[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 102 ] =
PL(MBr(2,96;17)).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {149, 212}, {152, 217}, {150, 212}, {151, 213}, {150, 213}, {148,
208}, {153, 221}, {152, 220}, {149, 209}, {149, 208}, {152, 221}, {150, 209},
{151, 220}, {150, 216}, {151, 217}, {151, 216}, {145, 193}, {146, 193}, {145,
196}, {146, 196}, {147, 197}, {146, 197}, {148, 204}, {149, 205}, {148, 205},
{160, 249}, {146, 200}, {147, 201}, {147, 200}, {160, 252}, {161, 253}, {148,
201}, {160, 253}, {147, 204}, {159, 252}, {158, 248}, {159, 249}, {159, 248},
{157, 244}, {158, 244}, {159, 245}, {158, 245}, {156, 240}, {157, 241}, {157,
240}, {158, 241}, {156, 236}, {157, 237}, {156, 237}, {154, 232}, {155, 233},
{155, 232}, {156, 233}, {155, 236}, {152, 224}, {153, 225}, {153, 224}, {154,
225}, {153, 228}, {154, 228}, {155, 229}, {154, 229}, {86, 214}, {107, 235},
{87, 214}, {107, 234}, {87, 213}, {108, 238}, {109, 239}, {86, 213}, {108, 239},
{109, 238}, {67, 199}, {66, 199}, {108, 234}, {108, 235}, {106, 226}, {106,
227}, {66, 200}, {105, 227}, {112, 250}, {67, 200}, {105, 226}, {112, 251},
{106, 230}, {107, 231}, {106, 231}, {107, 230}, {112, 254}, {113, 255}, {112,
255}, {113, 254}, {69, 209}, {70, 210}, {111, 251}, {111, 250}, {73, 223}, {69,
210}, {72, 223}, {70, 209}, {83, 203}, {84, 204}, {110, 246}, {111, 247}, {110,
247}, {111, 246}, {96, 251}, {96, 252}, {110, 242}, {110, 243}, {109, 243}, {83,
204}, {84, 203}, {109, 242}, {98, 194}, {75, 234}, {98, 195}, {75, 233}, {97,
195}, {95, 252}, {97, 194}, {95, 251}, {98, 198}, {99, 199}, {76, 233}, {98,
199}, {99, 198}, {76, 234}, {72, 224}, {99, 203}, {73, 224}, {99, 202}, {100,
206}, {101, 207}, {100, 207}, {101, 206}, {100, 202}, {100, 203}, {93, 237},
{102, 214}, {103, 215}, {92, 237}, {102, 215}, {103, 214}, {92, 238}, {104,
218}, {93, 238}, {104, 219}, {102, 210}, {102, 211}, {78, 248}, {101, 211},
{104, 222}, {105, 223}, {79, 248}, {101, 210}, {104, 223}, {105, 222}, {79,
247}, {78, 247}, {90, 227}, {89, 227}, {65, 253}, {103, 219}, {64, 253}, {89,
228}, {103, 218}, {64, 254}, {90, 228}, {65, 254}, {1, 193}, {2, 194}, {21,
212}, {22, 212}, {45, 239}, {1, 194}, {44, 239}, {2, 193}, {25, 221}, {22, 211},
{24, 221}, {21, 211}, {24, 222}, {25, 222}, {41, 225}, {42, 226}, {48, 249},
{61, 244}, {5, 207}, {62, 244}, {48, 250}, {4, 207}, {42, 225}, {41, 226}, {62,
243}, {61, 243}, {8, 217}, {8, 218}, {4, 208}, {18, 198}, {5, 208}, {47, 250},
{19, 198}, {19, 197}, {47, 249}, {18, 197}, {44, 240}, {58, 230}, {7, 218}, {59,
230}, {45, 240}, {7, 217}, {59, 229}, {58, 229}, {10, 232}, {11, 232}, {56,
219}, {56, 220}, {30, 246}, {31, 246}, {35, 202}, {31, 245}, {35, 201}, {30,
245}, {55, 220}, {11, 231}, {55, 219}, {10, 231}, {36, 201}, {17, 255}, {36,
202}, {16, 255}, {27, 235}, {39, 215}, {28, 236}, {38, 215}, {50, 195}, {49,
195}, {49, 196}, {50, 196}, {27, 236}, {28, 235}, {53, 205}, {52, 205}, {52,
206}, {53, 206}, {13, 241}, {14, 242}, {38, 216}, {13, 242}, {39, 216}, {14,
241}, {23, 279}, {66, 322}, {65, 321}, {22, 279}, {85, 340}, {86, 340}, {65,
322}, {66, 321}, {2, 262}, {89, 349}, {3, 262}, {88, 349}, {86, 339}, {3, 261},
{88, 350}, {85, 339}, {62, 312}, {2, 261}, {89, 350}, {63, 312}, {63, 311}, {62,
311}, {69, 335}, {68, 335}, {42, 294}, {49, 317}, {43, 294}, {48, 317}, {22,
280}, {48, 318}, {43, 293}, {23, 280}, {49, 318}, {42, 293}, {16, 256}, {5,
276}, {72, 345}, {59, 298}, {17, 256}, {6, 276}, {72, 346}, {59, 297}, {9, 285},
{82, 326}, {68, 336}, {6, 275}, {83, 326}, {69, 336}, {60, 297}, {8, 285}, {5,
275}, {83, 325}, {60, 298}, {8, 286}, {9, 286}, {82, 325}, {56, 288}, {19, 266},
{57, 288}, {45, 308}, {32, 313}, {19, 265}, {46, 308}, {32, 314}, {97, 381},
{20, 265}, {71, 346}, {46, 307}, {20, 266}, {71, 345}, {45, 307}, {11, 299},
{12, 300}, {96, 320}, {34, 259}, {33, 259}, {74, 360}, {75, 360}, {53, 273},
{54, 274}, {31, 314}, {33, 260}, {31, 313}, {57, 287}, {34, 260}, {11, 300},
{56, 287}, {54, 273}, {53, 274}, {12, 299}, {37, 269}, {94, 374}, {36, 269},
{95, 374}, {36, 270}, {95, 373}, {37, 270}, {94, 373}, {28, 304}, {75, 359},
{29, 304}, {74, 359}, {81, 383}, {80, 383}, {91, 363}, {92, 364}, {29, 303},
{28, 303}, {40, 283}, {40, 284}, {51, 263}, {50, 263}, {91, 364}, {92, 363},
{14, 310}, {26, 290}, {25, 289}, {15, 310}, {15, 309}, {50, 264}, {14, 309},
{64, 379}, {51, 264}, {39, 284}, {26, 289}, {25, 290}, {39, 283}, {78, 370},
{77, 369}, {64, 380}, {1, 319}, {77, 370}, {78, 369}, {192, 384}, {1, 320}, {88,
281}, {43, 362}, {43, 361}, {88, 282}, {24, 347}, {63, 380}, {24, 348}, {84,
272}, {63, 379}, {127, 315}, {44, 361}, {85, 272}, {127, 314}, {44, 362}, {40,
352}, {68, 268}, {67, 267}, {126, 310}, {127, 311}, {3, 330}, {41, 352}, {126,
311}, {127, 310}, {3, 329}, {23, 348}, {23, 347}, {126, 306}, {4, 329}, {87,
282}, {126, 307}, {4, 330}, {87, 281}, {125, 307}, {67, 268}, {68, 267}, {125,
306}, {7, 343}, {82, 258}, {81, 257}, {70, 278}, {61, 365}, {123, 299}, {6,
343}, {71, 278}, {60, 365}, {18, 323}, {123, 298}, {17, 323}, {71, 277}, {60,
366}, {124, 302}, {125, 303}, {61, 366}, {82, 257}, {81, 258}, {70, 277}, {124,
303}, {125, 302}, {17, 324}, {18, 324}, {46, 376}, {124, 298}, {47, 376}, {124,
299}, {21, 333}, {47, 375}, {122, 290}, {20, 333}, {58, 355}, {46, 375}, {122,
291}, {20, 334}, {85, 271}, {57, 355}, {121, 291}, {21, 334}, {84, 271}, {121,
290}, {33, 381}, {122, 294}, {123, 295}, {32, 381}, {57, 356}, {122, 295}, {123,
294}, {6, 344}, {58, 356}, {32, 382}, {7, 344}, {33, 382}, {96, 319}, {54, 342},
{77, 301}, {118, 278}, {119, 279}, {55, 342}, {76, 301}, {118, 279}, {119, 278},
{13, 367}, {76, 302}, {55, 341}, {120, 282}, {12, 367}, {77, 302}, {54, 341},
{120, 283}, {35, 327}, {118, 274}, {34, 327}, {118, 275}, {117, 275}, {120,
286}, {121, 287}, {117, 274}, {120, 287}, {121, 286}, {9, 353}, {10, 354}, {16,
377}, {74, 291}, {29, 372}, {16, 378}, {73, 291}, {34, 328}, {30, 372}, {9,
354}, {80, 315}, {35, 328}, {10, 353}, {80, 316}, {93, 305}, {94, 306}, {119,
283}, {30, 371}, {73, 292}, {119, 282}, {29, 371}, {74, 292}, {93, 306}, {94,
305}, {114, 258}, {114, 259}, {90, 296}, {113, 259}, {79, 316}, {91, 296}, {113,
258}, {37, 337}, {79, 315}, {38, 338}, {114, 262}, {115, 263}, {15, 378}, {114,
263}, {115, 262}, {15, 377}, {41, 351}, {37, 338}, {40, 351}, {38, 337}, {51,
331}, {52, 332}, {115, 267}, {115, 266}, {116, 270}, {117, 271}, {116, 271},
{117, 270}, {12, 368}, {91, 295}, {26, 358}, {13, 368}, {90, 295}, {27, 358},
{27, 357}, {116, 266}, {26, 357}, {52, 331}, {51, 332}, {116, 267}, {172, 300},
{173, 301}, {172, 301}, {170, 296}, {171, 297}, {171, 296}, {172, 297}, {171,
300}, {168, 288}, {169, 289}, {169, 288}, {176, 313}, {170, 289}, {176, 316},
{177, 317}, {169, 292}, {176, 317}, {170, 292}, {171, 293}, {170, 293}, {175,
316}, {174, 312}, {175, 313}, {175, 312}, {173, 308}, {174, 308}, {175, 309},
{174, 309}, {172, 304}, {173, 305}, {173, 304}, {174, 305}, {160, 256}, {161,
257}, {161, 256}, {162, 257}, {161, 260}, {162, 260}, {163, 261}, {162, 261},
{164, 268}, {165, 269}, {164, 269}, {162, 264}, {163, 265}, {163, 264}, {164,
265}, {163, 268}, {165, 276}, {168, 281}, {166, 276}, {167, 277}, {166, 277},
{164, 272}, {169, 285}, {168, 284}, {165, 273}, {165, 272}, {168, 285}, {166,
273}, {192, 377}, {128, 314}, {128, 315}, {167, 284}, {192, 380}, {192, 381},
{128, 318}, {167, 281}, {166, 280}, {129, 319}, {128, 319}, {167, 280}, {129,
318}, {130, 322}, {130, 323}, {129, 323}, {129, 322}, {191, 380}, {130, 326},
{131, 327}, {130, 327}, {131, 326}, {190, 376}, {191, 377}, {191, 376}, {131,
331}, {131, 330}, {189, 372}, {132, 334}, {191, 373}, {190, 372}, {133, 335},
{132, 335}, {190, 373}, {133, 334}, {188, 368}, {189, 369}, {189, 368}, {132,
330}, {132, 331}, {190, 369}, {80, 384}, {189, 365}, {188, 364}, {134, 342},
{135, 343}, {81, 384}, {188, 365}, {134, 343}, {135, 342}, {136, 346}, {187,
361}, {186, 360}, {136, 347}, {187, 360}, {134, 338}, {134, 339}, {188, 361},
{133, 339}, {136, 350}, {137, 351}, {133, 338}, {187, 364}, {136, 351}, {137,
350}, {184, 352}, {185, 353}, {185, 352}, {186, 353}, {135, 347}, {135, 346},
{185, 356}, {186, 356}, {187, 357}, {186, 357}, {139, 363}, {97, 384}, {184,
345}, {181, 340}, {139, 362}, {140, 366}, {183, 341}, {182, 340}, {141, 367},
{140, 367}, {182, 341}, {141, 366}, {180, 336}, {185, 349}, {184, 348}, {181,
337}, {181, 336}, {184, 349}, {140, 362}, {140, 363}, {182, 337}, {138, 354},
{138, 355}, {137, 355}, {144, 378}, {137, 354}, {183, 348}, {144, 379}, {138,
358}, {139, 359}, {138, 359}, {139, 358}, {144, 382}, {183, 345}, {182, 344},
{145, 383}, {144, 383}, {183, 344}, {145, 382}, {176, 320}, {177, 321}, {177,
320}, {178, 321}, {143, 379}, {143, 378}, {177, 324}, {178, 324}, {179, 325},
{178, 325}, {142, 374}, {181, 333}, {180, 332}, {143, 375}, {142, 375}, {180,
333}, {143, 374}, {178, 328}, {179, 329}, {179, 328}, {142, 370}, {142, 371},
{180, 329}, {141, 371}, {141, 370}, {179, 332} }>;
(II) A more general form is to represent the graph as the orbit of {149, 212}
under the group generated by the following permutations:
a: (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61,
62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96)(97, 114, 131, 148,
165, 182, 103, 120, 137, 154, 171, 188, 109, 126, 143, 160, 177, 98, 115, 132,
149, 166, 183, 104, 121, 138, 155, 172, 189, 110, 127, 144, 161, 178, 99, 116,
133, 150, 167, 184, 105, 122, 139, 156, 173, 190, 111, 128, 145, 162, 179, 100,
117, 134, 151, 168, 185, 106, 123, 140, 157, 174, 191, 112, 129, 146, 163, 180,
101, 118, 135, 152, 169, 186, 107, 124, 141, 158, 175, 192, 113, 130, 147, 164,
181, 102, 119, 136, 153, 170, 187, 108, 125, 142, 159, 176)(193, 261, 329, 207,
275, 343, 217, 285, 353, 231, 299, 367, 241, 309, 377, 255, 323, 197, 265, 333,
211, 279, 347, 221, 289, 357, 235, 303, 371, 245, 313, 381, 259, 327, 201, 269,
337, 215, 283, 351, 225, 293, 361, 239, 307, 375, 249, 317, 195, 263, 331, 205,
273, 341, 219, 287, 355, 229, 297, 365, 243, 311, 379, 253, 321, 199, 267, 335,
209, 277, 345, 223, 291, 359, 233, 301, 369, 247, 315, 383, 257, 325, 203, 271,
339, 213, 281, 349, 227, 295, 363, 237, 305, 373, 251, 319)(194, 262, 330, 208,
276, 344, 218, 286, 354, 232, 300, 368, 242, 310, 378, 256, 324, 198, 266, 334,
212, 280, 348, 222, 290, 358, 236, 304, 372, 246, 314, 382, 260, 328, 202, 270,
338, 216, 284, 352, 226, 294, 362, 240, 308, 376, 250, 318, 196, 264, 332, 206,
274, 342, 220, 288, 356, 230, 298, 366, 244, 312, 380, 254, 322, 200, 268, 336,
210, 278, 346, 224, 292, 360, 234, 302, 370, 248, 316, 384, 258, 326, 204, 272,
340, 214, 282, 350, 228, 296, 364, 238, 306, 374, 252, 320) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (97, 145)(98, 146)(99, 147)(100, 148)(101, 149)(102, 150)(103, 151)(104,
152)(105, 153)(106, 154)(107, 155)(108, 156)(109, 157)(110, 158)(111, 159)(112,
160)(113, 161)(114, 162)(115, 163)(116, 164)(117, 165)(118, 166)(119, 167)(120,
168)(121, 169)(122, 170)(123, 171)(124, 172)(125, 173)(126, 174)(127, 175)(128,
176)(129, 177)(130, 178)(131, 179)(132, 180)(133, 181)(134, 182)(135, 183)(136,
184)(137, 185)(138, 186)(139, 187)(140, 188)(141, 189)(142, 190)(143, 191)(144,
192)(193, 194)(195, 196)(197, 198)(199, 200)(201, 202)(203, 204)(205, 206)(207,
208)(209, 210)(211, 212)(213, 214)(215, 216)(217, 218)(219, 220)(221, 222)(223,
224)(225, 226)(227, 228)(229, 230)(231, 232)(233, 234)(235, 236)(237, 238)(239,
240)(241, 242)(243, 244)(245, 246)(247, 248)(249, 250)(251, 252)(253, 254)(255,
256)(257, 258)(259, 260)(261, 262)(263, 264)(265, 266)(267, 268)(269, 270)(271,
272)(273, 274)(275, 276)(277, 278)(279, 280)(281, 282)(283, 284)(285, 286)(287,
288)(289, 290)(291, 292)(293, 294)(295, 296)(297, 298)(299, 300)(301, 302)(303,
304)(305, 306)(307, 308)(309, 310)(311, 312)(313, 314)(315, 316)(317, 318)(319,
320)(321, 322)(323, 324)(325, 326)(327, 328)(329, 330)(331, 332)(333, 334)(335,
336)(337, 338)(339, 340)(341, 342)(343, 344)(345, 346)(347, 348)(349, 350)(351,
352)(353, 354)(355, 356)(357, 358)(359, 360)(361, 362)(363, 364)(365, 366)(367,
368)(369, 370)(371, 372)(373, 374)(375, 376)(377, 378)(379, 380)(381, 382)(383,
384)
c: (1, 97)(2, 98)(3, 99)(4, 100)(5, 101)(6, 102)(7, 103)(8, 104)(9, 105)(10,
106)(11, 107)(12, 108)(13, 109)(14, 110)(15, 111)(16, 112)(17, 113)(18, 114)(19,
115)(20, 116)(21, 117)(22, 118)(23, 119)(24, 120)(25, 121)(26, 122)(27, 123)(28,
124)(29, 125)(30, 126)(31, 127)(32, 128)(33, 129)(34, 130)(35, 131)(36, 132)(37,
133)(38, 134)(39, 135)(40, 136)(41, 137)(42, 138)(43, 139)(44, 140)(45, 141)(46,
142)(47, 143)(48, 144)(49, 145)(50, 146)(51, 147)(52, 148)(53, 149)(54, 150)(55,
151)(56, 152)(57, 153)(58, 154)(59, 155)(60, 156)(61, 157)(62, 158)(63, 159)(64,
160)(65, 161)(66, 162)(67, 163)(68, 164)(69, 165)(70, 166)(71, 167)(72, 168)(73,
169)(74, 170)(75, 171)(76, 172)(77, 173)(78, 174)(79, 175)(80, 176)(81, 177)(82,
178)(83, 179)(84, 180)(85, 181)(86, 182)(87, 183)(88, 184)(89, 185)(90, 186)(91,
187)(92, 188)(93, 189)(94, 190)(95, 191)(96, 192)(193, 195)(197, 263)(198,
262)(199, 261)(200, 264)(201, 331)(202, 330)(203, 329)(204, 332)(206, 208)(209,
273)(210, 276)(211, 275)(212, 274)(213, 341)(214, 344)(215, 343)(216, 342)(217,
219)(221, 287)(222, 286)(223, 285)(224, 288)(225, 355)(226, 354)(227, 353)(228,
356)(230, 232)(233, 297)(234, 300)(235, 299)(236, 298)(237, 365)(238, 368)(239,
367)(240, 366)(241, 243)(245, 311)(246, 310)(247, 309)(248, 312)(249, 379)(250,
378)(251, 377)(252, 380)(254, 256)(257, 321)(258, 324)(259, 323)(260, 322)(265,
267)(269, 335)(270, 334)(271, 333)(272, 336)(278, 280)(281, 345)(282, 348)(283,
347)(284, 346)(289, 291)(293, 359)(294, 358)(295, 357)(296, 360)(302, 304)(305,
369)(306, 372)(307, 371)(308, 370)(313, 315)(317, 383)(318, 382)(319, 381)(320,
384)(326, 328)(337, 339)(350, 352)(361, 363)(374, 376)
d: (2, 96)(3, 95)(4, 94)(5, 93)(6, 92)(7, 91)(8, 90)(9, 89)(10, 88)(11, 87)(12,
86)(13, 85)(14, 84)(15, 83)(16, 82)(17, 81)(18, 80)(19, 79)(20, 78)(21, 77)(22,
76)(23, 75)(24, 74)(25, 73)(26, 72)(27, 71)(28, 70)(29, 69)(30, 68)(31, 67)(32,
66)(33, 65)(34, 64)(35, 63)(36, 62)(37, 61)(38, 60)(39, 59)(40, 58)(41, 57)(42,
56)(43, 55)(44, 54)(45, 53)(46, 52)(47, 51)(48, 50)(97, 129)(98, 128)(99,
127)(100, 126)(101, 125)(102, 124)(103, 123)(104, 122)(105, 121)(106, 120)(107,
119)(108, 118)(109, 117)(110, 116)(111, 115)(112, 114)(130, 192)(131, 191)(132,
190)(133, 189)(134, 188)(135, 187)(136, 186)(137, 185)(138, 184)(139, 183)(140,
182)(141, 181)(142, 180)(143, 179)(144, 178)(145, 177)(146, 176)(147, 175)(148,
174)(149, 173)(150, 172)(151, 171)(152, 170)(153, 169)(154, 168)(155, 167)(156,
166)(157, 165)(158, 164)(159, 163)(160, 162)(193, 320)(194, 319)(195, 318)(196,
317)(197, 316)(198, 315)(199, 314)(200, 313)(201, 312)(202, 311)(203, 310)(204,
309)(205, 308)(206, 307)(207, 306)(208, 305)(209, 304)(210, 303)(211, 302)(212,
301)(213, 300)(214, 299)(215, 298)(216, 297)(217, 296)(218, 295)(219, 294)(220,
293)(221, 292)(222, 291)(223, 290)(224, 289)(225, 288)(226, 287)(227, 286)(228,
285)(229, 284)(230, 283)(231, 282)(232, 281)(233, 280)(234, 279)(235, 278)(236,
277)(237, 276)(238, 275)(239, 274)(240, 273)(241, 272)(242, 271)(243, 270)(244,
269)(245, 268)(246, 267)(247, 266)(248, 265)(249, 264)(250, 263)(251, 262)(252,
261)(253, 260)(254, 259)(255, 258)(256, 257)(321, 382)(322, 381)(323, 384)(324,
383)(325, 378)(326, 377)(327, 380)(328, 379)(329, 374)(330, 373)(331, 376)(332,
375)(333, 370)(334, 369)(335, 372)(336, 371)(337, 366)(338, 365)(339, 368)(340,
367)(341, 362)(342, 361)(343, 364)(344, 363)(345, 358)(346, 357)(347, 360)(348,
359)(349, 354)(350, 353)(351, 356)(352, 355)
C4[ 384, 102 ]
384
-1 319 320 193 194
-2 193 194 261 262
-3 330 261 262 329
-4 330 207 208 329
-5 275 276 207 208
-6 275 276 343 344
-7 343 344 217 218
-8 286 217 218 285
-9 286 353 354 285
-10 231 232 353 354
-11 231 232 299 300
-12 299 300 367 368
-13 242 367 368 241
-14 242 309 310 241
-15 309 310 377 378
-16 255 256 377 378
-17 255 256 323 324
-18 198 323 324 197
-19 198 265 266 197
-20 265 266 333 334
-21 211 212 333 334
-22 211 212 279 280
-23 279 280 347 348
-24 221 222 347 348
-25 221 222 289 290
-26 289 290 357 358
-27 235 236 357 358
-28 235 236 303 304
-29 303 304 371 372
-30 245 246 371 372
-31 245 246 313 314
-32 313 314 381 382
-33 259 260 381 382
-34 259 260 327 328
-35 201 202 327 328
-36 201 202 269 270
-37 269 270 337 338
-38 215 216 337 338
-39 215 216 283 284
-40 352 283 284 351
-41 352 225 226 351
-42 225 226 293 294
-43 293 294 361 362
-44 239 240 361 362
-45 308 239 240 307
-46 308 375 376 307
-47 375 376 249 250
-48 249 250 317 318
-49 195 196 317 318
-50 264 195 196 263
-51 264 331 332 263
-52 331 332 205 206
-53 205 206 273 274
-54 341 342 273 274
-55 220 341 342 219
-56 220 287 288 219
-57 287 288 355 356
-58 355 356 229 230
-59 297 298 229 230
-60 297 298 365 366
-61 243 244 365 366
-62 243 244 311 312
-63 311 312 379 380
-64 253 254 379 380
-65 253 254 321 322
-66 199 200 321 322
-67 199 200 267 268
-68 267 268 335 336
-69 209 210 335 336
-70 209 210 277 278
-71 277 278 345 346
-72 223 224 345 346
-73 223 224 291 292
-74 291 292 359 360
-75 233 234 359 360
-76 233 234 301 302
-77 301 302 369 370
-78 247 248 369 370
-79 247 248 315 316
-80 315 316 383 384
-81 257 258 383 384
-82 257 258 325 326
-83 203 204 325 326
-84 203 204 271 272
-85 271 272 339 340
-86 213 214 339 340
-87 213 214 281 282
-88 281 282 349 350
-89 227 228 349 350
-90 227 228 295 296
-91 363 364 295 296
-92 363 364 237 238
-93 237 238 305 306
-94 374 305 306 373
-95 374 251 252 373
-96 319 320 251 252
-97 194 381 195 384
-98 198 199 194 195
-99 198 199 202 203
-100 202 203 206 207
-101 210 211 206 207
-102 210 211 214 215
-103 214 215 218 219
-104 222 223 218 219
-105 222 223 226 227
-106 231 226 227 230
-107 231 234 235 230
-108 234 235 238 239
-109 242 243 238 239
-110 242 243 246 247
-111 246 247 250 251
-112 254 255 250 251
-113 254 255 258 259
-114 258 259 262 263
-115 266 267 262 263
-116 266 267 270 271
-117 275 270 271 274
-118 275 278 279 274
-119 278 279 282 283
-120 286 287 282 283
-121 286 287 290 291
-122 290 291 294 295
-123 298 299 294 295
-124 298 299 302 303
-125 302 303 306 307
-126 310 311 306 307
-127 310 311 314 315
-128 319 314 315 318
-129 319 322 323 318
-130 322 323 326 327
-131 330 331 326 327
-132 330 331 334 335
-133 334 335 338 339
-134 342 343 338 339
-135 342 343 346 347
-136 346 347 350 351
-137 354 355 350 351
-138 354 355 358 359
-139 363 358 359 362
-140 363 366 367 362
-141 366 367 370 371
-142 374 375 370 371
-143 374 375 378 379
-144 378 379 382 383
-145 193 382 196 383
-146 200 193 196 197
-147 200 201 204 197
-148 201 204 205 208
-149 209 212 205 208
-150 209 212 213 216
-151 220 213 216 217
-152 220 221 224 217
-153 221 224 225 228
-154 232 225 228 229
-155 232 233 236 229
-156 233 236 237 240
-157 244 237 240 241
-158 244 245 248 241
-159 245 248 249 252
-160 253 256 249 252
-161 253 256 257 260
-162 264 257 260 261
-163 264 265 268 261
-164 265 268 269 272
-165 276 269 272 273
-166 276 277 280 273
-167 277 280 281 284
-168 288 281 284 285
-169 288 289 292 285
-170 289 292 293 296
-171 297 300 293 296
-172 297 300 301 304
-173 308 301 304 305
-174 308 309 312 305
-175 309 312 313 316
-176 320 313 316 317
-177 320 321 324 317
-178 321 324 325 328
-179 332 325 328 329
-180 332 333 336 329
-181 333 336 337 340
-182 341 344 337 340
-183 341 344 345 348
-184 352 345 348 349
-185 352 353 356 349
-186 353 356 357 360
-187 364 357 360 361
-188 364 365 368 361
-189 365 368 369 372
-190 376 369 372 373
-191 376 377 380 373
-192 377 380 381 384
-193 1 2 145 146
-194 1 2 97 98
-195 49 50 97 98
-196 145 146 49 50
-197 146 147 18 19
-198 99 18 19 98
-199 66 99 67 98
-200 66 67 146 147
-201 35 36 147 148
-202 99 100 35 36
-203 99 100 83 84
-204 147 148 83 84
-205 148 149 52 53
-206 100 101 52 53
-207 100 101 4 5
-208 4 5 148 149
-209 69 70 149 150
-210 101 69 102 70
-211 22 101 102 21
-212 22 149 150 21
-213 150 151 86 87
-214 102 103 86 87
-215 102 103 38 39
-216 38 39 150 151
-217 7 8 151 152
-218 103 104 7 8
-219 55 56 103 104
-220 55 56 151 152
-221 24 25 152 153
-222 24 25 104 105
-223 104 72 105 73
-224 72 73 152 153
-225 154 41 42 153
-226 105 106 41 42
-227 89 90 105 106
-228 154 89 90 153
-229 154 155 58 59
-230 58 59 106 107
-231 11 106 107 10
-232 11 154 155 10
-233 155 156 75 76
-234 107 75 108 76
-235 27 28 107 108
-236 155 156 27 28
-237 156 157 92 93
-238 92 93 108 109
-239 44 45 108 109
-240 44 45 156 157
-241 13 14 157 158
-242 110 13 14 109
-243 110 61 62 109
-244 157 158 61 62
-245 158 159 30 31
-246 110 111 30 31
-247 110 78 111 79
-248 78 79 158 159
-249 47 48 159 160
-250 111 112 47 48
-251 111 112 95 96
-252 159 160 95 96
-253 160 161 64 65
-254 112 113 64 65
-255 112 113 16 17
-256 16 17 160 161
-257 81 82 161 162
-258 113 81 114 82
-259 33 34 113 114
-260 33 34 161 162
-261 2 3 162 163
-262 2 3 114 115
-263 114 115 50 51
-264 50 51 162 163
-265 19 20 163 164
-266 115 116 19 20
-267 67 68 115 116
-268 67 68 163 164
-269 165 36 37 164
-270 36 37 116 117
-271 116 84 117 85
-272 165 84 85 164
-273 165 166 53 54
-274 117 118 53 54
-275 5 6 117 118
-276 165 166 5 6
-277 166 167 70 71
-278 70 71 118 119
-279 22 23 118 119
-280 22 23 166 167
-281 88 167 168 87
-282 88 119 87 120
-283 39 40 119 120
-284 167 168 39 40
-285 168 169 8 9
-286 121 8 9 120
-287 121 56 57 120
-288 56 57 168 169
-289 25 26 169 170
-290 121 122 25 26
-291 121 122 73 74
-292 169 170 73 74
-293 170 171 42 43
-294 122 123 42 43
-295 122 90 123 91
-296 90 91 170 171
-297 59 60 171 172
-298 123 124 59 60
-299 11 12 123 124
-300 11 12 171 172
-301 77 172 173 76
-302 77 124 125 76
-303 124 125 28 29
-304 28 29 172 173
-305 93 94 173 174
-306 125 93 126 94
-307 45 46 125 126
-308 45 46 173 174
-309 14 15 174 175
-310 14 15 126 127
-311 126 127 62 63
-312 62 63 174 175
-313 176 31 32 175
-314 127 128 31 32
-315 79 80 127 128
-316 176 79 80 175
-317 176 177 48 49
-318 48 49 128 129
-319 1 128 96 129
-320 176 1 177 96
-321 66 177 178 65
-322 66 129 130 65
-323 17 18 129 130
-324 177 178 17 18
-325 178 179 82 83
-326 82 83 130 131
-327 34 35 130 131
-328 34 35 178 179
-329 3 179 4 180
-330 132 3 4 131
-331 132 51 52 131
-332 179 180 51 52
-333 180 181 20 21
-334 132 133 20 21
-335 132 133 68 69
-336 68 69 180 181
-337 37 38 181 182
-338 133 134 37 38
-339 133 134 85 86
-340 181 182 85 86
-341 55 182 183 54
-342 55 134 135 54
-343 134 135 6 7
-344 6 182 7 183
-345 71 72 183 184
-346 135 136 71 72
-347 23 24 135 136
-348 23 24 183 184
-349 88 89 184 185
-350 88 89 136 137
-351 136 137 40 41
-352 40 41 184 185
-353 9 185 10 186
-354 137 138 9 10
-355 57 58 137 138
-356 57 58 185 186
-357 187 26 27 186
-358 26 27 138 139
-359 138 139 74 75
-360 187 74 75 186
-361 44 187 188 43
-362 44 139 140 43
-363 91 92 139 140
-364 187 188 91 92
-365 188 189 60 61
-366 60 61 140 141
-367 12 13 140 141
-368 12 188 13 189
-369 77 78 189 190
-370 77 78 141 142
-371 29 30 141 142
-372 189 190 29 30
-373 190 191 94 95
-374 143 94 95 142
-375 143 46 47 142
-376 46 47 190 191
-377 15 191 16 192
-378 143 144 15 16
-379 143 144 63 64
-380 191 192 63 64
-381 33 192 97 32
-382 33 144 145 32
-383 144 145 80 81
-384 80 81 192 97
0