[Home] [Table] [Glossary]
[Families]
On this page are all constructions for C4[ 384, 26 ]. See Glossary for some
detail.
PS( 8, 96; 5) = PS( 8, 96; 19) = PS( 8, 96; 29)
= PS( 8, 96; 43) = UG(ATD[384, 59]) = UG(ATD[384, 60])
= MG(Cmap(384,183) { 32, 48| 4}_ 96) = MG(Cmap(384,184) { 32, 48| 4}_ 96) =
HT[384, 30]
Cyclic coverings
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | 0 | - | 0 | 0 21 |
2 | - | - | - | - | 0 45 | 0 | - | 1 |
3 | - | - | - | - | 25 | 0 21 | 19 | - |
4 | - | - | - | - | - | 1 | 16 19 | 44 |
5 | 0 | 0 3 | 23 | - | - | - | - | - |
6 | - | 0 | 0 27 | 47 | - | - | - | - |
7 | 0 | - | 29 | 29 32 | - | - | - | - |
8 | 0 27 | 47 | - | 4 | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | 0 1 | - | - | - | - | - | 0 29 |
2 | 0 47 | - | 0 5 | - | - | - | - | - |
3 | - | 0 43 | - | 22 45 | - | - | - | - |
4 | - | - | 3 26 | - | 17 36 | - | - | - |
5 | - | - | - | 12 31 | - | 32 33 | - | - |
6 | - | - | - | - | 15 16 | - | 20 25 | - |
7 | - | - | - | - | - | 23 28 | - | 5 28 |
8 | 0 19 | - | - | - | - | - | 20 43 | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | 1 47 | - | - | 0 | - | - | - | 0 |
2 | - | - | 0 | 0 26 | - | - | 0 | - |
3 | - | 0 | - | - | - | 9 | 9 11 | - |
4 | 0 | 0 22 | - | - | 31 | - | - | - |
5 | - | - | - | 17 | 23 25 | - | - | 21 |
6 | - | - | 39 | - | - | - | 35 | 15 41 |
7 | - | 0 | 37 39 | - | - | 13 | - | - |
8 | 0 | - | - | - | 27 | 7 33 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
---|---|---|---|---|---|---|---|---|
1 | - | - | 0 | 0 | - | - | 0 | 0 |
2 | - | - | 0 | 2 | - | - | 30 | 20 |
3 | 0 | 0 | - | - | 0 | 0 | - | - |
4 | 0 | 46 | - | - | 4 | 42 | - | - |
5 | - | - | 0 | 44 | - | - | 1 | 43 |
6 | - | - | 0 | 6 | - | - | 29 | 25 |
7 | 0 | 18 | - | - | 47 | 19 | - | - |
8 | 0 | 28 | - | - | 5 | 23 | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | - | - | - | - | - | 0 | 0 10 | - | - | - | - | 0 |
2 | - | - | - | - | 0 | - | - | - | - | - | 0 | 0 26 |
3 | - | - | - | 0 | 0 10 | - | - | - | - | 0 | - | - |
4 | - | - | 0 | - | - | - | - | - | 1 | 1 27 | - | - |
5 | - | 0 | 0 22 | - | - | - | - | 23 | - | - | - | - |
6 | 0 | - | - | - | - | - | 19 | 19 25 | - | - | - | - |
7 | 0 22 | - | - | - | - | 13 | - | - | - | - | - | 25 |
8 | - | - | - | - | 9 | 7 13 | - | - | - | - | 29 | - |
9 | - | - | - | 31 | - | - | - | - | - | 11 | 15 25 | - |
10 | - | - | 0 | 5 31 | - | - | - | - | 21 | - | - | - |
11 | - | 0 | - | - | - | - | - | 3 | 7 17 | - | - | - |
12 | 0 | 0 6 | - | - | - | - | 7 | - | - | - | - | - |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 1 31 | 0 | - | - | - | - | - | 0 | - | - | - | - |
2 | 0 | - | - | - | - | 1 19 | 1 | - | - | - | - | - |
3 | - | - | - | - | - | 0 | - | - | - | - | 0 2 | 0 |
4 | - | - | - | 7 25 | 0 | - | - | - | - | - | 0 | - |
5 | - | - | - | 0 | - | - | - | - | 25 27 | 25 | - | - |
6 | - | 13 31 | 0 | - | - | - | - | - | 15 | - | - | - |
7 | - | 31 | - | - | - | - | 15 17 | 27 | - | - | - | - |
8 | 0 | - | - | - | - | - | 5 | - | - | - | - | 7 21 |
9 | - | - | - | - | 5 7 | 17 | - | - | - | - | - | 21 |
10 | - | - | - | - | 7 | - | - | - | - | 9 23 | 3 | - |
11 | - | - | 0 30 | 0 | - | - | - | - | - | 29 | - | - |
12 | - | - | 0 | - | - | - | - | 11 25 | 11 | - | - | - |