C4graphGraph forms for C4 [ 384, 56 ] = PL(MSZ(8,24,2,11),[8^24,24^8])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 56 ] = PL(MSZ(8,24,2,11),[8^24,24^8]).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 222}, {151, 215}, {148, 215}, {170, 233}, {157, 222}, {178, 247}, {184, 253}, {139, 205}, {189, 251}, {187, 253}, {174, 232}, {146, 218}, {179, 251}, {155, 208}, {188, 247}, {171, 224}, {145, 221}, {177, 253}, {173, 225}, {176, 253}, {159, 208}, {181, 250}, {164, 235}, {133, 213}, {142, 220}, {169, 251}, {153, 203}, {134, 213}, {135, 212}, {131, 214}, {187, 238}, {138, 221}, {173, 250}, {172, 251}, {154, 205}, {147, 202}, {185, 224}, {130, 217}, {136, 212}, {168, 244}, {143, 211}, {144, 205}, {180, 233}, {149, 202}, {177, 238}, {129, 225}, {137, 233}, {132, 229}, {170, 203}, {150, 247}, {155, 248}, {182, 211}, {134, 238}, {163, 202}, {179, 218}, {183, 221}, {152, 244}, {190, 210}, {166, 202}, {165, 201}, {189, 210}, {153, 233}, {167, 215}, {139, 250}, {175, 222}, {156, 237}, {160, 210}, {164, 215}, {186, 201}, {141, 248}, {128, 246}, {172, 218}, {158, 232}, {159, 232}, {188, 203}, {162, 218}, {181, 205}, {178, 203}, {131, 249}, {129, 250}, {169, 210}, {140, 247}, {148, 235}, {79, 207}, {99, 227}, {93, 220}, {68, 199}, {114, 246}, {67, 197}, {107, 236}, {70, 206}, {71, 206}, {74, 195}, {89, 211}, {101, 239}, {125, 246}, {110, 227}, {75, 197}, {112, 254}, {116, 229}, {122, 232}, {85, 198}, {108, 248}, {119, 227}, {83, 198}, {100, 241}, {105, 254}, {123, 236}, {118, 238}, {80, 201}, {90, 195}, {65, 219}, {69, 223}, {98, 248}, {95, 196}, {112, 235}, {84, 200}, {104, 244}, {115, 237}, {87, 200}, {91, 196}, {102, 249}, {126, 225}, {94, 254}, {104, 200}, {117, 213}, {103, 198}, {83, 241}, {100, 198}, {87, 244}, {118, 213}, {72, 236}, {121, 221}, {66, 231}, {67, 229}, {88, 254}, {120, 222}, {97, 201}, {73, 224}, {86, 255}, {122, 208}, {78, 226}, {101, 200}, {113, 220}, {93, 243}, {73, 249}, {81, 225}, {102, 214}, {77, 252}, {82, 227}, {95, 237}, {125, 207}, {76, 255}, {96, 212}, {109, 217}, {111, 219}, {70, 243}, {89, 236}, {94, 235}, {107, 211}, {79, 246}, {92, 230}, {84, 239}, {108, 208}, {127, 195}, {66, 255}, {75, 245}, {106, 212}, {124, 195}, {25, 216}, {3, 193}, {2, 193}, {49, 242}, {15, 204}, {21, 209}, {42, 239}, {52, 241}, {53, 243}, {5, 194}, {17, 214}, {46, 230}, {61, 245}, {58, 242}, {56, 240}, {47, 231}, {18, 219}, {11, 193}, {9, 194}, {10, 193}, {43, 231}, {39, 234}, {44, 226}, {54, 249}, {37, 245}, {47, 255}, {8, 217}, {31, 206}, {57, 234}, {12, 216}, {24, 204}, {19, 199}, {38, 243}, {48, 229}, {54, 224}, {14, 217}, {23, 207}, {63, 231}, {41, 241}, {26, 194}, {55, 237}, {30, 194}, {33, 252}, {4, 228}, {6, 228}, {22, 245}, {20, 240}, {1, 228}, {34, 199}, {7, 226}, {13, 234}, {60, 219}, {27, 252}, {38, 206}, {39, 207}, {49, 216}, {53, 220}, {26, 240}, {52, 223}, {40, 196}, {51, 223}, {63, 209}, {9, 230}, {29, 239}, {62, 204}, {55, 196}, {5, 240}, {50, 199}, {48, 197}, {36, 209}, {32, 214}, {58, 204}, {41, 223}, {30, 230}, {61, 197}, {6, 252}, {43, 209}, {35, 216}, {15, 242}, {23, 234}, {12, 242}, {28, 226}, {27, 228}, {105, 361}, {117, 373}, {3, 258}, {65, 320}, {25, 280}, {8, 265}, {107, 362}, {119, 374}, {20, 278}, {52, 310}, {101, 359}, {130, 384}, {17, 274}, {74, 329}, {49, 306}, {45, 302}, {90, 345}, {123, 376}, {17, 276}, {29, 280}, {25, 284}, {96, 357}, {35, 293}, {125, 379}, {14, 265}, {62, 313}, {34, 293}, {24, 287}, {112, 375}, {61, 309}, {11, 258}, {33, 296}, {24, 273}, {43, 289}, {60, 310}, {97, 362}, {21, 281}, {41, 292}, {116, 377}, {19, 284}, {58, 309}, {47, 288}, {123, 372}, {8, 280}, {71, 343}, {19, 259}, {18, 258}, {125, 365}, {12, 285}, {29, 271}, {34, 304}, {33, 307}, {104, 378}, {10, 281}, {52, 288}, {102, 370}, {114, 358}, {1, 276}, {59, 302}, {50, 295}, {40, 317}, {2, 276}, {49, 295}, {109, 379}, {62, 297}, {105, 382}, {4, 284}, {63, 295}, {58, 290}, {56, 288}, {51, 299}, {21, 269}, {14, 278}, {103, 383}, {110, 374}, {22, 271}, {71, 350}, {47, 310}, {104, 369}, {120, 353}, {41, 307}, {48, 298}, {6, 285}, {106, 369}, {4, 280}, {97, 380}, {109, 368}, {95, 321}, {96, 382}, {102, 376}, {113, 367}, {48, 303}, {90, 325}, {81, 334}, {60, 291}, {112, 367}, {11, 299}, {72, 360}, {46, 270}, {40, 264}, {18, 307}, {69, 356}, {61, 284}, {56, 281}, {51, 274}, {34, 259}, {3, 289}, {55, 277}, {86, 373}, {88, 379}, {94, 381}, {5, 289}, {11, 303}, {1, 292}, {78, 363}, {42, 271}, {24, 317}, {2, 292}, {84, 370}, {19, 309}, {93, 379}, {68, 355}, {80, 375}, {26, 306}, {89, 369}, {88, 368}, {44, 260}, {30, 310}, {15, 294}, {36, 269}, {33, 264}, {108, 325}, {10, 288}, {85, 383}, {79, 357}, {70, 364}, {37, 271}, {127, 341}, {87, 380}, {115, 344}, {84, 376}, {98, 334}, {45, 256}, {122, 340}, {9, 294}, {62, 273}, {27, 299}, {46, 286}, {93, 365}, {5, 308}, {79, 382}, {20, 293}, {32, 274}, {36, 278}, {127, 333}, {64, 371}, {78, 381}, {73, 378}, {12, 312}, {27, 303}, {115, 327}, {35, 278}, {108, 345}, {122, 332}, {3, 308}, {71, 368}, {40, 287}, {37, 285}, {73, 369}, {94, 358}, {9, 304}, {76, 373}, {32, 281}, {18, 296}, {70, 380}, {64, 378}, {50, 265}, {121, 322}, {118, 330}, {120, 324}, {22, 299}, {87, 362}, {30, 291}, {26, 295}, {6, 312}, {60, 258}, {42, 276}, {16, 302}, {15, 304}, {80, 367}, {124, 323}, {126, 321}, {64, 256}, {81, 273}, {74, 266}, {45, 364}, {95, 283}, {77, 264}, {111, 298}, {20, 338}, {81, 279}, {37, 355}, {121, 319}, {31, 343}, {72, 256}, {38, 366}, {110, 294}, {57, 368}, {59, 370}, {36, 366}, {78, 260}, {32, 363}, {65, 266}, {54, 381}, {16, 348}, {39, 363}, {114, 318}, {28, 337}, {68, 265}, {113, 316}, {25, 343}, {43, 356}, {85, 282}, {103, 296}, {118, 313}, {54, 358}, {100, 308}, {38, 375}, {82, 259}, {45, 380}, {106, 315}, {76, 286}, {92, 270}, {2, 337}, {51, 352}, {91, 264}, {107, 319}, {121, 301}, {88, 269}, {111, 314}, {119, 290}, {7, 337}, {44, 378}, {116, 290}, {117, 291}, {69, 274}, {80, 263}, {4, 348}, {42, 371}, {68, 285}, {39, 381}, {10, 337}, {59, 352}, {99, 312}, {67, 287}, {90, 262}, {1, 348}, {53, 360}, {13, 338}, {74, 277}, {65, 286}, {44, 371}, {14, 366}, {82, 306}, {23, 375}, {99, 259}, {63, 350}, {91, 314}, {106, 267}, {17, 371}, {89, 315}, {113, 275}, {114, 272}, {7, 356}, {8, 364}, {86, 306}, {69, 289}, {13, 361}, {96, 260}, {105, 269}, {92, 313}, {111, 266}, {126, 283}, {97, 263}, {124, 282}, {57, 350}, {66, 293}, {59, 348}, {13, 356}, {56, 338}, {109, 263}, {57, 338}, {50, 350}, {98, 270}, {119, 283}, {7, 361}, {64, 302}, {46, 320}, {28, 370}, {75, 292}, {77, 290}, {116, 283}, {117, 282}, {126, 273}, {29, 364}, {91, 298}, {66, 304}, {103, 277}, {115, 257}, {16, 355}, {120, 267}, {35, 343}, {92, 297}, {98, 279}, {22, 352}, {85, 291}, {124, 266}, {16, 359}, {31, 359}, {77, 309}, {76, 308}, {75, 307}, {23, 366}, {83, 298}, {110, 279}, {127, 262}, {100, 286}, {67, 312}, {82, 297}, {123, 256}, {28, 352}, {83, 303}, {31, 355}, {99, 287}, {21, 363}, {55, 329}, {86, 297}, {141, 270}, {143, 268}, {130, 263}, {192, 326}, {165, 301}, {167, 300}, {135, 267}, {136, 260}, {161, 300}, {185, 311}, {128, 272}, {149, 261}, {132, 277}, {133, 279}, {191, 300}, {174, 315}, {157, 267}, {141, 282}, {186, 301}, {145, 262}, {192, 344}, {137, 272}, {168, 305}, {167, 316}, {171, 311}, {142, 275}, {156, 257}, {163, 317}, {174, 305}, {161, 257}, {158, 319}, {133, 294}, {166, 261}, {154, 318}, {180, 272}, {138, 301}, {144, 311}, {146, 314}, {151, 318}, {152, 305}, {147, 313}, {175, 261}, {144, 315}, {132, 296}, {150, 314}, {154, 311}, {190, 275}, {158, 305}, {140, 317}, {183, 262}, {142, 319}, {160, 275}, {184, 268}, {53, 384}, {138, 316}, {135, 318}, {182, 268}, {151, 300}, {128, 316}, {176, 268}, {191, 257}, {168, 360}, {138, 331}, {164, 357}, {145, 336}, {145, 339}, {160, 354}, {157, 351}, {134, 325}, {159, 347}, {164, 353}, {192, 261}, {129, 327}, {134, 320}, {139, 332}, {152, 351}, {143, 328}, {72, 384}, {165, 365}, {148, 349}, {156, 341}, {168, 354}, {140, 327}, {153, 341}, {137, 324}, {155, 342}, {141, 323}, {149, 346}, {151, 326}, {157, 332}, {156, 333}, {155, 330}, {153, 331}, {186, 360}, {149, 321}, {163, 374}, {159, 328}, {185, 353}, {186, 354}, {129, 344}, {147, 330}, {150, 333}, {154, 326}, {185, 357}, {158, 322}, {162, 383}, {139, 340}, {171, 372}, {144, 335}, {146, 333}, {175, 335}, {135, 358}, {174, 335}, {162, 320}, {169, 331}, {190, 349}, {142, 362}, {189, 345}, {180, 336}, {163, 327}, {101, 384}, {191, 346}, {172, 329}, {130, 359}, {147, 374}, {162, 325}, {173, 330}, {137, 353}, {179, 347}, {178, 346}, {166, 334}, {160, 328}, {176, 345}, {182, 351}, {180, 349}, {131, 361}, {177, 347}, {152, 372}, {183, 347}, {170, 326}, {167, 331}, {143, 354}, {146, 383}, {184, 342}, {190, 336}, {128, 367}, {188, 339}, {187, 340}, {181, 346}, {150, 377}, {133, 373}, {179, 323}, {136, 376}, {161, 336}, {181, 324}, {161, 339}, {177, 323}, {176, 322}, {170, 344}, {166, 340}, {178, 321}, {171, 351}, {140, 377}, {188, 329}, {187, 334}, {184, 335}, {165, 349}, {148, 365}, {175, 342}, {182, 332}, {173, 342}, {191, 324}, {136, 372}, {169, 341}, {131, 382}, {132, 377}, {172, 339}, {189, 322}, {183, 328} }>;

(II) A more general form is to represent the graph as the orbit of {192, 222} under the group generated by the following permutations:

a: (3, 7)(5, 13)(6, 16)(8, 19)(9, 23)(11, 28)(12, 31)(14, 34)(15, 38)(17, 41)(18, 44)(21, 47)(24, 53)(26, 57)(27, 59)(29, 61)(30, 39)(32, 52)(33, 64)(36, 66)(40, 72)(42, 75)(45, 77)(46, 79)(48, 84)(49, 71)(54, 85)(55, 89)(58, 70)(60, 78)(62, 93)(65, 96)(67, 101)(73, 103)(74, 106)(76, 105)(80, 110)(81, 113)(82, 109)(83, 102)(86, 88)(87, 116)(90, 120)(91, 123)(92, 125)(94, 117)(95, 107)(97, 119)(98, 128)(99, 130)(100, 131)(104, 132)(108, 137)(111, 136)(112, 133)(114, 141)(115, 143)(118, 148)(121, 149)(122, 153)(124, 135)(126, 142)(127, 157)(129, 160)(134, 164)(138, 166)(139, 169)(140, 168)(144, 172)(145, 175)(146, 171)(147, 165)(150, 152)(151, 177)(154, 179)(155, 180)(156, 182)(158, 178)(159, 170)(161, 184)(162, 185)(163, 186)(167, 187)(173, 190)(174, 188)(176, 191)(181, 189)(183, 192)(193, 337)(194, 234)(195, 267)(196, 236)(197, 239)(198, 249)(199, 265)(200, 229)(201, 374)(202, 301)(203, 232)(204, 243)(205, 251)(206, 242)(207, 230)(208, 233)(209, 231)(210, 250)(211, 237)(212, 266)(213, 235)(214, 241)(215, 238)(216, 343)(217, 259)(218, 311)(219, 260)(220, 273)(221, 261)(222, 262)(223, 274)(224, 383)(225, 275)(226, 258)(227, 263)(228, 348)(240, 338)(244, 377)(245, 271)(246, 270)(247, 305)(248, 272)(252, 302)(253, 300)(254, 373)(255, 269)(256, 264)(257, 268)(276, 292)(277, 369)(278, 293)(279, 367)(280, 284)(281, 288)(282, 358)(283, 362)(285, 355)(286, 382)(287, 384)(289, 356)(290, 380)(291, 381)(294, 375)(295, 350)(296, 378)(297, 379)(298, 376)(299, 352)(303, 370)(304, 366)(306, 368)(307, 371)(308, 361)(309, 364)(310, 363)(312, 359)(313, 365)(314, 372)(315, 329)(316, 334)(317, 360)(318, 323)(319, 321)(320, 357)(322, 346)(324, 345)(325, 353)(326, 347)(327, 354)(328, 344)(330, 349)(331, 340)(332, 341)(333, 351)(335, 339)(336, 342)
b: (1, 2)(3, 6)(4, 10)(5, 12)(7, 16)(8, 21)(9, 15)(11, 27)(13, 31)(14, 36)(17, 42)(18, 33)(19, 47)(20, 35)(22, 51)(23, 38)(24, 46)(25, 56)(26, 49)(28, 59)(29, 32)(30, 58)(34, 66)(37, 69)(39, 70)(40, 65)(41, 75)(43, 68)(44, 64)(45, 78)(48, 83)(50, 63)(52, 61)(53, 79)(54, 87)(55, 74)(57, 71)(60, 77)(62, 92)(67, 100)(72, 96)(73, 104)(76, 99)(80, 112)(81, 98)(82, 86)(84, 102)(85, 116)(88, 109)(89, 106)(90, 115)(91, 111)(93, 125)(94, 97)(95, 124)(101, 131)(103, 132)(105, 130)(107, 135)(108, 129)(110, 133)(113, 128)(114, 142)(117, 119)(118, 147)(120, 143)(121, 151)(122, 139)(123, 136)(126, 141)(127, 156)(134, 163)(137, 160)(138, 167)(140, 162)(144, 174)(145, 161)(146, 150)(148, 165)(149, 177)(152, 171)(153, 169)(154, 158)(155, 173)(157, 182)(159, 181)(164, 186)(166, 187)(168, 185)(170, 189)(172, 188)(175, 184)(176, 192)(178, 179)(180, 190)(183, 191)(193, 228)(194, 242)(195, 237)(196, 266)(197, 241)(198, 229)(199, 231)(200, 249)(201, 235)(202, 238)(203, 251)(204, 230)(205, 232)(206, 234)(207, 243)(208, 250)(209, 265)(210, 233)(211, 267)(212, 236)(213, 374)(214, 239)(215, 301)(216, 240)(217, 269)(218, 247)(219, 264)(220, 246)(221, 300)(222, 268)(223, 245)(224, 244)(225, 248)(226, 302)(227, 373)(252, 258)(253, 261)(254, 263)(255, 259)(256, 260)(257, 262)(270, 273)(271, 274)(272, 275)(280, 281)(282, 283)(284, 288)(285, 289)(286, 287)(290, 291)(305, 311)(308, 312)(309, 310)(317, 320)(318, 319)(321, 323)(322, 326)(324, 328)(325, 327)(337, 348)(338, 343)(344, 345)(346, 347)(353, 354)(355, 356)(357, 360)(358, 362)(359, 361)(363, 364)(377, 383)(380, 381)(382, 384)
c: (2, 4)(3, 19)(5, 34)(6, 41)(7, 8)(10, 25)(11, 61)(12, 52)(13, 14)(15, 30)(16, 17)(18, 77)(21, 71)(24, 85)(26, 66)(27, 75)(28, 29)(31, 32)(35, 56)(36, 57)(37, 51)(38, 39)(40, 103)(42, 59)(43, 50)(44, 45)(46, 110)(47, 49)(53, 54)(58, 60)(62, 117)(65, 119)(67, 83)(68, 69)(70, 78)(72, 73)(74, 95)(76, 82)(79, 80)(81, 141)(87, 136)(90, 149)(91, 132)(92, 133)(93, 94)(96, 97)(99, 100)(101, 102)(104, 123)(105, 109)(106, 107)(108, 166)(111, 116)(112, 125)(113, 114)(115, 172)(120, 121)(124, 126)(127, 178)(129, 179)(130, 131)(134, 147)(135, 142)(137, 138)(139, 159)(140, 146)(143, 144)(145, 191)(151, 190)(154, 160)(155, 187)(156, 188)(157, 158)(162, 163)(164, 165)(167, 180)(168, 171)(169, 170)(173, 177)(174, 182)(175, 176)(181, 183)(185, 186)(189, 192)(193, 284)(194, 304)(195, 321)(196, 277)(197, 303)(198, 287)(199, 289)(200, 376)(201, 357)(202, 325)(203, 341)(204, 291)(205, 328)(206, 363)(207, 375)(208, 340)(209, 350)(210, 326)(211, 315)(212, 362)(213, 313)(214, 359)(215, 349)(216, 288)(217, 361)(218, 327)(219, 290)(220, 358)(221, 324)(222, 322)(223, 285)(224, 360)(225, 323)(226, 364)(227, 286)(228, 292)(229, 298)(230, 294)(231, 295)(232, 332)(233, 331)(234, 366)(235, 365)(236, 369)(237, 329)(238, 330)(239, 370)(240, 293)(241, 312)(242, 310)(243, 381)(244, 372)(245, 299)(246, 367)(247, 333)(248, 334)(249, 384)(250, 347)(251, 344)(252, 307)(253, 342)(254, 379)(255, 306)(256, 378)(257, 339)(258, 309)(259, 308)(260, 380)(261, 345)(262, 346)(263, 382)(264, 296)(265, 356)(266, 283)(267, 319)(268, 335)(269, 368)(270, 279)(271, 352)(272, 316)(273, 282)(274, 355)(275, 318)(276, 348)(278, 338)(280, 337)(281, 343)(297, 373)(300, 336)(301, 353)(302, 371)(305, 351)(311, 354)(314, 377)(317, 383)(320, 374)
d: (1, 3, 20, 12)(2, 5, 35, 6)(4, 11, 56, 49)(7, 9, 31, 33)(8, 48, 32, 86)(10, 26, 25, 27)(13, 15, 16, 18)(14, 67, 17, 76)(19, 22, 52, 63)(21, 82, 29, 83)(23, 24, 64, 65)(28, 30, 71, 77)(34, 37, 41, 43)(36, 99, 42, 100)(38, 40, 44, 46)(39, 62, 45, 111)(47, 50, 61, 51)(53, 55, 96, 98)(54, 118, 97, 150)(57, 58, 59, 60)(66, 68, 75, 69)(70, 91, 78, 92)(72, 74, 79, 81)(73, 134, 80, 140)(84, 85, 88, 119)(87, 146, 94, 147)(89, 90, 128, 129)(93, 95, 136, 141)(101, 103, 105, 110)(102, 117, 109, 116)(104, 162, 112, 163)(106, 108, 113, 115)(107, 127, 114, 173)(120, 122, 160, 161)(121, 153, 154, 184)(123, 124, 125, 126)(130, 132, 131, 133)(135, 155, 142, 156)(137, 139, 143, 145)(138, 170, 144, 176)(148, 149, 152, 179)(151, 175, 158, 169)(157, 159, 190, 191)(164, 166, 168, 172)(165, 178, 171, 177)(167, 192, 174, 189)(180, 181, 182, 183)(185, 187, 186, 188)(193, 240, 216, 228)(194, 343, 252, 337)(195, 246, 225, 236)(196, 260, 270, 243)(197, 274, 255, 265)(198, 269, 227, 239)(199, 245, 223, 231)(200, 383, 254, 374)(201, 247, 224, 238)(202, 244, 218, 235)(203, 311, 253, 301)(204, 302, 219, 234)(205, 268, 221, 233)(206, 264, 226, 230)(207, 273, 256, 266)(208, 275, 257, 267)(209, 259, 271, 241)(210, 300, 222, 232)(211, 262, 272, 250)(212, 248, 220, 237)(213, 263, 377, 249)(214, 373, 217, 229)(215, 261, 305, 251)(242, 348, 258, 338)(276, 308, 278, 312)(277, 382, 279, 384)(280, 303, 281, 306)(282, 379, 283, 376)(284, 299, 288, 295)(285, 292, 289, 293)(286, 366, 287, 371)(290, 370, 291, 368)(294, 359, 296, 361)(297, 364, 298, 363)(304, 355, 307, 356)(309, 352, 310, 350)(313, 380, 314, 381)(315, 345, 316, 344)(317, 378, 320, 375)(318, 342, 319, 341)(321, 372, 323, 365)(322, 331, 326, 335)(324, 332, 328, 336)(325, 367, 327, 369)(329, 357, 334, 360)(330, 362, 333, 358)(339, 353, 340, 354)(346, 351, 347, 349)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 56 ]
384
-1 276 292 348 228
-2 276 193 292 337
-3 308 289 258 193
-4 280 348 228 284
-5 308 289 194 240
-6 312 228 252 285
-7 356 226 337 361
-8 265 364 280 217
-9 194 304 294 230
-10 288 193 281 337
-11 299 258 193 303
-12 242 312 216 285
-13 234 356 338 361
-14 265 278 366 217
-15 242 204 304 294
-16 355 302 348 359
-17 276 214 371 274
-18 258 219 296 307
-19 199 309 259 284
-20 278 293 338 240
-21 209 363 269 281
-22 352 299 245 271
-23 375 234 366 207
-24 287 204 273 317
-25 343 280 216 284
-26 194 240 295 306
-27 299 303 228 252
-28 352 226 337 370
-29 364 280 271 239
-30 310 291 194 230
-31 343 355 359 206
-32 363 214 281 274
-33 264 252 296 307
-34 199 259 293 304
-35 343 278 216 293
-36 209 278 366 269
-37 245 355 271 285
-38 243 375 366 206
-39 363 234 381 207
-40 264 287 196 317
-41 223 292 241 307
-42 276 271 239 371
-43 209 231 289 356
-44 378 226 260 371
-45 364 256 302 380
-46 286 320 270 230
-47 231 255 288 310
-48 298 303 229 197
-49 242 216 295 306
-50 199 265 295 350
-51 352 299 223 274
-52 288 310 223 241
-53 220 243 360 384
-54 224 358 249 381
-55 277 237 196 329
-56 288 281 338 240
-57 234 368 338 350
-58 242 309 290 204
-59 352 302 348 370
-60 310 258 291 219
-61 309 245 284 197
-62 297 313 204 273
-63 209 231 295 350
-64 256 378 302 371
-65 286 320 266 219
-66 231 255 293 304
-67 287 312 229 197
-68 199 265 355 285
-69 223 289 356 274
-70 243 364 380 206
-71 343 368 206 350
-72 256 236 360 384
-73 224 378 369 249
-74 266 277 195 329
-75 245 292 197 307
-76 286 308 255 373
-77 264 309 290 252
-78 363 226 260 381
-79 246 357 382 207
-80 375 201 367 263
-81 279 334 225 273
-82 297 259 227 306
-83 198 298 303 241
-84 200 376 370 239
-85 198 291 282 383
-86 297 255 306 373
-87 200 244 380 362
-88 254 269 368 379
-89 211 236 369 315
-90 345 325 195 262
-91 264 298 314 196
-92 297 313 270 230
-93 220 243 365 379
-94 254 235 358 381
-95 321 237 283 196
-96 212 357 260 382
-97 201 380 263 362
-98 279 334 248 270
-99 287 312 259 227
-100 198 286 308 241
-101 200 359 239 384
-102 376 214 249 370
-103 198 277 383 296
-104 200 244 378 369
-105 254 269 382 361
-106 212 267 369 315
-107 319 211 236 362
-108 345 248 325 208
-109 368 379 217 263
-110 374 279 227 294
-111 298 266 314 219
-112 254 375 235 367
-113 220 275 367 316
-114 246 358 272 318
-115 344 257 237 327
-116 377 290 283 229
-117 213 291 282 373
-118 330 213 313 238
-119 374 290 227 283
-120 353 222 267 324
-121 319 221 322 301
-122 232 332 208 340
-123 376 256 236 372
-124 266 323 282 195
-125 365 246 379 207
-126 321 225 283 273
-127 341 333 195 262
-128 246 367 272 316
-129 344 225 250 327
-130 359 217 263 384
-131 214 249 382 361
-132 277 377 229 296
-133 213 279 294 373
-134 320 213 325 238
-135 212 267 358 318
-136 376 212 260 372
-137 353 233 324 272
-138 221 331 301 316
-139 332 205 250 340
-140 377 247 327 317
-141 323 248 270 282
-142 220 275 319 362
-143 211 354 268 328
-144 311 335 205 315
-145 221 336 262 339
-146 333 314 218 383
-147 330 374 202 313
-148 365 235 215 349
-149 321 202 346 261
-150 333 377 247 314
-151 300 215 326 318
-152 244 305 372 351
-153 341 331 233 203
-154 311 205 326 318
-155 330 342 248 208
-156 341 333 257 237
-157 222 332 267 351
-158 319 232 322 305
-159 232 347 328 208
-160 275 210 354 328
-161 300 257 336 339
-162 320 325 218 383
-163 374 202 327 317
-164 353 235 357 215
-165 365 201 301 349
-166 202 334 261 340
-167 331 300 215 316
-168 244 354 305 360
-169 341 210 331 251
-170 233 344 203 326
-171 311 224 372 351
-172 218 251 339 329
-173 330 342 225 250
-174 232 335 315 305
-175 342 222 335 261
-176 253 322 268 345
-177 253 323 347 238
-178 321 203 247 346
-179 323 347 218 251
-180 233 336 272 349
-181 324 346 205 250
-182 211 332 268 351
-183 221 347 262 328
-184 253 342 268 335
-185 353 311 224 357
-186 354 201 301 360
-187 253 334 238 340
-188 203 247 339 329
-189 210 322 345 251
-190 275 210 336 349
-191 300 257 324 346
-192 222 344 326 261
-193 11 2 3 10
-194 26 5 30 9
-195 90 124 127 74
-196 55 91 40 95
-197 67 48 61 75
-198 100 103 83 85
-199 34 68 50 19
-200 101 104 84 87
-201 165 80 97 186
-202 166 147 149 163
-203 188 178 170 153
-204 24 58 15 62
-205 154 144 181 139
-206 70 38 71 31
-207 23 79 125 39
-208 122 155 159 108
-209 36 63 21 43
-210 189 190 169 160
-211 143 89 182 107
-212 135 136 106 96
-213 133 134 117 118
-214 102 17 32 131
-215 167 148 151 164
-216 12 35 25 49
-217 14 8 130 109
-218 146 179 172 162
-219 111 60 18 65
-220 113 93 53 142
-221 121 145 138 183
-222 157 192 120 175
-223 69 51 41 52
-224 171 73 185 54
-225 81 126 129 173
-226 44 78 28 7
-227 99 110 82 119
-228 1 4 27 6
-229 132 67 48 116
-230 46 92 30 9
-231 66 47 63 43
-232 122 158 159 174
-233 180 137 170 153
-234 23 13 57 39
-235 112 148 94 164
-236 89 123 72 107
-237 55 156 115 95
-238 187 177 134 118
-239 101 29 84 42
-240 56 26 5 20
-241 100 83 41 52
-242 12 58 15 49
-243 70 38 93 53
-244 168 104 152 87
-245 22 37 61 75
-246 79 114 125 128
-247 188 178 150 140
-248 155 108 141 98
-249 102 73 54 131
-250 181 139 129 173
-251 189 179 169 172
-252 33 77 27 6
-253 176 187 177 184
-254 88 112 94 105
-255 66 47 86 76
-256 45 123 72 64
-257 156 191 115 161
-258 11 3 60 18
-259 99 34 82 19
-260 44 78 136 96
-261 166 192 149 175
-262 90 145 127 183
-263 80 97 130 109
-264 33 77 91 40
-265 68 14 50 8
-266 111 124 74 65
-267 135 157 106 120
-268 143 176 182 184
-269 88 36 105 21
-270 46 92 141 98
-271 22 37 29 42
-272 114 180 137 128
-273 24 81 126 62
-274 69 17 51 32
-275 113 190 160 142
-276 1 2 17 42
-277 55 132 103 74
-278 35 14 36 20
-279 110 133 81 98
-280 25 4 29 8
-281 56 10 21 32
-282 124 117 85 141
-283 126 116 95 119
-284 25 4 61 19
-285 12 68 37 6
-286 100 46 65 76
-287 99 67 24 40
-288 56 47 52 10
-289 3 69 5 43
-290 77 58 116 119
-291 60 117 30 85
-292 1 2 41 75
-293 66 34 35 20
-294 110 133 15 9
-295 26 49 50 63
-296 33 132 103 18
-297 92 82 62 86
-298 111 91 48 83
-299 11 22 27 51
-300 167 191 161 151
-301 121 165 138 186
-302 45 59 16 64
-303 11 48 27 83
-304 66 34 15 9
-305 168 158 152 174
-306 26 49 82 86
-307 33 18 41 75
-308 100 3 5 76
-309 77 58 61 19
-310 47 60 30 52
-311 154 144 171 185
-312 99 12 67 6
-313 92 147 62 118
-314 111 91 146 150
-315 89 144 106 174
-316 167 113 138 128
-317 24 40 140 163
-318 154 135 114 151
-319 121 158 107 142
-320 46 134 162 65
-321 178 126 149 95
-322 121 176 189 158
-323 177 124 179 141
-324 191 137 181 120
-325 90 134 162 108
-326 154 170 192 151
-327 115 129 140 163
-328 143 159 160 183
-329 55 188 172 74
-330 155 147 118 173
-331 167 169 138 153
-332 122 157 182 139
-333 156 146 127 150
-334 187 166 81 98
-335 144 184 174 175
-336 145 190 180 161
-337 2 28 7 10
-338 56 13 57 20
-339 188 145 161 172
-340 187 122 166 139
-341 156 169 127 153
-342 155 173 184 175
-343 35 25 71 31
-344 115 170 192 129
-345 176 90 189 108
-346 178 191 181 149
-347 177 179 159 183
-348 1 4 59 16
-349 165 190 180 148
-350 57 71 50 63
-351 157 171 182 152
-352 22 59 28 51
-353 137 185 120 164
-354 143 168 160 186
-355 68 37 16 31
-356 13 69 7 43
-357 79 96 185 164
-358 135 114 94 54
-359 101 16 31 130
-360 168 72 53 186
-361 13 105 7 131
-362 107 97 87 142
-363 78 39 21 32
-364 45 70 29 8
-365 165 125 93 148
-366 23 14 36 38
-367 112 80 113 128
-368 88 57 71 109
-369 89 104 73 106
-370 102 59 28 84
-371 44 17 42 64
-372 123 136 171 152
-373 133 117 86 76
-374 110 147 119 163
-375 23 112 80 38
-376 123 102 136 84
-377 132 116 150 140
-378 44 104 73 64
-379 88 125 93 109
-380 45 70 97 87
-381 78 39 94 54
-382 79 105 96 131
-383 146 103 85 162
-384 101 72 53 130
0

**************