C4graphConstructions for C4[ 384, 99 ] = CPM(8,2,12,1)

[Home] [Table] [Glossary] [Families]

On this page are all constructions for C4[ 384, 99 ]. See Glossary for some detail.

CPM( 8, 2, 12, 1) = CPM( 8, 2, 12, 3) = UG(ATD[384, 336])

      = UG(ATD[384, 337]) = UG(ATD[384, 338]) = ATD[ 8, 1]#ATD[ 48, 7]

      = ATD[ 16, 1]#ATD[ 24, 1] = ATD[ 16, 1]#ATD[ 24, 4] = ATD[ 16, 1]#ATD[ 48, 7]

      = ATD[ 24, 1]#ATD[ 48, 7] = ATD[ 24, 4]#ATD[ 48, 7] = ATD[ 48, 7]#DCyc[ 8]

      = ATD[ 48, 7]#ATD[ 48, 7] = UG(Rmap(768,268) { 24, 4| 8}_ 48) = MG(Rmap(384,397) { 8, 24| 8}_ 24)

      = DG(Rmap(384,397) { 8, 24| 8}_ 24) = DG(Rmap(384,538) { 24, 8| 8}_ 24) = MG(Rmap(384,580) { 8, 48| 8}_ 48)

      = DG(Rmap(384,580) { 8, 48| 8}_ 48) = DG(Rmap(384,622) { 48, 8| 8}_ 48) = BGCG(PS( 8, 24; 5); K2;{6, 7, 8, 9})

      = AT[384, 58]

Cyclic coverings

mod 48:
12345678
1 1 47 - - 0 0 - - -
2 - - - - 28 30 0 - 0
3 - - 1 47 41 21 - - -
4 0 - 7 - - - 23 25 -
5 0 18 20 27 - - - - -
6 - 0 - - - 23 25 25 -
7 - - - 23 25 - 23 - 43
8 - 0 - - - - 5 23 25

mod 48:
12345678
1 - - 0 0 - - 0 34 -
2 - - 4 18 - 0 - - 0
3 0 30 44 - - - - 15 -
4 0 - - - - 1 15 19 -
5 - 0 - - - 19 - 9 43
6 - - - 33 47 29 - - 33
7 0 14 - 33 29 - - - -
8 - 0 - - 5 39 15 - -