C4graphGraph forms for C4 [ 384, 60 ] = PL(MC3(6,32,1,17,15,16,1),[4^48,12^16])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 60 ] = PL(MC3(6,32,1,17,15,16,1),[4^48,12^16]).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {192, 202}, {192, 231}, {151, 215}, {171, 234}, {182, 247}, {179, 241}, {133, 198}, {169, 237}, {184, 252}, {153, 220}, {187, 254}, {186, 252}, {148, 220}, {157, 213}, {152, 208}, {161, 232}, {142, 196}, {141, 198}, {188, 247}, {174, 229}, {130, 206}, {135, 203}, {144, 221}, {154, 215}, {129, 207}, {176, 254}, {165, 234}, {190, 241}, {170, 250}, {191, 239}, {162, 243}, {189, 239}, {177, 229}, {134, 211}, {163, 246}, {158, 203}, {136, 221}, {140, 212}, {149, 204}, {180, 237}, {137, 211}, {178, 232}, {128, 220}, {166, 251}, {183, 234}, {145, 207}, {185, 231}, {179, 211}, {182, 215}, {141, 238}, {153, 250}, {180, 208}, {130, 231}, {187, 222}, {186, 223}, {151, 241}, {184, 223}, {161, 200}, {129, 235}, {144, 250}, {135, 237}, {142, 228}, {133, 238}, {188, 215}, {174, 197}, {154, 241}, {190, 211}, {157, 243}, {176, 222}, {165, 203}, {148, 251}, {134, 247}, {191, 206}, {152, 234}, {136, 251}, {189, 206}, {185, 202}, {158, 237}, {177, 197}, {162, 213}, {170, 221}, {163, 212}, {145, 233}, {169, 208}, {128, 250}, {178, 200}, {166, 220}, {140, 246}, {171, 208}, {183, 203}, {137, 247}, {149, 235}, {66, 195}, {76, 205}, {67, 194}, {110, 239}, {104, 235}, {92, 218}, {89, 222}, {97, 230}, {101, 226}, {73, 193}, {86, 222}, {80, 216}, {125, 245}, {67, 201}, {79, 197}, {117, 248}, {121, 244}, {88, 214}, {118, 249}, {100, 244}, {116, 228}, {72, 217}, {85, 199}, {120, 235}, {106, 254}, {111, 251}, {96, 245}, {109, 248}, {124, 233}, {68, 210}, {70, 209}, {82, 197}, {127, 231}, {103, 254}, {112, 233}, {93, 199}, {87, 204}, {81, 205}, {105, 245}, {94, 195}, {113, 239}, {66, 227}, {121, 216}, {70, 226}, {110, 202}, {73, 236}, {89, 252}, {80, 245}, {92, 249}, {71, 224}, {79, 232}, {104, 207}, {76, 230}, {86, 252}, {125, 214}, {88, 244}, {97, 205}, {118, 218}, {117, 219}, {116, 196}, {105, 216}, {127, 206}, {77, 255}, {111, 221}, {81, 226}, {124, 207}, {85, 225}, {101, 209}, {120, 204}, {106, 223}, {68, 242}, {96, 214}, {109, 219}, {72, 240}, {103, 223}, {71, 253}, {82, 232}, {113, 202}, {93, 225}, {100, 216}, {112, 204}, {94, 227}, {87, 233}, {3, 195}, {38, 230}, {9, 201}, {7, 199}, {6, 199}, {53, 246}, {33, 228}, {4, 195}, {61, 244}, {16, 219}, {59, 240}, {15, 194}, {15, 193}, {56, 246}, {47, 224}, {2, 210}, {10, 218}, {21, 196}, {8, 218}, {47, 253}, {32, 242}, {1, 210}, {29, 201}, {54, 226}, {14, 219}, {20, 193}, {18, 196}, {37, 243}, {20, 194}, {55, 224}, {25, 193}, {62, 230}, {30, 198}, {60, 229}, {39, 253}, {63, 229}, {41, 243}, {40, 242}, {35, 255}, {45, 242}, {53, 213}, {3, 225}, {59, 217}, {7, 227}, {4, 225}, {9, 236}, {6, 227}, {33, 198}, {16, 249}, {61, 214}, {56, 213}, {19, 253}, {62, 209}, {8, 248}, {1, 240}, {40, 217}, {37, 212}, {29, 236}, {2, 240}, {48, 194}, {10, 248}, {60, 200}, {25, 236}, {14, 249}, {63, 200}, {38, 209}, {32, 217}, {48, 201}, {5, 255}, {30, 228}, {21, 238}, {54, 205}, {18, 238}, {41, 212}, {1, 255}, {31, 224}, {45, 210}, {100, 356}, {126, 382}, {30, 287}, {84, 341}, {48, 306}, {130, 384}, {26, 281}, {108, 367}, {81, 341}, {107, 367}, {119, 371}, {54, 307}, {74, 335}, {99, 357}, {105, 367}, {116, 371}, {85, 349}, {109, 357}, {115, 379}, {50, 315}, {83, 346}, {82, 347}, {60, 309}, {90, 339}, {114, 379}, {24, 274}, {57, 307}, {43, 289}, {96, 362}, {112, 379}, {124, 375}, {34, 302}, {106, 358}, {8, 261}, {102, 363}, {120, 373}, {123, 374}, {18, 284}, {52, 314}, {37, 298}, {113, 382}, {31, 271}, {89, 329}, {38, 310}, {95, 335}, {113, 353}, {61, 300}, {92, 333}, {53, 295}, {146, 384}, {19, 256}, {46, 314}, {88, 332}, {98, 374}, {12, 281}, {78, 347}, {67, 342}, {64, 341}, {3, 276}, {75, 348}, {22, 257}, {91, 332}, {69, 349}, {13, 276}, {29, 260}, {28, 261}, {19, 265}, {49, 299}, {44, 311}, {65, 346}, {14, 274}, {42, 310}, {31, 259}, {29, 257}, {23, 267}, {122, 358}, {27, 261}, {66, 348}, {126, 352}, {6, 281}, {22, 265}, {123, 347}, {35, 258}, {1, 291}, {35, 257}, {32, 258}, {109, 335}, {49, 274}, {84, 375}, {54, 277}, {53, 273}, {83, 375}, {82, 374}, {14, 299}, {30, 315}, {97, 324}, {101, 320}, {5, 291}, {81, 375}, {36, 258}, {34, 260}, {124, 346}, {35, 260}, {39, 256}, {101, 322}, {107, 332}, {9, 289}, {168, 384}, {85, 381}, {52, 284}, {37, 269}, {18, 314}, {96, 328}, {48, 281}, {11, 289}, {60, 278}, {32, 267}, {57, 277}, {92, 368}, {8, 293}, {34, 271}, {26, 311}, {114, 351}, {115, 350}, {120, 341}, {50, 284}, {174, 384}, {76, 354}, {99, 333}, {112, 350}, {119, 345}, {36, 267}, {74, 357}, {95, 368}, {116, 347}, {27, 299}, {51, 259}, {3, 306}, {61, 268}, {46, 287}, {42, 283}, {31, 302}, {6, 311}, {22, 292}, {89, 363}, {51, 256}, {122, 329}, {23, 291}, {65, 373}, {55, 259}, {100, 336}, {64, 373}, {88, 365}, {75, 381}, {91, 365}, {19, 292}, {67, 372}, {90, 365}, {102, 337}, {44, 276}, {66, 378}, {28, 293}, {70, 383}, {105, 339}, {98, 345}, {106, 337}, {24, 293}, {78, 371}, {38, 283}, {12, 306}, {13, 306}, {69, 378}, {108, 339}, {28, 348}, {42, 362}, {34, 354}, {97, 289}, {111, 303}, {127, 319}, {2, 323}, {68, 261}, {43, 362}, {12, 334}, {93, 287}, {94, 284}, {122, 312}, {78, 269}, {52, 368}, {11, 334}, {98, 295}, {75, 269}, {70, 257}, {90, 285}, {95, 280}, {13, 325}, {76, 260}, {21, 349}, {9, 320}, {87, 285}, {123, 305}, {11, 320}, {62, 373}, {15, 324}, {2, 334}, {71, 267}, {64, 268}, {63, 371}, {49, 381}, {10, 327}, {77, 256}, {46, 355}, {39, 362}, {25, 340}, {15, 322}, {24, 342}, {77, 259}, {65, 271}, {45, 355}, {91, 277}, {110, 288}, {12, 323}, {77, 258}, {27, 340}, {17, 321}, {36, 372}, {110, 318}, {5, 340}, {118, 295}, {4, 342}, {59, 361}, {17, 323}, {7, 340}, {55, 356}, {17, 322}, {102, 309}, {125, 302}, {69, 273}, {83, 263}, {104, 316}, {16, 325}, {74, 287}, {17, 324}, {103, 305}, {126, 296}, {79, 280}, {80, 263}, {107, 316}, {40, 369}, {41, 368}, {72, 274}, {50, 361}, {99, 312}, {33, 381}, {26, 327}, {84, 265}, {73, 276}, {57, 356}, {56, 357}, {44, 369}, {114, 303}, {121, 292}, {127, 290}, {47, 369}, {86, 264}, {58, 356}, {108, 307}, {115, 300}, {117, 298}, {119, 296}, {47, 334}, {42, 328}, {122, 280}, {62, 346}, {78, 298}, {71, 291}, {117, 273}, {65, 292}, {94, 315}, {28, 378}, {63, 345}, {41, 335}, {90, 317}, {93, 314}, {23, 383}, {45, 325}, {10, 355}, {57, 336}, {46, 327}, {40, 321}, {22, 383}, {111, 262}, {24, 370}, {87, 317}, {95, 309}, {20, 383}, {25, 370}, {49, 349}, {75, 295}, {64, 300}, {44, 321}, {72, 293}, {91, 310}, {103, 266}, {13, 355}, {21, 378}, {69, 298}, {68, 299}, {43, 324}, {27, 372}, {51, 323}, {102, 278}, {74, 315}, {36, 342}, {58, 328}, {51, 321}, {7, 372}, {26, 361}, {98, 273}, {123, 264}, {114, 262}, {115, 263}, {125, 265}, {23, 354}, {56, 333}, {99, 278}, {107, 286}, {4, 370}, {20, 354}, {104, 286}, {121, 271}, {126, 264}, {5, 370}, {79, 312}, {50, 325}, {39, 336}, {108, 283}, {58, 322}, {16, 361}, {52, 333}, {11, 369}, {84, 302}, {58, 320}, {43, 336}, {118, 269}, {59, 327}, {33, 348}, {80, 301}, {119, 266}, {73, 311}, {86, 296}, {83, 301}, {55, 328}, {156, 285}, {164, 294}, {145, 277}, {173, 297}, {151, 275}, {167, 290}, {170, 301}, {132, 268}, {180, 317}, {162, 296}, {166, 300}, {183, 316}, {191, 308}, {187, 304}, {155, 279}, {181, 313}, {131, 270}, {178, 319}, {128, 270}, {149, 283}, {152, 279}, {177, 318}, {160, 303}, {159, 272}, {138, 282}, {163, 305}, {178, 288}, {177, 290}, {188, 303}, {139, 286}, {141, 280}, {134, 272}, {190, 297}, {142, 278}, {168, 304}, {167, 319}, {146, 266}, {175, 308}, {172, 304}, {186, 294}, {135, 282}, {134, 294}, {156, 316}, {152, 313}, {166, 263}, {155, 313}, {146, 305}, {149, 307}, {170, 268}, {145, 310}, {151, 304}, {150, 318}, {191, 279}, {162, 266}, {128, 297}, {186, 275}, {132, 301}, {131, 297}, {183, 285}, {180, 286}, {163, 264}, {187, 272}, {173, 262}, {147, 319}, {143, 290}, {160, 270}, {181, 282}, {143, 318}, {188, 270}, {135, 308}, {147, 288}, {139, 317}, {150, 288}, {142, 312}, {164, 275}, {141, 309}, {190, 262}, {175, 279}, {168, 272}, {159, 294}, {138, 308}, {172, 275}, {185, 377}, {139, 330}, {161, 352}, {136, 330}, {147, 337}, {137, 331}, {144, 339}, {175, 364}, {150, 338}, {164, 353}, {189, 376}, {143, 329}, {159, 344}, {154, 338}, {168, 352}, {158, 343}, {138, 326}, {167, 360}, {174, 353}, {184, 360}, {155, 330}, {182, 359}, {171, 376}, {157, 329}, {172, 376}, {169, 380}, {173, 376}, {148, 332}, {160, 377}, {156, 326}, {192, 282}, {164, 382}, {132, 351}, {133, 345}, {176, 364}, {131, 350}, {181, 360}, {179, 366}, {140, 337}, {129, 351}, {165, 379}, {153, 326}, {161, 382}, {185, 344}, {130, 352}, {176, 338}, {138, 366}, {175, 331}, {143, 363}, {137, 364}, {139, 366}, {136, 366}, {159, 377}, {140, 363}, {181, 338}, {158, 377}, {189, 343}, {167, 331}, {154, 360}, {133, 374}, {184, 331}, {171, 344}, {146, 353}, {147, 358}, {179, 326}, {173, 344}, {160, 343}, {169, 350}, {132, 380}, {192, 313}, {150, 364}, {165, 351}, {148, 367}, {172, 343}, {157, 358}, {156, 359}, {155, 359}, {182, 330}, {129, 380}, {144, 365}, {153, 359}, {131, 380} }>;

(II) A more general form is to represent the graph as the orbit of {192, 202} under the group generated by the following permutations:

a: (9, 15)(11, 17)(19, 31)(20, 29)(22, 34)(23, 35)(39, 55)(43, 58)(47, 51)(70, 76)(71, 77)(97, 101)(193, 236)(194, 201)(205, 226)(209, 230)(224, 256)(253, 259)(255, 291)(257, 354)(258, 267)(260, 383)(265, 302)(271, 292)(289, 322)(320, 324)(321, 369)(323, 334)(328, 362)(336, 356)
b: (86, 103)(89, 106)(126, 146)(143, 147)(161, 174)(177, 178)(197, 232)(200, 229)(222, 254)(223, 252)(264, 305)(266, 296)(288, 318)(290, 319)(329, 358)(337, 363)(352, 384)(353, 382)
c: (60, 79)(63, 82)(86, 103)(89, 106)(102, 122)(119, 123)(126, 146)(140, 157)(143, 147)(161, 174)(162, 163)(177, 178)(197, 200)(212, 243)(213, 246)(222, 254)(223, 252)(229, 232)(264, 266)(278, 312)(280, 309)(288, 318)(290, 319)(296, 305)(329, 337)(345, 374)(347, 371)(352, 384)(353, 382)(358, 363)
d: (1, 2)(3, 4)(5, 12)(6, 7)(8, 16)(9, 29)(10, 14)(11, 35)(13, 24)(15, 20)(17, 23)(18, 33)(19, 39)(21, 30)(22, 43)(25, 48)(26, 27)(28, 50)(31, 55)(32, 40)(34, 58)(36, 44)(37, 56)(38, 62)(41, 53)(42, 65)(45, 72)(46, 49)(47, 77)(51, 71)(52, 75)(54, 81)(57, 84)(59, 68)(60, 63)(61, 105)(64, 108)(66, 94)(67, 73)(69, 74)(70, 97)(76, 101)(78, 99)(79, 82)(80, 88)(83, 91)(85, 93)(86, 89)(87, 129)(90, 132)(92, 118)(95, 98)(96, 121)(100, 125)(102, 119)(103, 106)(104, 112)(107, 115)(109, 117)(110, 113)(111, 153)(114, 156)(116, 142)(120, 149)(122, 123)(124, 145)(126, 143)(127, 130)(128, 136)(131, 139)(133, 141)(134, 137)(135, 171)(138, 173)(140, 162)(144, 170)(146, 147)(148, 166)(150, 164)(151, 154)(152, 158)(155, 160)(157, 163)(159, 175)(161, 177)(165, 183)(167, 168)(169, 180)(172, 181)(174, 178)(176, 186)(179, 190)(182, 188)(184, 187)(185, 191)(189, 192)(193, 194)(196, 228)(197, 232)(198, 238)(200, 229)(201, 236)(202, 239)(203, 234)(204, 235)(205, 226)(206, 231)(207, 233)(208, 237)(209, 230)(210, 240)(212, 213)(214, 216)(217, 242)(218, 249)(219, 248)(220, 251)(221, 250)(222, 252)(223, 254)(224, 259)(243, 246)(244, 245)(253, 256)(255, 334)(257, 289)(258, 369)(260, 320)(261, 361)(262, 326)(263, 332)(264, 329)(265, 336)(266, 337)(267, 321)(268, 339)(269, 333)(270, 330)(271, 328)(272, 331)(273, 335)(274, 355)(275, 338)(276, 342)(277, 375)(278, 371)(279, 377)(280, 374)(281, 340)(282, 376)(283, 373)(284, 348)(285, 351)(286, 350)(287, 349)(288, 353)(290, 352)(291, 323)(292, 362)(293, 325)(294, 364)(295, 368)(296, 363)(297, 366)(298, 357)(299, 327)(300, 367)(301, 365)(302, 356)(303, 359)(304, 360)(305, 358)(306, 370)(307, 341)(308, 344)(309, 345)(310, 346)(311, 372)(312, 347)(313, 343)(314, 381)(315, 378)(316, 379)(317, 380)(318, 382)(319, 384)(322, 354)(324, 383)
e: (61, 80)(64, 83)(87, 104)(88, 105)(90, 107)(91, 108)(112, 129)(115, 132)(120, 124)(144, 148)(145, 149)(166, 170)(204, 207)(214, 245)(216, 244)(220, 250)(221, 251)(233, 235)(263, 268)(277, 307)(283, 310)(285, 316)(286, 317)(300, 301)(332, 339)(341, 375)(346, 373)(350, 380)(351, 379)(365, 367)
f: (3, 6)(4, 7)(8, 14)(10, 16)(13, 26)(24, 27)(28, 49)(45, 59)(46, 50)(66, 85)(68, 72)(93, 94)(195, 199)(210, 240)(217, 242)(218, 249)(219, 248)(225, 227)(261, 274)(276, 311)(281, 306)(284, 314)(287, 315)(293, 299)(325, 327)(340, 370)(342, 372)(348, 381)(349, 378)(355, 361)
g: (18, 30)(21, 33)(37, 53)(41, 56)(52, 74)(69, 75)(78, 98)(92, 109)(95, 99)(116, 133)(117, 118)(141, 142)(196, 198)(212, 246)(213, 243)(218, 248)(219, 249)(228, 238)(269, 273)(278, 309)(280, 312)(284, 315)(287, 314)(295, 298)(333, 335)(345, 371)(347, 374)(348, 378)(349, 381)(357, 368)
h: (110, 127)(113, 130)(134, 151)(137, 154)(150, 167)(159, 172)(164, 168)(175, 181)(176, 184)(185, 189)(186, 187)(191, 192)(202, 206)(211, 241)(215, 247)(222, 252)(223, 254)(231, 239)(272, 275)(279, 313)(282, 308)(288, 319)(290, 318)(294, 304)(331, 338)(343, 377)(344, 376)(352, 382)(353, 384)(360, 364)
m: (8, 14)(10, 16)(28, 49)(46, 50)(66, 85)(93, 94)(195, 225)(199, 227)(218, 249)(219, 248)(261, 299)(274, 293)(284, 314)(287, 315)(325, 355)(327, 361)(348, 381)(349, 378)
n1: (2, 5)(3, 9)(4, 11)(6, 15)(7, 17)(8, 19)(10, 22)(12, 25)(13, 29)(14, 31)(16, 34)(18, 54, 30, 38)(20, 26)(21, 57, 33, 42)(23, 59)(24, 47)(27, 51)(28, 39)(35, 45)(36, 40)(37, 80)(41, 83)(43, 66)(44, 67)(46, 70)(48, 73)(49, 55)(50, 76)(52, 81, 74, 62)(53, 61)(56, 64)(58, 85)(60, 104)(63, 107)(65, 92, 84, 109)(68, 77)(69, 100, 75, 96)(71, 72)(78, 105)(79, 87)(82, 90)(86, 128)(88, 98)(89, 131)(91, 133)(93, 101)(94, 97)(95, 124)(99, 120)(102, 129)(103, 111)(106, 114)(108, 116)(110, 152)(112, 122)(113, 155)(115, 157)(117, 121, 118, 125)(119, 148)(123, 144)(126, 153)(127, 135)(130, 138)(132, 140)(134, 151)(136, 146)(137, 172)(139, 174)(141, 145)(142, 149)(143, 169)(147, 165)(150, 171)(154, 159)(156, 161)(158, 167)(160, 184)(162, 166)(163, 170)(164, 182)(168, 179)(173, 176)(175, 189)(177, 180)(178, 183)(181, 185)(186, 188)(187, 190)(193, 281)(194, 311)(195, 289)(196, 307, 228, 283)(197, 317)(198, 310, 238, 277)(199, 322)(200, 316)(201, 276)(202, 313)(203, 319)(204, 312)(205, 315, 230, 284)(206, 308)(207, 309)(208, 318)(209, 314, 226, 287)(210, 255)(211, 304)(212, 301)(213, 300)(214, 273, 244, 295)(215, 294)(216, 269, 245, 298)(217, 267)(218, 265, 248, 292)(219, 271, 249, 302)(220, 296)(221, 305)(222, 297)(223, 303)(224, 274)(225, 320)(227, 324)(229, 286)(231, 282)(232, 285)(233, 280)(234, 288)(235, 278)(236, 306)(237, 290)(239, 279)(240, 291)(241, 272)(242, 258)(243, 263)(246, 268)(247, 275)(250, 264)(251, 266)(252, 270)(253, 293)(254, 262)(256, 261)(257, 355)(259, 299)(260, 325)(321, 372)(323, 340)(326, 352)(327, 383)(328, 349, 356, 381)(329, 350)(330, 353)(331, 343)(332, 345)(333, 341, 357, 373)(334, 370)(335, 346, 368, 375)(336, 348, 362, 378)(337, 351)(338, 344)(339, 347)(342, 369)(354, 361)(358, 379)(359, 382)(360, 377)(363, 380)(364, 376)(365, 374)(366, 384)(367, 371)
a1: (1, 3)(2, 13)(4, 5)(6, 32)(7, 36)(8, 9)(10, 11)(12, 45)(14, 15)(16, 17)(18, 31, 30, 19)(20, 49)(21, 34, 33, 22)(23, 85)(24, 25)(26, 40)(27, 67)(28, 29)(35, 66)(37, 54, 53, 38)(39, 52, 55, 74)(41, 57, 56, 42)(43, 92, 58, 109)(44, 59)(46, 47)(48, 68)(50, 51)(60, 80)(61, 79)(62, 78, 81, 98)(63, 83)(64, 82)(65, 116, 84, 133)(69, 76, 75, 70)(71, 93)(72, 73)(77, 94)(86, 104)(87, 103)(88, 122)(89, 107)(90, 106)(91, 157)(95, 100, 99, 96)(97, 118, 101, 117)(102, 105)(108, 140)(110, 111)(112, 146)(113, 114)(115, 174)(119, 124)(120, 123)(121, 142, 125, 141)(126, 129)(127, 128)(130, 131)(132, 161)(134, 135)(136, 150)(137, 138)(139, 176)(143, 148)(144, 147)(145, 162)(149, 163)(151, 152)(153, 167)(154, 155)(156, 184)(158, 159)(160, 185)(164, 165)(166, 177)(168, 169)(170, 178)(171, 172)(173, 189)(175, 179)(180, 187)(181, 182)(183, 186)(188, 192)(190, 191)(193, 274)(194, 299)(195, 255)(196, 302, 198, 292)(197, 300)(199, 267)(200, 301)(201, 261)(202, 303)(203, 294)(204, 305)(205, 295, 209, 298)(206, 297)(207, 296)(208, 304)(210, 306)(211, 308)(212, 307, 246, 283)(213, 310, 243, 277)(214, 280, 244, 312)(215, 313)(216, 278, 245, 309)(217, 311)(218, 320, 248, 289)(219, 324, 249, 322)(220, 290)(221, 288)(222, 286)(223, 285)(224, 287, 253, 314)(225, 291)(226, 273, 230, 269)(227, 258)(228, 265, 238, 271)(229, 263)(231, 270)(232, 268)(233, 266)(234, 275)(235, 264)(236, 293)(237, 272)(239, 262)(240, 276)(241, 279)(242, 281)(247, 282)(250, 319)(251, 318)(252, 316)(254, 317)(256, 284, 259, 315)(257, 378, 260, 348)(321, 361)(323, 325)(326, 331)(327, 369)(328, 335, 336, 333)(329, 332)(330, 338)(334, 355)(337, 339)(340, 342)(341, 374, 373, 347)(343, 344)(345, 346, 371, 375)(349, 354, 381, 383)(350, 384)(351, 382)(352, 380)(353, 379)(356, 357, 362, 368)(358, 365)(359, 360)(363, 367)(364, 366)
b1: (87, 104)(90, 107)(112, 129)(115, 132)(144, 148)(166, 170)(204, 235)(207, 233)(220, 250)(221, 251)(263, 301)(268, 300)(285, 316)(286, 317)(332, 365)(339, 367)(350, 380)(351, 379)
c1: (135, 152)(138, 155)(158, 171)(160, 173)(179, 182)(188, 190)(203, 234)(208, 237)(211, 247)(215, 241)(262, 303)(270, 297)(279, 308)(282, 313)(326, 359)(330, 366)(343, 376)(344, 377)
d1: (111, 128)(114, 131)(135, 152)(136, 153)(138, 155)(139, 156)(158, 171)(160, 173)(165, 169)(179, 182)(180, 183)(188, 190)(203, 208)(211, 247)(215, 241)(220, 251)(221, 250)(234, 237)(262, 270)(279, 308)(282, 313)(285, 317)(286, 316)(297, 303)(326, 330)(343, 376)(344, 377)(350, 379)(351, 380)(359, 366)
e1: (19, 31)(22, 34)(39, 55)(43, 58)(70, 76)(97, 101)(205, 226)(209, 230)(224, 253)(256, 259)(257, 260)(265, 302)(271, 292)(289, 320)(322, 324)(328, 362)(336, 356)(354, 383)
f1: (18, 30)(21, 33)(52, 74)(69, 75)(92, 109)(117, 118)(196, 228)(198, 238)(218, 248)(219, 249)(269, 298)(273, 295)(284, 315)(287, 314)(333, 357)(335, 368)(348, 378)(349, 381)
g1: (38, 54)(42, 57)(62, 81)(65, 84)(96, 100)(121, 125)(205, 230)(209, 226)(214, 244)(216, 245)(265, 292)(271, 302)(277, 310)(283, 307)(328, 356)(336, 362)(341, 373)(346, 375)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 60 ]
384
-1 210 255 291 240
-2 210 323 334 240
-3 276 225 195 306
-4 342 225 370 195
-5 255 291 370 340
-6 199 311 281 227
-7 199 227 372 340
-8 248 293 261 218
-9 320 201 289 236
-10 355 248 327 218
-11 320 289 334 369
-12 323 334 281 306
-13 276 355 325 306
-14 299 249 219 274
-15 322 324 193 194
-16 325 249 361 219
-17 321 322 323 324
-18 314 238 196 284
-19 253 265 256 292
-20 354 193 194 383
-21 378 238 349 196
-22 265 257 292 383
-23 354 267 291 383
-24 342 293 370 274
-25 236 193 370 340
-26 311 281 327 361
-27 299 261 372 340
-28 378 293 348 261
-29 201 257 236 260
-30 198 287 315 228
-31 224 302 259 271
-32 242 267 258 217
-33 198 348 381 228
-34 354 302 260 271
-35 255 257 258 260
-36 342 267 258 372
-37 243 298 212 269
-38 209 310 283 230
-39 253 256 336 362
-40 242 321 369 217
-41 243 212 335 368
-42 310 283 328 362
-43 289 324 336 362
-44 276 321 311 369
-45 242 210 355 325
-46 287 355 314 327
-47 253 224 334 369
-48 201 281 194 306
-49 299 381 349 274
-50 325 315 284 361
-51 321 256 323 259
-52 333 368 314 284
-53 213 246 273 295
-54 277 226 205 307
-55 224 356 259 328
-56 333 213 246 357
-57 277 356 336 307
-58 320 322 356 328
-59 217 327 240 361
-60 309 200 278 229
-61 244 300 268 214
-62 209 346 230 373
-63 200 345 371 229
-64 341 300 268 373
-65 346 292 271 373
-66 378 227 348 195
-67 342 201 194 372
-68 242 210 299 261
-69 298 378 349 273
-70 209 257 226 383
-71 253 267 224 291
-72 293 217 240 274
-73 276 311 236 193
-74 287 335 357 315
-75 269 348 381 295
-76 354 205 260 230
-77 255 256 258 259
-78 298 269 347 371
-79 232 312 280 197
-80 245 301 216 263
-81 341 375 226 205
-82 374 232 347 197
-83 375 301 346 263
-84 341 265 375 302
-85 199 225 381 349
-86 264 222 252 296
-87 233 204 317 285
-88 244 332 365 214
-89 363 222 252 329
-90 365 317 339 285
-91 310 277 365 332
-92 333 368 249 218
-93 199 287 225 314
-94 227 315 195 284
-95 309 280 335 368
-96 245 214 328 362
-97 289 324 205 230
-98 374 345 273 295
-99 278 333 312 357
-100 244 356 336 216
-101 209 320 322 226
-102 363 309 278 337
-103 254 266 223 305
-104 286 235 316 207
-105 245 367 216 339
-106 254 223 358 337
-107 286 332 367 316
-108 367 283 339 307
-109 335 357 248 219
-110 288 202 239 318
-111 221 303 251 262
-112 233 379 204 350
-113 353 202 239 382
-114 379 303 262 351
-115 300 379 350 263
-116 347 228 371 196
-117 298 248 273 219
-118 269 249 218 295
-119 266 345 371 296
-120 341 235 204 373
-121 244 292 216 271
-122 312 280 358 329
-123 264 374 347 305
-124 375 233 346 207
-125 265 245 214 302
-126 264 352 382 296
-127 231 319 290 206
-128 220 297 270 250
-129 235 380 207 351
-130 231 352 206 384
-131 297 270 380 350
-132 268 301 380 351
-133 198 374 345 238
-134 211 247 272 294
-135 308 203 237 282
-136 330 221 366 251
-137 331 364 211 247
-138 308 366 282 326
-139 286 330 366 317
-140 363 212 246 337
-141 198 309 280 238
-142 278 312 228 196
-143 363 290 318 329
-144 221 365 250 339
-145 233 277 310 207
-146 353 266 305 384
-147 319 288 358 337
-148 220 332 367 251
-149 235 204 283 307
-150 364 288 338 318
-151 275 215 304 241
-152 234 279 313 208
-153 220 326 359 250
-154 215 338 360 241
-155 330 279 313 359
-156 326 359 316 285
-157 243 213 358 329
-158 343 377 203 237
-159 344 377 272 294
-160 343 377 270 303
-161 352 232 200 382
-162 243 266 213 296
-163 264 212 246 305
-164 275 353 294 382
-165 234 203 379 351
-166 220 300 251 263
-167 319 331 290 360
-168 352 304 272 384
-169 237 380 350 208
-170 221 268 301 250
-171 376 234 344 208
-172 275 343 376 304
-173 297 376 344 262
-174 353 229 197 384
-175 308 331 364 279
-176 254 364 222 338
-177 290 229 197 318
-178 319 232 200 288
-179 211 366 326 241
-180 286 237 317 208
-181 313 282 338 360
-182 330 247 215 359
-183 234 203 316 285
-184 331 223 360 252
-185 231 344 377 202
-186 275 223 294 252
-187 254 222 304 272
-188 247 215 270 303
-189 343 376 206 239
-190 297 211 262 241
-191 308 279 206 239
-192 231 202 313 282
-193 25 15 73 20
-194 67 15 48 20
-195 66 3 4 94
-196 116 18 21 142
-197 177 79 82 174
-198 33 133 30 141
-199 93 6 7 85
-200 178 60 161 63
-201 67 48 29 9
-202 110 113 192 185
-203 165 135 158 183
-204 112 149 87 120
-205 81 97 54 76
-206 189 191 127 130
-207 145 124 104 129
-208 169 180 171 152
-209 101 70 38 62
-210 1 45 2 68
-211 134 179 190 137
-212 37 41 140 163
-213 56 157 162 53
-214 88 125 61 96
-215 154 188 182 151
-216 121 100 80 105
-217 59 72 40 32
-218 92 8 118 10
-219 14 16 117 109
-220 166 148 128 153
-221 111 144 136 170
-222 176 187 89 86
-223 103 106 184 186
-224 55 47 71 31
-225 3 4 93 85
-226 101 70 81 54
-227 66 6 94 7
-228 33 116 30 142
-229 177 60 63 174
-230 38 62 97 76
-231 192 127 130 185
-232 79 178 82 161
-233 112 145 124 87
-234 165 171 183 152
-235 104 149 129 120
-236 25 29 73 9
-237 135 158 169 180
-238 133 18 141 21
-239 110 189 113 191
-240 1 2 59 72
-241 154 179 190 151
-242 45 68 40 32
-243 157 37 41 162
-244 88 121 100 61
-245 80 125 105 96
-246 56 140 53 163
-247 188 134 137 182
-248 117 8 10 109
-249 14 92 16 118
-250 144 170 128 153
-251 111 166 136 148
-252 89 184 86 186
-253 47 71 39 19
-254 176 187 103 106
-255 77 1 35 5
-256 77 39 51 19
-257 22 35 70 29
-258 77 35 36 32
-259 55 77 51 31
-260 34 35 29 76
-261 68 27 28 8
-262 111 190 114 173
-263 166 80 115 83
-264 123 126 86 163
-265 22 125 84 19
-266 146 103 162 119
-267 23 36 71 32
-268 132 170 61 64
-269 78 37 118 75
-270 188 160 128 131
-271 121 34 31 65
-272 187 134 168 159
-273 69 117 53 98
-274 24 14 49 72
-275 172 151 164 186
-276 44 13 3 73
-277 57 145 91 54
-278 99 102 60 142
-279 155 191 152 175
-280 122 79 95 141
-281 12 26 48 6
-282 135 181 192 138
-283 38 149 42 108
-284 50 94 18 52
-285 90 156 183 87
-286 180 104 139 107
-287 46 93 30 74
-288 110 178 147 150
-289 11 9 97 43
-290 143 177 167 127
-291 1 23 5 71
-292 22 121 19 65
-293 24 28 72 8
-294 134 159 164 186
-295 118 53 75 98
-296 126 162 86 119
-297 190 128 173 131
-298 78 69 37 117
-299 68 14 27 49
-300 166 115 61 64
-301 132 80 170 83
-302 34 125 84 31
-303 111 188 114 160
-304 187 168 172 151
-305 123 146 103 163
-306 12 13 3 48
-307 57 149 108 54
-308 135 191 138 175
-309 102 60 95 141
-310 145 91 38 42
-311 44 26 6 73
-312 99 122 79 142
-313 155 181 192 152
-314 46 93 18 52
-315 50 94 30 74
-316 156 104 183 107
-317 90 180 139 87
-318 110 143 177 150
-319 167 178 147 127
-320 11 101 58 9
-321 44 17 40 51
-322 101 58 15 17
-323 12 2 17 51
-324 15 17 97 43
-325 45 13 16 50
-326 156 179 138 153
-327 46 26 59 10
-328 55 58 96 42
-329 143 89 122 157
-330 155 136 182 139
-331 167 137 184 175
-332 88 91 148 107
-333 99 56 92 52
-334 11 12 2 47
-335 95 41 74 109
-336 100 57 39 43
-337 102 147 106 140
-338 154 176 181 150
-339 144 90 105 108
-340 25 5 27 7
-341 81 84 64 120
-342 67 24 36 4
-343 189 158 160 172
-344 159 171 173 185
-345 133 63 119 98
-346 124 83 62 65
-347 78 123 82 116
-348 33 66 28 75
-349 69 49 85 21
-350 112 169 115 131
-351 132 165 114 129
-352 168 126 161 130
-353 113 146 174 164
-354 23 34 20 76
-355 45 13 46 10
-356 55 100 57 58
-357 99 56 74 109
-358 122 157 147 106
-359 155 156 182 153
-360 154 167 181 184
-361 26 59 16 50
-362 39 96 42 43
-363 143 89 102 140
-364 176 137 150 175
-365 88 144 90 91
-366 179 136 138 139
-367 148 105 107 108
-368 92 95 41 52
-369 11 44 47 40
-370 24 25 4 5
-371 78 116 63 119
-372 67 36 27 7
-373 62 64 65 120
-374 133 123 82 98
-375 124 81 83 84
-376 189 171 172 173
-377 158 159 160 185
-378 66 69 28 21
-379 165 112 114 115
-380 132 169 129 131
-381 33 49 85 75
-382 113 126 161 164
-383 22 23 70 20
-384 146 168 130 174
0

**************