C4graphConstructions for C4[ 384, 11 ] = {4,4}_<50,46>

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 384, 11 ]. See Glossary for some detail.

{4, 4}_< 50, 46> = MPS( 96, 8; 1) = MPS( 96, 8; 3)

      = PS( 4,192; 47) = PS( 4,192; 49) = MPS( 4,192; 1)

      = MPS( 4,192; 95) = R_192( 2, 97) = R_192( 94, 1)

      = R_192( 98, 1) = R_192(190, 97) = PL(MC3( 4, 48, 1, 25, 25, 22, 1), [4^48, 96^2])

      = PL(MC3( 4, 48, 1, 25, 25, 46, 1), [4^48, 96^2]) = PL(MC3( 6, 32, 1, 17, 17, 14, 1), [4^48, 96^2]) = PL(MC3( 6, 32, 1, 17, 17, 30, 1), [4^48, 96^2])

      = PL(MC3( 8, 24, 1, 13, 13, 10, 1), [4^48, 96^2]) = PL(MC3( 8, 24, 1, 13, 13, 22, 1), [4^48, 96^2]) = PL(MC3( 12, 16, 1, 9, 9, 6, 1), [4^48, 96^2])

      = PL(MC3( 12, 16, 1, 9, 9, 14, 1), [4^48, 96^2]) = PL(MC3( 16, 12, 1, 7, 7, 10, 1), [4^48, 96^2]) = PL(MC3( 24, 8, 1, 5, 5, 2, 1), [4^48, 96^2])

      = PL(MC3( 24, 8, 1, 5, 5, 6, 1), [4^48, 96^2]) = PL(MBr( 2, 96; 47)) = PL(BC_96({ 0, 48 }, { 1, 47 })

      = UG(ATD[384, 252]) = UG(ATD[384, 253]) = UG(ATD[384, 254])

      = MG(Rmap(384,657) { 8,192| 2}_192) = DG(Rmap(384,657) { 8,192| 2}_192) = MG(Rmap(384,658) { 8,192| 4}_192)

      = DG(Rmap(384,658) { 8,192| 4}_192) = DG(Rmap(384,659) {192, 8| 2}_192) = DG(Rmap(384,660) {192, 8| 4}_192)

      = BGCG(W( 48, 2); K2;{5, 6}) = AT[384, 208]

Cyclic coverings

mod 192:
12
1 1 191 0 94
2 0 98 1 191

mod 192:
12
1 1 191 0 190
2 0 2 95 97