C4graphConstructions for C4[ 384, 7 ] = {4,4}_[24,8]

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 384, 7 ]. See Glossary for some detail.

{4, 4}_[ 24, 8] = PS( 48, 16; 1) = PS( 48, 16; 7)

      = PS( 16, 48; 1) = PS( 16, 48; 23) = PL(MC3( 8, 24, 1, 7, 7, 16, 1), [8^24, 24^8])

      = UG(ATD[384, 267]) = UG(ATD[384, 268]) = UG(ATD[384, 269])

      = MG(Rmap(384,843) { 16, 48| 8}_ 48) = DG(Rmap(384,843) { 16, 48| 8}_ 48) = MG(Rmap(384,852) { 16, 48| 2}_ 48)

      = DG(Rmap(384,852) { 16, 48| 2}_ 48) = DG(Rmap(384,966) { 48, 16| 8}_ 48) = DG(Rmap(384,967) { 48, 16| 2}_ 48)

      = AT[384, 164]

Cyclic coverings

mod 48:
12345678
1 1 47 0 2 - - - - - -
2 0 46 - 0 2 - - - - -
3 - 0 46 - 0 2 - - - -
4 - - 0 46 - 0 2 - - -
5 - - - 0 46 - 0 2 - -
6 - - - - 0 46 - 0 2 -
7 - - - - - 0 46 - 0 2
8 - - - - - - 0 46 1 47

mod 48:
12345678
1 1 47 0 - - - - - 0
2 0 1 47 0 - - - - -
3 - 0 1 47 0 - - - -
4 - - 0 1 47 0 - - -
5 - - - 0 1 47 0 - -
6 - - - - 0 1 47 0 -
7 - - - - - 0 1 47 8
8 0 - - - - - 40 1 47

mod 48:
12345678
1 - 0 - 0 0 - - 0
2 0 - 0 - 45 0 - -
3 - 0 - 44 - 45 0 -
4 0 - 4 - - - 1 3
5 0 3 - - - 0 - 3
6 - 0 3 - 0 - 0 -
7 - - 0 47 - 0 - 47
8 0 - - 45 45 - 1 -

mod 48:
12345678
1 - 0 0 - - - 0 0
2 0 - 1 0 - - - 1
3 0 47 - 0 47 - - -
4 - 0 0 - 0 47 - -
5 - - 1 0 - 0 5 -
6 - - - 1 0 - 6 6
7 0 - - - 43 42 - 1
8 0 47 - - - 42 47 -

mod 48:
12345678
1 - 0 - - 0 10 - - 0
2 0 - 0 - - 0 10 - -
3 - 0 - 0 - - 0 10 -
4 - - 0 - 1 - - 1 39
5 0 38 - - 47 - 0 - -
6 - 0 38 - - 0 - 0 -
7 - - 0 38 - - 0 - 39
8 0 - - 9 47 - - 9 -