103 359 361
-361 234 104 360 362
-362 363 235 105 361
-363 364 236 106 362
-364 363 365 237 107
-365 364 366 238 108
-366 365 367 239 109
-367 110 366 368 240
-368 111 367 369 241
-369 242 112 368 370
-370 243 113 369 371
-371 244 114 370 372
-372 245 115 371 373
-373 374 246 116 372
-374 375 247 117 373
-375 374 376 248 118
-376 375 377 249 119
-377 376 378 250 120
-378 121 377 379 251
-379 122 378 380 252
-380 253 123 379 381
-381 254 124 380 382
-382 255 125 381 383
-383 256 126 382 384
-384 1 257 127 383
0

**************