C4graphConstructions for C4[ 384, 37 ] = PL(MSY(4,48,23,0))

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 384, 37 ]. See Glossary for some detail.

PL(MSY( 4, 48, 23, 0)) = PL(MSY( 4, 48, 25, 0)) = PL(MC3( 4, 48, 1, 47, 23, 0, 1), [4^48, 48^4])

      = PL(MC3( 4, 48, 1, 47, 25, 0, 1), [4^48, 48^4]) = PL(KE_ 48( 1, 25, 2, 25, 1), [4^48, 48^4]) = PL(Curtain_ 48( 1, 23, 25, 47, 48), [4^48, 48^4])

      = PL(Br( 4, 48; 23)) = PL(ATD[ 48, 28]#DCyc[ 4]) = PL(CS(W( 24, 2)[ 48^ 2], 0))

      = BGCG(W( 24, 2), C_ 4, {2', 3'})

Cyclic coverings

mod 48:
12345678
1 - - - - 0 1 0 - 0
2 - - - - 0 0 23 0 -
3 - - - - - 23 0 47 21
4 - - - - 45 - 47 21 44
5 0 47 0 - 3 - - - -
6 0 0 25 25 - - - - -
7 - 0 0 1 1 - - - -
8 0 - 27 4 27 - - - -

mod 48:
12345678
1 - - - - 0 1 0 1 - -
2 - - - - - 0 23 0 23 -
3 - - - - - - 0 1 0 1
4 - - - - 0 23 - - 0 23
5 0 47 - - 0 25 - - - -
6 0 47 0 25 - - - - - -
7 - 0 25 0 47 - - - - -
8 - - 0 47 0 25 - - - -

mod 48:
12345678
1 - - - - 0 0 1 0 -
2 - - - - 0 0 23 22 -
3 - - - - 1 - 47 0 1
4 - - - - 23 - 47 0 23
5 0 0 47 25 - - - -
6 0 47 0 25 - - - - - -
7 0 26 1 1 - - - -
8 - - 0 47 0 25 - - - -

mod 48:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - 1 0 25 26
4 - - - - 47 0 25 24
5 0 0 47 1 - - - -
6 0 0 0 0 - - - -
7 0 46 23 23 - - - -
8 0 46 22 24 - - - -

mod 48:
12345678
1 - - - - 0 0 0 0
2 - - - - 0 0 2 2
3 - - - - - 0 1 25 26 -
4 - - - - 0 1 - - 25 26
5 0 0 - 0 47 - - - -
6 0 0 0 47 - - - - -
7 0 46 22 23 - - - - -
8 0 46 - 22 23 - - - -