[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 84 ] =
PL(Curtain_48(1,17,7,23,24),[6^32,8^24]).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {192, 213}, {192, 220}, {192, 250}, {188, 253}, {190, 255}, {185,
250}, {167, 227}, {154, 223}, {184, 255}, {189, 250}, {180, 253}, {182, 255},
{186, 240}, {137, 194}, {162, 233}, {155, 208}, {154, 214}, {128, 205}, {177,
252}, {134, 201}, {137, 198}, {144, 223}, {141, 221}, {157, 205}, {131, 210},
{140, 221}, {139, 217}, {162, 240}, {148, 199}, {158, 205}, {169, 253}, {143,
218}, {191, 234}, {144, 197}, {128, 214}, {160, 246}, {137, 209}, {143, 214},
{178, 235}, {146, 201}, {166, 253}, {161, 250}, {163, 254}, {135, 216}, {188,
220}, {134, 231}, {173, 204}, {135, 230}, {154, 251}, {146, 240}, {165, 198},
{191, 220}, {135, 227}, {137, 237}, {145, 244}, {134, 224}, {130, 229}, {184,
223}, {156, 251}, {189, 213}, {141, 228}, {167, 206}, {164, 206}, {141, 230},
{162, 206}, {184, 213}, {186, 212}, {139, 228}, {158, 241}, {155, 244}, {144,
255}, {150, 249}, {129, 241}, {128, 241}, {189, 204}, {160, 210}, {171, 217},
{143, 252}, {159, 236}, {186, 206}, {152, 237}, {169, 220}, {160, 213}, {158,
235}, {142, 248}, {191, 201}, {146, 234}, {155, 225}, {188, 198}, {183, 205},
{157, 225}, {169, 212}, {167, 216}, {101, 228}, {103, 230}, {83, 208}, {65,
196}, {74, 207}, {125, 251}, {69, 194}, {83, 212}, {97, 230}, {117, 242}, {102,
238}, {113, 248}, {93, 215}, {98, 233}, {121, 244}, {99, 237}, {93, 210}, {78,
222}, {87, 199}, {101, 247}, {73, 218}, {120, 235}, {69, 209}, {112, 228}, {106,
252}, {117, 237}, {75, 210}, {73, 211}, {126, 229}, {74, 214}, {110, 242}, {99,
254}, {109, 240}, {86, 200}, {71, 216}, {126, 225}, {75, 234}, {80, 242}, {110,
204}, {68, 231}, {102, 197}, {68, 224}, {89, 252}, {99, 198}, {82, 244}, {87,
241}, {68, 227}, {120, 223}, {81, 249}, {96, 201}, {121, 208}, {83, 249}, {103,
202}, {106, 196}, {107, 197}, {106, 218}, {120, 200}, {73, 248}, {74, 251}, {84,
225}, {110, 217}, {117, 204}, {103, 221}, {87, 236}, {102, 221}, {101, 217},
{72, 245}, {75, 246}, {121, 199}, {93, 226}, {1, 193}, {53, 245}, {1, 195}, {19,
209}, {58, 249}, {5, 193}, {51, 247}, {55, 242}, {5, 195}, {25, 222}, {3, 203},
{48, 248}, {43, 227}, {37, 236}, {9, 195}, {35, 233}, {25, 211}, {28, 215}, {32,
235}, {7, 203}, {34, 238}, {31, 211}, {8, 196}, {31, 209}, {7, 215}, {19, 195},
{17, 193}, {10, 219}, {26, 203}, {62, 236}, {17, 194}, {18, 196}, {32, 246},
{50, 234}, {61, 229}, {22, 207}, {55, 238}, {37, 254}, {11, 215}, {23, 202},
{46, 243}, {5, 219}, {29, 194}, {8, 232}, {46, 207}, {20, 246}, {48, 211}, {6,
226}, {62, 218}, {58, 222}, {22, 243}, {17, 247}, {61, 219}, {19, 245}, {25,
254}, {7, 239}, {32, 200}, {10, 226}, {35, 202}, {29, 247}, {31, 245}, {3, 232},
{42, 193}, {3, 239}, {4, 232}, {2, 239}, {1, 239}, {58, 212}, {10, 229}, {18,
224}, {56, 202}, {55, 197}, {35, 208}, {40, 219}, {61, 200}, {46, 216}, {16,
231}, {22, 238}, {62, 199}, {18, 232}, {8, 243}, {48, 203}, {37, 222}, {28,
231}, {23, 233}, {49, 207}, {30, 224}, {28, 226}, {12, 243}, {15, 271}, {67,
323}, {56, 312}, {47, 303}, {36, 292}, {79, 334}, {82, 339}, {33, 291}, {81,
339}, {67, 321}, {53, 311}, {114, 368}, {3, 256}, {72, 331}, {115, 368}, {4,
256}, {91, 351}, {41, 301}, {24, 284}, {100, 352}, {89, 348}, {43, 301}, {56,
318}, {101, 355}, {49, 310}, {109, 362}, {122, 370}, {6, 271}, {57, 304}, {23,
286}, {59, 305}, {69, 335}, {48, 315}, {90, 337}, {104, 355}, {44, 288}, {89,
341}, {78, 322}, {68, 328}, {98, 366}, {2, 271}, {21, 280}, {15, 258}, {1, 271},
{72, 326}, {61, 307}, {49, 319}, {41, 295}, {20, 282}, {100, 362}, {33, 302},
{16, 256}, {79, 351}, {66, 338}, {102, 375}, {22, 260}, {125, 367}, {127, 365},
{119, 356}, {36, 304}, {38, 306}, {64, 341}, {100, 369}, {51, 293}, {91, 333},
{52, 290}, {92, 330}, {82, 325}, {54, 302}, {84, 332}, {60, 292}, {92, 324},
{26, 259}, {27, 258}, {59, 289}, {154, 384}, {127, 357}, {12, 279}, {110, 373},
{111, 372}, {63, 291}, {123, 359}, {93, 320}, {116, 361}, {42, 308}, {80, 334},
{95, 321}, {8, 279}, {91, 379}, {96, 320}, {19, 306}, {26, 315}, {125, 348},
{13, 303}, {55, 277}, {127, 349}, {33, 261}, {72, 364}, {113, 341}, {17, 308},
{66, 359}, {59, 286}, {38, 259}, {92, 377}, {109, 328}, {122, 351}, {9, 303},
{79, 361}, {71, 353}, {57, 287}, {34, 260}, {15, 297}, {126, 344}, {70, 353},
{15, 295}, {64, 360}, {36, 268}, {26, 306}, {24, 304}, {115, 347}, {9, 288},
{41, 256}, {91, 370}, {83, 377}, {114, 345}, {37, 265}, {80, 380}, {54, 282},
{13, 288}, {56, 278}, {104, 326}, {6, 297}, {125, 338}, {41, 281}, {69, 373},
{47, 286}, {89, 360}, {63, 269}, {119, 325}, {49, 258}, {71, 372}, {113, 322},
{127, 332}, {50, 262}, {100, 336}, {52, 257}, {60, 265}, {123, 333}, {124, 330},
{16, 295}, {73, 382}, {70, 369}, {42, 285}, {23, 303}, {59, 259}, {36, 284},
{98, 346}, {33, 280}, {82, 363}, {51, 266}, {92, 357}, {32, 282}, {9, 306}, {21,
302}, {97, 346}, {112, 331}, {27, 295}, {90, 358}, {43, 279}, {53, 264}, {116,
329}, {71, 376}, {111, 336}, {124, 323}, {39, 359}, {62, 382}, {105, 297}, {12,
333}, {20, 342}, {47, 364}, {87, 276}, {50, 369}, {111, 300}, {121, 314}, {21,
337}, {70, 258}, {2, 327}, {85, 272}, {80, 277}, {76, 266}, {86, 272}, {78,
264}, {13, 330}, {81, 278}, {27, 348}, {97, 294}, {90, 274}, {105, 289}, {14,
327}, {63, 374}, {94, 279}, {104, 289}, {84, 286}, {38, 365}, {45, 358}, {45,
353}, {88, 276}, {77, 257}, {52, 376}, {75, 262}, {30, 337}, {6, 342}, {51,
355}, {114, 290}, {123, 298}, {50, 352}, {64, 274}, {57, 363}, {107, 313}, {4,
343}, {76, 287}, {65, 274}, {60, 367}, {119, 292}, {95, 267}, {107, 319}, {108,
312}, {118, 290}, {52, 353}, {88, 269}, {96, 309}, {11, 349}, {115, 293}, {124,
298}, {77, 282}, {67, 283}, {14, 343}, {44, 373}, {39, 382}, {94, 263}, {122,
291}, {29, 327}, {46, 372}, {35, 377}, {118, 300}, {66, 281}, {112, 299}, {10,
342}, {85, 265}, {45, 369}, {106, 310}, {105, 308}, {108, 305}, {40, 374}, {67,
285}, {24, 327}, {54, 361}, {103, 312}, {116, 299}, {118, 278}, {14, 367}, {90,
315}, {40, 330}, {63, 349}, {108, 270}, {25, 378}, {77, 302}, {44, 335}, {43,
328}, {47, 331}, {31, 378}, {86, 307}, {84, 305}, {97, 260}, {112, 277}, {116,
273}, {126, 283}, {21, 371}, {30, 376}, {13, 357}, {64, 297}, {76, 293}, {98,
267}, {18, 376}, {57, 339}, {39, 333}, {40, 323}, {86, 317}, {60, 343}, {42,
321}, {104, 259}, {124, 272}, {30, 371}, {44, 321}, {113, 287}, {66, 301}, {81,
318}, {77, 290}, {123, 276}, {16, 352}, {70, 310}, {39, 343}, {24, 360}, {118,
262}, {85, 292}, {108, 285}, {20, 358}, {88, 298}, {107, 281}, {5, 374}, {53,
326}, {94, 301}, {7, 371}, {27, 367}, {14, 378}, {114, 262}, {29, 360}, {74,
319}, {12, 379}, {65, 310}, {95, 296}, {2, 378}, {58, 322}, {54, 334}, {11,
371}, {94, 294}, {96, 280}, {78, 311}, {111, 278}, {4, 382}, {65, 315}, {38,
349}, {88, 291}, {45, 342}, {105, 274}, {115, 264}, {119, 268}, {28, 352}, {76,
304}, {11, 374}, {34, 351}, {109, 275}, {85, 298}, {95, 288}, {99, 284}, {117,
266}, {122, 261}, {146, 275}, {189, 316}, {180, 309}, {153, 283}, {174, 300},
{132, 263}, {147, 277}, {174, 296}, {157, 283}, {151, 273}, {181, 316}, {183,
317}, {148, 287}, {188, 311}, {177, 314}, {156, 272}, {183, 314}, {190, 307},
{131, 269}, {133, 267}, {164, 309}, {173, 316}, {152, 266}, {165, 311}, {138,
281}, {151, 260}, {173, 313}, {129, 276}, {139, 285}, {175, 313}, {159, 265},
{176, 296}, {165, 316}, {167, 318}, {164, 318}, {147, 264}, {158, 261}, {145,
270}, {179, 300}, {157, 317}, {179, 275}, {174, 270}, {156, 317}, {34, 384},
{132, 294}, {130, 289}, {181, 273}, {164, 257}, {175, 263}, {144, 313}, {162,
267}, {145, 312}, {173, 263}, {133, 296}, {148, 314}, {131, 307}, {151, 294},
{134, 309}, {190, 269}, {165, 273}, {138, 319}, {180, 257}, {130, 308}, {147,
293}, {178, 261}, {147, 299}, {161, 280}, {139, 305}, {183, 268}, {151, 299},
{174, 275}, {177, 268}, {176, 270}, {163, 284}, {192, 383}, {170, 362}, {191,
383}, {133, 324}, {175, 366}, {172, 365}, {152, 345}, {131, 320}, {168, 363},
{170, 366}, {184, 380}, {150, 339}, {141, 331}, {187, 381}, {136, 335}, {186,
381}, {176, 375}, {142, 326}, {172, 358}, {185, 370}, {149, 345}, {129, 332},
{150, 347}, {156, 338}, {79, 384}, {166, 361}, {182, 359}, {136, 346}, {145,
325}, {182, 354}, {169, 381}, {148, 322}, {155, 332}, {168, 383}, {179, 363},
{181, 364}, {130, 344}, {138, 336}, {153, 323}, {142, 341}, {185, 354}, {159,
324}, {149, 334}, {140, 336}, {190, 354}, {171, 375}, {160, 380}, {153, 325},
{135, 346}, {163, 381}, {171, 373}, {178, 365}, {187, 356}, {138, 362}, {133,
356}, {161, 320}, {170, 328}, {129, 357}, {182, 338}, {136, 364}, {149, 368},
{132, 354}, {159, 377}, {136, 366}, {150, 368}, {152, 383}, {179, 340}, {161,
329}, {149, 380}, {178, 344}, {142, 355}, {177, 348}, {176, 350}, {166, 329},
{187, 340}, {180, 347}, {185, 329}, {168, 345}, {175, 350}, {143, 379}, {172,
344}, {170, 350}, {171, 350}, {132, 370}, {163, 340}, {120, 384}, {140, 372},
{181, 335}, {128, 379}, {140, 375}, {168, 340}, {153, 356}, {172, 337}, {166,
347}, {187, 324} }>;
(II) A more general form is to represent the graph as the orbit of {192, 213}
under the group generated by the following permutations:
a: (1, 3)(2, 7)(4, 5)(6, 48)(8, 42)(9, 41)(10, 73)(11, 14)(12, 67)(13, 66)(15,
26)(16, 19)(17, 18)(20, 113)(21, 24)(22, 108)(23, 107)(25, 93)(27, 38)(28,
31)(29, 30)(32, 148)(33, 36)(34, 145)(35, 144)(37, 131)(39, 40)(43, 44)(45,
142)(46, 139)(47, 138)(49, 59)(50, 53)(51, 52)(54, 57)(55, 56)(58, 160)(60,
63)(61, 62)(64, 90)(65, 105)(68, 69)(70, 104)(71, 101)(72, 100)(74, 84)(75,
78)(76, 77)(79, 82)(80, 81)(83, 184)(85, 88)(86, 87)(89, 172)(91, 153)(92,
182)(94, 95)(96, 99)(97, 176)(98, 175)(102, 103)(106, 130)(109, 181)(110,
167)(111, 112)(114, 115)(116, 179)(117, 164)(118, 147)(119, 122)(120, 121)(123,
124)(125, 127)(126, 143)(128, 157)(129, 156)(132, 133)(134, 137)(135, 171)(136,
170)(140, 141)(146, 165)(149, 150)(151, 174)(152, 180)(154, 155)(158, 183)(159,
190)(161, 163)(162, 173)(166, 168)(169, 192)(177, 178)(185, 187)(186, 189)(188,
191)(193, 232)(194, 224)(195, 256)(196, 308)(197, 202)(198, 201)(199, 200)(203,
271)(204, 206)(207, 305)(208, 223)(209, 231)(210, 222)(211, 226)(212, 213)(214,
225)(215, 378)(216, 217)(218, 229)(219, 382)(227, 373)(228, 372)(230, 375)(233,
313)(234, 311)(235, 314)(236, 307)(237, 309)(238, 312)(240, 316)(241, 317)(242,
318)(243, 285)(244, 384)(245, 352)(246, 322)(247, 376)(248, 342)(249, 380)(250,
381)(251, 332)(252, 344)(253, 383)(254, 320)(255, 377)(257, 266)(258, 259)(260,
270)(261, 268)(262, 264)(263, 267)(265, 269)(272, 276)(273, 275)(277, 278)(279,
321)(280, 284)(281, 303)(282, 287)(283, 379)(286, 319)(288, 301)(289, 310)(290,
293)(291, 292)(294, 296)(295, 306)(297, 315)(299, 300)(302, 304)(323, 333)(324,
354)(325, 351)(326, 369)(327, 371)(328, 335)(329, 340)(330, 359)(331, 336)(334,
339)(337, 360)(338, 357)(341, 358)(343, 374)(345, 347)(346, 350)(348, 365)(349,
367)(353, 355)(356, 370)(361, 363)(362, 364) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 5)(3, 42)(4, 67)(6, 19)(7, 17)(8, 108)(9, 15)(10, 31)(11, 29)(12,
145)(13, 27)(14, 40)(16, 44)(18, 139)(20, 53)(21, 51)(22, 56)(23, 49)(24,
63)(25, 61)(26, 105)(28, 69)(30, 101)(32, 78)(33, 76)(34, 81)(35, 74)(36,
88)(37, 86)(38, 64)(39, 153)(41, 95)(43, 176)(45, 72)(46, 103)(47, 70)(48,
130)(50, 181)(52, 112)(54, 115)(55, 164)(57, 122)(58, 120)(59, 65)(60, 124)(62,
157)(66, 133)(68, 171)(71, 141)(73, 126)(75, 165)(77, 147)(79, 150)(80, 180)(82,
91)(83, 154)(84, 106)(87, 183)(89, 127)(90, 104)(92, 125)(93, 137)(94, 174)(96,
117)(97, 111)(98, 138)(99, 131)(100, 136)(102, 167)(107, 162)(109, 175)(110,
134)(113, 178)(114, 116)(118, 151)(119, 123)(121, 128)(129, 177)(132, 179)(135,
140)(142, 172)(143, 155)(144, 186)(146, 173)(148, 158)(149, 166)(152, 161)(156,
159)(160, 188)(163, 190)(168, 185)(169, 184)(182, 187)(189, 191)(193, 239)(194,
215)(195, 271)(196, 305)(197, 206)(198, 210)(199, 205)(200, 222)(201, 204)(202,
207)(203, 308)(208, 214)(209, 226)(211, 229)(212, 223)(213, 220)(216, 221)(217,
224)(218, 225)(219, 378)(227, 375)(228, 376)(230, 372)(231, 373)(232, 285)(233,
319)(234, 316)(235, 322)(236, 317)(237, 320)(238, 318)(240, 313)(241, 314)(242,
309)(243, 312)(244, 379)(245, 342)(246, 311)(247, 371)(248, 344)(249, 384)(250,
383)(251, 377)(252, 332)(253, 380)(254, 307)(255, 381)(256, 321)(257, 277)(258,
303)(259, 274)(260, 278)(261, 287)(262, 273)(263, 275)(264, 282)(265, 272)(266,
280)(267, 281)(268, 276)(269, 284)(270, 279)(283, 382)(286, 310)(288, 295)(289,
315)(290, 299)(291, 304)(292, 298)(293, 302)(294, 300)(296, 301)(297, 306)(323,
343)(324, 338)(325, 333)(326, 358)(327, 374)(328, 350)(329, 345)(330, 367)(331,
353)(334, 347)(335, 352)(336, 346)(337, 355)(339, 351)(340, 354)(341, 365)(348,
357)(349, 360)(356, 359)(361, 368)(362, 366)(363, 370)(364, 369)
c: (3, 15)(4, 27)(6, 7)(8, 49)(9, 42)(10, 11)(12, 74)(13, 67)(17, 19)(18,
70)(20, 21)(23, 108)(24, 25)(26, 105)(29, 31)(30, 45)(32, 33)(35, 145)(36,
37)(38, 130)(39, 125)(43, 138)(47, 139)(48, 64)(50, 134)(51, 53)(55, 151)(57,
58)(61, 63)(62, 177)(68, 100)(72, 101)(73, 89)(75, 96)(76, 78)(80, 116)(82,
83)(86, 88)(87, 183)(91, 154)(92, 153)(94, 107)(97, 102)(98, 176)(110, 181)(111,
167)(114, 180)(117, 165)(118, 164)(119, 159)(120, 122)(123, 156)(126, 127)(129,
157)(132, 144)(135, 140)(136, 171)(149, 166)(152, 188)(160, 161)(162, 174)(168,
169)(179, 186)(184, 185)(193, 195)(194, 209)(196, 310)(197, 294)(198, 237)(199,
314)(200, 291)(201, 234)(202, 312)(203, 297)(204, 316)(205, 241)(206, 300)(207,
243)(208, 244)(210, 320)(211, 360)(212, 363)(213, 250)(214, 379)(215, 226)(216,
372)(217, 364)(218, 252)(219, 374)(220, 383)(221, 230)(222, 304)(223, 370)(224,
369)(225, 332)(227, 336)(228, 331)(229, 349)(231, 352)(232, 258)(233, 270)(235,
261)(236, 268)(238, 260)(239, 271)(240, 275)(242, 273)(245, 247)(246, 280)(248,
341)(249, 339)(251, 333)(253, 345)(254, 284)(255, 354)(256, 295)(257, 290)(259,
289)(262, 309)(263, 313)(264, 293)(265, 292)(266, 311)(267, 296)(269, 307)(272,
298)(274, 315)(276, 317)(277, 299)(278, 318)(279, 319)(281, 301)(282, 302)(283,
357)(285, 303)(286, 305)(287, 322)(288, 321)(306, 308)(323, 330)(324, 356)(325,
377)(326, 355)(327, 378)(328, 362)(329, 380)(334, 361)(335, 373)(337, 358)(338,
359)(340, 381)(342, 371)(343, 367)(344, 365)(346, 375)(347, 368)(348, 382)(350,
366)(351, 384)(353, 376)
d: (1, 2)(3, 7)(4, 11)(5, 14)(6, 15)(8, 21)(9, 25)(10, 27)(12, 33)(13, 37)(16,
28)(17, 29)(18, 30)(19, 31)(20, 49)(22, 54)(23, 58)(24, 42)(26, 48)(32, 74)(34,
79)(35, 83)(36, 67)(38, 73)(39, 63)(40, 60)(41, 93)(43, 96)(44, 99)(45, 70)(46,
77)(47, 78)(50, 100)(51, 101)(52, 71)(53, 72)(55, 80)(56, 81)(57, 108)(59,
113)(61, 125)(62, 127)(64, 105)(65, 90)(66, 131)(68, 134)(69, 137)(75, 138)(76,
139)(82, 145)(84, 148)(85, 124)(86, 156)(87, 129)(88, 123)(89, 130)(91, 122)(92,
159)(94, 161)(95, 163)(97, 166)(98, 169)(102, 149)(103, 150)(104, 142)(106,
172)(107, 160)(109, 146)(110, 117)(111, 118)(112, 147)(114, 140)(115, 141)(116,
151)(119, 153)(120, 154)(121, 155)(126, 177)(128, 158)(132, 185)(133, 187)(135,
180)(136, 188)(143, 178)(144, 184)(152, 171)(157, 183)(162, 186)(164, 167)(165,
181)(168, 176)(170, 191)(173, 189)(174, 179)(175, 192)(182, 190)(193, 327)(195,
378)(196, 337)(197, 380)(198, 335)(199, 332)(200, 251)(201, 328)(202, 249)(207,
282)(210, 281)(211, 306)(212, 233)(213, 313)(214, 235)(215, 256)(216, 257)(217,
266)(218, 365)(219, 367)(220, 366)(221, 368)(222, 303)(225, 314)(226, 295)(227,
309)(228, 293)(229, 348)(230, 347)(232, 371)(234, 362)(236, 357)(237, 373)(238,
334)(243, 302)(246, 319)(248, 259)(250, 263)(252, 344)(253, 346)(254, 288)(258,
342)(260, 361)(261, 379)(262, 336)(264, 331)(265, 330)(267, 381)(268, 283)(269,
359)(270, 363)(279, 280)(284, 321)(285, 304)(286, 322)(287, 305)(289, 341)(290,
372)(291, 333)(292, 323)(294, 329)(296, 340)(301, 320)(307, 338)(308, 360)(310,
358)(311, 364)(312, 339)(343, 374)(345, 375)(349, 382)(350, 383)
C4[ 384, 84 ]
384
-1 193 271 195 239
-2 378 271 239 327
-3 232 256 203 239
-4 232 343 256 382
-5 374 193 195 219
-6 297 342 226 271
-7 203 215 239 371
-8 232 243 279 196
-9 288 303 195 306
-10 342 226 229 219
-11 374 215 349 371
-12 243 333 279 379
-13 330 288 357 303
-14 343 367 378 327
-15 297 258 271 295
-16 231 352 256 295
-17 308 247 193 194
-18 232 376 224 196
-19 209 245 195 306
-20 342 246 358 282
-21 280 302 337 371
-22 243 238 260 207
-23 286 233 202 303
-24 304 327 360 284
-25 254 211 222 378
-26 203 259 315 306
-27 367 258 348 295
-28 231 352 215 226
-29 247 194 327 360
-30 376 224 337 371
-31 209 211 245 378
-32 200 235 246 282
-33 280 291 302 261
-34 238 260 351 384
-35 233 377 202 208
-36 268 292 304 284
-37 254 265 222 236
-38 365 259 349 306
-39 343 333 359 382
-40 330 374 323 219
-41 256 301 281 295
-42 308 321 193 285
-43 279 301 227 328
-44 288 321 335 373
-45 342 353 358 369
-46 243 216 207 372
-47 286 331 364 303
-48 211 203 248 315
-49 319 310 258 207
-50 352 234 369 262
-51 266 355 247 293
-52 353 376 257 290
-53 264 245 311 326
-54 334 302 282 361
-55 242 277 238 197
-56 278 202 312 318
-57 363 287 304 339
-58 222 212 322 249
-59 286 289 259 305
-60 265 343 367 292
-61 200 229 219 307
-62 199 236 382 218
-63 374 269 291 349
-64 297 341 360 274
-65 310 315 196 274
-66 301 281 359 338
-67 321 323 283 285
-68 231 224 227 328
-69 209 335 194 373
-70 353 310 258 369
-71 353 376 216 372
-72 331 364 245 326
-73 211 248 382 218
-74 319 214 207 251
-75 210 234 246 262
-76 287 266 293 304
-77 257 290 302 282
-78 264 222 311 322
-79 334 361 351 384
-80 242 277 334 380
-81 278 249 339 318
-82 363 244 325 339
-83 212 377 249 208
-84 286 332 225 305
-85 265 298 292 272
-86 200 272 317 307
-87 199 276 236 241
-88 276 298 269 291
-89 341 348 360 252
-90 358 315 337 274
-91 333 379 370 351
-92 330 377 324 357
-93 210 320 215 226
-94 279 301 294 263
-95 288 321 267 296
-96 309 320 201 280
-97 346 260 294 230
-98 233 267 366 346
-99 198 254 237 284
-100 352 336 369 362
-101 355 247 217 228
-102 221 375 238 197
-103 221 202 312 230
-104 289 355 259 326
-105 297 308 289 274
-106 310 196 218 252
-107 319 313 281 197
-108 312 270 305 285
-109 275 240 328 362
-110 242 204 217 373
-111 278 300 336 372
-112 331 277 299 228
-113 341 287 322 248
-114 290 345 368 262
-115 264 368 347 293
-116 299 273 361 329
-117 242 266 204 237
-118 278 300 290 262
-119 268 356 292 325
-120 200 223 235 384
-121 199 244 314 208
-122 291 370 261 351
-123 276 298 333 359
-124 330 298 323 272
-125 367 348 338 251
-126 344 225 283 229
-127 332 365 357 349
-128 214 379 205 241
-129 276 332 357 241
-130 308 289 344 229
-131 210 320 269 307
-132 354 370 294 263
-133 267 356 324 296
-134 231 309 201 224
-135 346 216 227 230
-136 364 366 335 346
-137 198 209 237 194
-138 319 281 336 362
-139 217 228 305 285
-140 221 375 336 372
-141 221 331 228 230
-142 341 355 248 326
-143 214 379 218 252
-144 255 223 313 197
-145 244 312 270 325
-146 275 201 234 240
-147 264 277 299 293
-148 199 287 322 314
-149 334 345 368 380
-150 368 347 249 339
-151 299 260 294 273
-152 266 345 237 383
-153 323 356 325 283
-154 223 214 251 384
-155 244 332 225 208
-156 272 338 251 317
-157 225 205 283 317
-158 235 205 261 241
-159 265 377 236 324
-160 210 213 246 380
-161 320 280 250 329
-162 233 267 206 240
-163 254 381 284 340
-164 309 257 206 318
-165 198 311 316 273
-166 253 347 361 329
-167 216 227 206 318
-168 363 345 383 340
-169 220 253 212 381
-170 366 328 350 362
-171 375 217 350 373
-172 365 344 358 337
-173 313 204 316 263
-174 275 300 270 296
-175 366 313 350 263
-176 375 270 350 296
-177 268 314 348 252
-178 365 344 235 261
-179 275 363 300 340
-180 253 309 257 347
-181 364 335 316 273
-182 255 354 359 338
-183 268 314 205 317
-184 255 223 213 380
-185 354 370 250 329
-186 212 381 206 240
-187 356 324 381 340
-188 198 220 253 311
-189 213 204 250 316
-190 255 354 269 307
-191 220 201 234 383
-192 220 213 250 383
-193 1 5 17 42
-194 69 137 17 29
-195 1 5 19 9
-196 18 106 8 65
-197 55 144 102 107
-198 99 165 188 137
-199 121 148 62 87
-200 61 86 32 120
-201 134 146 191 96
-202 23 56 35 103
-203 3 26 48 7
-204 110 189 117 173
-205 157 158 128 183
-206 167 162 164 186
-207 22 46 49 74
-208 121 155 35 83
-209 69 137 19 31
-210 93 160 75 131
-211 25 48 73 31
-212 58 169 83 186
-213 189 192 160 184
-214 143 154 128 74
-215 11 93 28 7
-216 46 167 135 71
-217 110 101 171 139
-218 143 62 73 106
-219 5 61 40 10
-220 188 169 191 192
-221 102 103 140 141
-222 78 25 58 37
-223 154 144 184 120
-224 68 134 18 30
-225 155 157 126 84
-226 93 6 28 10
-227 68 167 135 43
-228 101 112 139 141
-229 126 61 130 10
-230 135 103 97 141
-231 68 134 16 28
-232 3 4 18 8
-233 23 35 162 98
-234 146 191 50 75
-235 178 158 32 120
-236 37 159 62 87
-237 99 137 117 152
-238 22 55 34 102
-239 1 2 3 7
-240 146 162 109 186
-241 158 128 129 87
-242 55 110 80 117
-243 22 12 46 8
-244 121 155 145 82
-245 72 19 31 53
-246 160 20 75 32
-247 101 17 29 51
-248 113 48 73 142
-249 58 81 83 150
-250 189 192 161 185
-251 154 156 125 74
-252 143 89 177 106
-253 166 188 169 180
-254 99 25 37 163
-255 144 190 182 184
-256 3 4 16 41
-257 77 180 52 164
-258 15 70 27 49
-259 26 59 38 104
-260 22 34 151 97
-261 33 122 178 158
-262 114 50 118 75
-263 132 94 173 175
-264 78 147 115 53
-265 37 60 159 85
-266 51 117 152 76
-267 133 95 162 98
-268 177 36 183 119
-269 88 190 63 131
-270 176 145 108 174
-271 1 2 15 6
-272 156 124 85 86
-273 165 181 116 151
-274 90 105 64 65
-275 146 179 174 109
-276 88 123 129 87
-277 55 112 80 147
-278 56 111 81 118
-279 12 94 8 43
-280 33 161 96 21
-281 66 138 41 107
-282 77 20 32 54
-283 67 157 126 153
-284 99 24 36 163
-285 67 139 42 108
-286 23 47 59 84
-287 57 113 148 76
-288 44 13 95 9
-289 59 104 105 130
-290 77 114 52 118
-291 33 88 122 63
-292 36 60 85 119
-293 147 115 51 76
-294 132 94 151 97
-295 15 16 27 41
-296 176 133 95 174
-297 15 6 105 64
-298 88 123 124 85
-299 112 147 116 151
-300 111 179 118 174
-301 66 94 41 43
-302 33 77 21 54
-303 23 13 47 9
-304 24 57 36 76
-305 59 84 139 108
-306 26 38 19 9
-307 190 61 86 131
-308 17 105 42 130
-309 134 180 96 164
-310 70 49 106 65
-311 165 78 188 53
-312 56 145 103 108
-313 144 107 173 175
-314 121 177 148 183
-315 90 26 48 65
-316 165 189 181 173
-317 156 157 183 86
-318 56 167 81 164
-319 49 138 74 107
-320 93 161 96 131
-321 44 67 95 42
-322 78 58 113 148
-323 67 124 40 153
-324 187 133 92 159
-325 145 82 119 153
-326 104 72 53 142
-327 2 24 14 29
-328 68 170 43 109
-329 166 116 161 185
-330 13 124 92 40
-331 112 47 72 141
-332 155 127 84 129
-333 12 123 91 39
-334 79 80 149 54
-335 44 69 136 181
-336 100 111 138 140
-337 90 172 30 21
-338 66 156 125 182
-339 57 81 82 150
-340 187 168 179 163
-341 89 113 64 142
-342 45 6 20 10
-343 14 4 60 39
-344 178 126 172 130
-345 168 114 149 152
-346 135 136 97 98
-347 166 180 115 150
-348 89 177 125 27
-349 11 38 127 63
-350 176 170 171 175
-351 34 122 79 91
-352 100 16 28 50
-353 45 70 71 52
-354 132 190 182 185
-355 101 104 51 142
-356 187 133 119 153
-357 13 92 127 129
-358 45 90 172 20
-359 66 123 39 182
-360 89 24 29 64
-361 166 79 116 54
-362 100 170 138 109
-363 57 168 179 82
-364 47 136 181 72
-365 178 38 127 172
-366 136 170 98 175
-367 14 125 27 60
-368 114 115 149 150
-369 45 100 70 50
-370 132 122 91 185
-371 11 7 30 21
-372 111 46 71 140
-373 44 110 69 171
-374 11 5 40 63
-375 176 102 171 140
-376 71 18 30 52
-377 35 92 159 83
-378 2 14 25 31
-379 143 12 91 128
-380 80 149 160 184
-381 187 169 163 186
-382 4 39 62 73
-383 168 191 192 152
-384 154 34 79 120
0