C4graphGraph forms for C4 [ 384, 117 ] = UG(ATD[384,11])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 117 ] = UG(ATD[384,11]).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {350, 351}, {128, 130}, {1, 2}, {380, 383}, {365, 366}, {337, 338}, {297, 298}, {84, 87}, {2, 7}, {339, 342}, {16, 21}, {200, 205}, {194, 196}, {306, 308}, {1, 6}, {362, 365}, {112, 121}, {163, 170}, {166, 172}, {259, 265}, {3, 8}, {118, 125}, {197, 206}, {80, 92}, {341, 345}, {4, 9}, {375, 378}, {370, 383}, {180, 185}, {181, 184}, {224, 237}, {51, 61}, {294, 296}, {289, 303}, {245, 251}, {5, 10}, {242, 253}, {164, 180}, {333, 348}, {4, 22}, {293, 311}, {13, 31}, {12, 30}, {9, 27}, {8, 26}, {5, 23}, {268, 287}, {227, 247}, {328, 348}, {135, 146}, {359, 370}, {2, 20}, {294, 304}, {263, 273}, {11, 29}, {10, 28}, {3, 21}, {38, 49}, {300, 315}, {45, 58}, {132, 147}, {367, 375}, {130, 155}, {359, 382}, {131, 153}, {257, 283}, {42, 49}, {352, 379}, {111, 116}, {129, 157}, {296, 308}, {141, 144}, {358, 379}, {256, 285}, {6, 24}, {290, 316}, {37, 59}, {7, 25}, {232, 246}, {41, 54}, {47, 48}, {142, 145}, {6, 38}, {263, 295}, {156, 188}, {201, 233}, {138, 171}, {141, 172}, {223, 254}, {82, 112}, {328, 362}, {279, 309}, {262, 292}, {157, 190}, {281, 314}, {286, 315}, {283, 317}, {327, 353}, {144, 183}, {155, 179}, {320, 361}, {280, 307}, {84, 120}, {140, 160}, {195, 239}, {14, 32}, {325, 363}, {286, 304}, {15, 33}, {152, 182}, {71, 119}, {142, 191}, {320, 369}, {16, 34}, {17, 35}, {150, 164}, {213, 230}, {137, 189}, {279, 291}, {274, 294}, {264, 317}, {324, 369}, {18, 36}, {332, 378}, {260, 306}, {64, 118}, {19, 37}, {148, 163}, {345, 366}, {67, 123}, {261, 317}, {86, 110}, {214, 238}, {322, 379}, {327, 382}, {220, 224}, {221, 225}, {222, 226}, {270, 307}, {323, 381}, {306, 371}, {145, 211}, {136, 203}, {289, 354}, {162, 230}, {310, 370}, {7, 66}, {275, 342}, {15, 74}, {13, 72}, {151, 210}, {22, 80}, {31, 89}, {30, 88}, {23, 81}, {159, 217}, {6, 65}, {318, 377}, {304, 375}, {265, 334}, {14, 73}, {40, 96}, {47, 103}, {46, 102}, {45, 101}, {44, 100}, {43, 99}, {42, 98}, {41, 97}, {57, 112}, {61, 116}, {59, 114}, {24, 82}, {29, 87}, {28, 86}, {25, 83}, {8, 67}, {315, 368}, {303, 356}, {292, 367}, {62, 117}, {58, 113}, {12, 71}, {158, 213}, {293, 361}, {9, 68}, {11, 70}, {134, 203}, {26, 84}, {27, 85}, {139, 197}, {163, 237}, {10, 69}, {60, 115}, {140, 195}, {141, 221}, {167, 246}, {297, 376}, {293, 372}, {272, 321}, {165, 247}, {308, 358}, {26, 78}, {43, 127}, {62, 107}, {289, 375}, {56, 111}, {313, 366}, {134, 209}, {48, 104}, {53, 109}, {52, 108}, {51, 107}, {50, 106}, {49, 105}, {55, 110}, {137, 208}, {292, 382}, {16, 75}, {20, 79}, {131, 223}, {284, 320}, {17, 76}, {268, 337}, {19, 78}, {18, 77}, {295, 376}, {267, 340}, {153, 198}, {158, 193}, {319, 351}, {13, 108}, {290, 323}, {282, 377}, {142, 234}, {256, 356}, {44, 73}, {45, 72}, {147, 245}, {167, 207}, {54, 95}, {308, 349}, {152, 242}, {153, 243}, {17, 122}, {20, 120}, {271, 355}, {23, 123}, {22, 122}, {21, 121}, {135, 233}, {310, 344}, {154, 244}, {63, 79}, {305, 321}, {55, 70}, {294, 343}, {257, 368}, {153, 232}, {47, 93}, {156, 238}, {57, 74}, {258, 369}, {263, 371}, {264, 380}, {2, 119}, {314, 335}, {136, 253}, {138, 255}, {128, 246}, {286, 360}, {129, 247}, {137, 254}, {1, 121}, {305, 329}, {269, 373}, {39, 95}, {168, 208}, {169, 209}, {17, 104}, {154, 227}, {32, 90}, {36, 94}, {33, 91}, {130, 248}, {129, 250}, {132, 248}, {299, 343}, {132, 249}, {301, 336}, {134, 251}, {186, 199}, {187, 198}, {34, 92}, {260, 378}, {256, 382}, {35, 93}, {168, 214}, {56, 71}, {262, 377}, {143, 240}, {105, 233}, {106, 234}, {53, 180}, {102, 231}, {100, 229}, {98, 227}, {96, 225}, {94, 223}, {114, 240}, {115, 241}, {97, 226}, {110, 237}, {101, 230}, {1, 133}, {89, 220}, {91, 222}, {109, 235}, {90, 221}, {99, 228}, {80, 216}, {81, 217}, {124, 245}, {46, 164}, {126, 244}, {76, 199}, {64, 204}, {65, 207}, {125, 243}, {124, 242}, {85, 219}, {84, 218}, {103, 232}, {38, 183}, {66, 208}, {104, 250}, {67, 209}, {43, 191}, {40, 189}, {88, 205}, {32, 182}, {90, 204}, {69, 211}, {68, 210}, {52, 162}, {33, 183}, {15, 152}, {89, 206}, {41, 190}, {11, 147}, {120, 224}, {79, 215}, {51, 170}, {91, 194}, {76, 213}, {34, 184}, {35, 185}, {39, 188}, {87, 204}, {77, 214}, {65, 218}, {19, 143}, {96, 252}, {14, 144}, {113, 239}, {112, 238}, {37, 187}, {36, 186}, {52, 171}, {75, 212}, {116, 212}, {102, 192}, {26, 176}, {69, 239}, {31, 181}, {30, 180}, {27, 177}, {101, 200}, {28, 178}, {29, 179}, {78, 225}, {43, 155}, {65, 240}, {95, 236}, {24, 174}, {25, 175}, {70, 241}, {42, 146}, {22, 172}, {23, 173}, {5, 184}, {20, 170}, {21, 171}, {95, 224}, {63, 255}, {58, 249}, {70, 133}, {91, 159}, {119, 178}, {12, 196}, {54, 252}, {83, 157}, {118, 185}, {122, 168}, {88, 140}, {116, 161}, {123, 174}, {83, 133}, {108, 186}, {79, 150}, {127, 162}, {350, 384}, {99, 188}, {111, 176}, {50, 211}, {51, 210}, {13, 239}, {118, 148}, {117, 151}, {82, 176}, {66, 160}, {53, 209}, {124, 154}, {52, 220}, {57, 208}, {78, 164}, {127, 149}, {120, 147}, {44, 192}, {46, 193}, {123, 148}, {9, 249}, {93, 173}, {53, 197}, {55, 198}, {63, 206}, {61, 204}, {59, 202}, {57, 200}, {48, 194}, {74, 184}, {49, 195}, {58, 201}, {371, 384}, {62, 205}, {50, 199}, {27, 237}, {50, 196}, {60, 203}, {87, 175}, {29, 228}, {34, 217}, {24, 229}, {56, 199}, {76, 333}, {124, 381}, {68, 326}, {73, 331}, {72, 330}, {77, 334}, {97, 354}, {85, 336}, {74, 332}, {41, 302}, {90, 337}, {100, 361}, {71, 329}, {94, 335}, {104, 377}, {39, 309}, {105, 379}, {7, 276}, {93, 329}, {5, 275}, {3, 282}, {94, 327}, {92, 325}, {40, 307}, {10, 278}, {83, 335}, {8, 277}, {33, 319}, {4, 283}, {39, 312}, {45, 269}, {125, 349}, {81, 368}, {46, 268}, {126, 347}, {47, 265}, {126, 344}, {59, 285}, {3, 298}, {38, 271}, {114, 345}, {37, 267}, {121, 343}, {4, 299}, {117, 346}, {54, 281}, {99, 338}, {103, 342}, {101, 340}, {102, 341}, {108, 344}, {100, 339}, {125, 324}, {32, 284}, {107, 343}, {106, 342}, {19, 302}, {109, 338}, {18, 339}, {111, 302}, {30, 351}, {63, 381}, {98, 289}, {114, 305}, {60, 376}, {109, 297}, {48, 373}, {103, 288}, {35, 363}, {126, 306}, {44, 353}, {107, 293}, {117, 314}, {77, 285}, {80, 256}, {28, 333}, {115, 290}, {36, 374}, {73, 283}, {72, 282}, {64, 274}, {60, 367}, {127, 300}, {122, 297}, {55, 355}, {67, 279}, {66, 278}, {75, 284}, {96, 313}, {14, 341}, {15, 340}, {68, 280}, {69, 281}, {81, 271}, {56, 359}, {64, 287}, {88, 312}, {92, 316}, {113, 272}, {105, 267}, {25, 378}, {86, 318}, {61, 340}, {40, 324}, {89, 311}, {97, 270}, {31, 364}, {42, 345}, {16, 356}, {62, 331}, {85, 288}, {18, 357}, {119, 270}, {115, 265}, {75, 311}, {12, 369}, {113, 268}, {110, 275}, {98, 287}, {11, 373}, {86, 296}, {244, 372}, {235, 362}, {138, 264}, {135, 260}, {171, 296}, {193, 325}, {229, 352}, {131, 261}, {255, 376}, {216, 337}, {139, 257}, {252, 374}, {143, 261}, {159, 277}, {172, 295}, {195, 335}, {202, 326}, {142, 259}, {156, 273}, {241, 380}, {140, 258}, {173, 291}, {176, 319}, {211, 323}, {196, 341}, {148, 262}, {149, 263}, {152, 266}, {159, 269}, {167, 309}, {169, 315}, {158, 269}, {207, 346}, {250, 367}, {248, 365}, {234, 383}, {149, 259}, {156, 266}, {188, 298}, {189, 299}, {197, 339}, {219, 333}, {213, 322}, {243, 363}, {200, 338}, {231, 381}, {246, 364}, {254, 357}, {130, 287}, {150, 264}, {253, 354}, {165, 261}, {166, 262}, {151, 310}, {205, 364}, {235, 330}, {161, 258}, {255, 348}, {135, 291}, {252, 344}, {175, 267}, {179, 278}, {217, 380}, {212, 370}, {234, 332}, {173, 266}, {191, 280}, {233, 334}, {238, 329}, {143, 295}, {170, 258}, {226, 330}, {145, 312}, {182, 285}, {191, 276}, {235, 320}, {129, 301}, {190, 275}, {202, 359}, {128, 303}, {160, 271}, {194, 365}, {181, 260}, {223, 366}, {225, 336}, {163, 272}, {165, 273}, {166, 274}, {216, 364}, {182, 259}, {240, 325}, {133, 317}, {230, 350}, {167, 286}, {201, 368}, {228, 349}, {210, 360}, {136, 307}, {144, 300}, {229, 347}, {249, 327}, {192, 383}, {214, 361}, {154, 346}, {236, 300}, {161, 352}, {241, 304}, {169, 362}, {221, 280}, {166, 352}, {215, 273}, {243, 309}, {177, 374}, {222, 281}, {131, 331}, {189, 372}, {162, 360}, {232, 290}, {160, 363}, {220, 279}, {175, 354}, {190, 371}, {187, 373}, {212, 282}, {242, 316}, {174, 353}, {245, 314}, {150, 326}, {181, 357}, {231, 311}, {165, 372}, {82, 384}, {177, 355}, {227, 305}, {155, 328}, {236, 319}, {136, 348}, {250, 302}, {137, 349}, {138, 350}, {139, 351}, {222, 266}, {192, 277}, {236, 313}, {248, 301}, {141, 347}, {251, 301}, {146, 324}, {178, 356}, {161, 374}, {193, 278}, {244, 291}, {247, 288}, {146, 330}, {158, 326}, {215, 270}, {216, 257}, {145, 331}, {228, 318}, {151, 332}, {226, 318}, {134, 347}, {187, 358}, {207, 274}, {202, 276}, {253, 284}, {128, 357}, {218, 316}, {169, 334}, {139, 355}, {185, 336}, {106, 384}, {254, 276}, {168, 322}, {132, 360}, {183, 346}, {201, 292}, {206, 288}, {251, 277}, {174, 321}, {215, 312}, {179, 323}, {218, 298}, {219, 299}, {186, 328}, {149, 358}, {177, 322}, {178, 321}, {219, 303}, {231, 272}, {157, 353}, {203, 310}, {198, 313} }>;

(II) A more general form is to represent the graph as the orbit of {350, 351} under the group generated by the following permutations:

a: (2, 6)(3, 11)(7, 24)(8, 29)(9, 22)(10, 23)(12, 42)(13, 47)(14, 40)(15, 41)(16, 55)(17, 58)(19, 61)(20, 65)(21, 70)(25, 82)(26, 87)(27, 80)(28, 81)(30, 98)(31, 103)(32, 96)(33, 97)(34, 110)(35, 113)(36, 77)(37, 116)(38, 119)(39, 124)(43, 134)(44, 137)(45, 104)(46, 118)(48, 72)(49, 71)(50, 135)(51, 143)(52, 115)(53, 130)(54, 152)(56, 105)(57, 157)(59, 161)(60, 162)(62, 165)(63, 167)(64, 164)(66, 174)(67, 179)(68, 172)(69, 173)(73, 189)(74, 190)(75, 198)(76, 201)(78, 204)(79, 207)(83, 112)(85, 216)(86, 217)(88, 227)(89, 232)(90, 225)(91, 226)(92, 237)(93, 239)(94, 214)(95, 242)(99, 251)(100, 254)(101, 250)(102, 125)(106, 260)(107, 261)(108, 265)(109, 248)(111, 267)(114, 258)(117, 273)(120, 218)(121, 133)(122, 249)(123, 278)(126, 142)(127, 203)(128, 197)(129, 200)(131, 293)(132, 297)(136, 300)(138, 304)(139, 303)(140, 305)(141, 280)(144, 307)(145, 244)(146, 196)(147, 298)(148, 193)(149, 310)(150, 274)(151, 263)(153, 311)(154, 312)(155, 209)(156, 314)(158, 262)(159, 318)(160, 321)(163, 325)(166, 326)(168, 327)(169, 328)(170, 240)(171, 241)(175, 176)(177, 256)(178, 271)(180, 287)(181, 342)(182, 252)(183, 270)(184, 275)(185, 268)(186, 334)(187, 212)(188, 245)(191, 347)(192, 349)(194, 330)(195, 329)(199, 233)(202, 352)(205, 247)(206, 246)(208, 353)(210, 295)(211, 291)(213, 292)(215, 346)(219, 257)(220, 290)(223, 361)(224, 316)(228, 277)(229, 276)(230, 367)(231, 243)(234, 306)(235, 365)(236, 253)(238, 335)(255, 286)(259, 344)(264, 294)(266, 281)(269, 377)(272, 363)(279, 323)(282, 373)(283, 299)(284, 313)(285, 374)(288, 364)(289, 351)(296, 380)(301, 338)(302, 340)(308, 383)(309, 381)(315, 348)(317, 343)(319, 354)(320, 366)(322, 382)(324, 341)(331, 372)(332, 371)(333, 368)(336, 337)(339, 357)(345, 369)(350, 375)(355, 356)(358, 370)(359, 379)(360, 376)(378, 384)
b: (1, 2, 7, 25, 83, 133)(3, 12, 43, 135, 301, 257)(4, 16, 56, 142, 306, 247)(5, 19, 62, 86, 114, 210)(6, 20, 66, 175, 335, 70)(8, 30, 99, 146, 248, 368)(9, 34, 111, 145, 308, 227)(10, 37, 117, 110, 240, 51)(11, 38, 120, 160, 87, 195)(13, 48, 144, 220, 35, 90)(14, 52, 93, 221, 31, 104)(15, 54, 153, 274, 272, 158)(17, 32, 108, 47, 141, 89)(18, 60, 100, 255, 214, 136)(21, 71, 191, 260, 129, 283)(22, 75, 199, 259, 126, 288)(23, 78, 205, 318, 345, 360)(24, 79, 208, 354, 94, 241)(26, 88, 228, 42, 132, 81)(27, 92, 116, 211, 358, 154)(28, 59, 151, 275, 143, 107)(29, 49, 147, 271, 84, 140)(33, 95, 243, 64, 113, 269)(36, 115, 229, 63, 168, 253)(39, 125, 287, 58, 159, 319)(40, 128, 292, 192, 350, 156)(41, 131, 294, 321, 326, 74)(44, 138, 238, 307, 357, 367)(45, 91, 236, 309, 118, 268)(46, 101, 222, 313, 167, 148)(50, 149, 244, 85, 80, 212)(53, 109, 235, 362, 169, 209)(55, 65, 170, 278, 267, 314)(57, 97, 223, 304, 174, 150)(61, 69, 187, 346, 237, 325)(67, 180, 338, 330, 365, 315)(68, 184, 302, 331, 296, 305)(72, 194, 300, 279, 185, 337)(73, 171, 329, 280, 181, 250)(76, 182, 344, 103, 172, 311)(77, 203, 339, 376, 361, 348)(82, 215, 137, 289, 327, 380)(96, 246, 262, 102, 230, 266)(98, 249, 217, 176, 312, 349)(105, 245, 355, 218, 258, 179)(106, 263, 372, 219, 256, 370)(112, 270, 254, 375, 353, 264)(119, 276, 378, 157, 317, 121)(122, 284, 186, 265, 347, 206)(123, 164, 200, 226, 366, 286)(124, 177, 316, 161, 323, 379)(127, 291, 336, 216, 282, 196)(130, 201, 277, 351, 188, 324)(134, 197, 297, 320, 328, 334)(139, 298, 369, 155, 233, 251)(152, 252, 232, 166, 231, 213)(162, 173, 225, 364, 377, 341)(163, 193, 340, 281, 198, 207)(165, 299, 356, 359, 234, 371)(178, 202, 332, 190, 261, 343)(183, 224, 363, 204, 239, 373)(189, 303, 382, 383, 384, 273)(242, 374, 290, 352, 381, 322)(285, 310, 342, 295, 293, 333)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 117 ]
384
-1 121 133 2 6
-2 1 7 20 119
-3 298 282 8 21
-4 22 299 283 9
-5 275 23 184 10
-6 1 24 38 65
-7 66 276 2 25
-8 67 277 3 26
-9 68 4 27 249
-10 69 278 5 28
-11 70 147 29 373
-12 71 369 30 196
-13 72 239 31 108
-14 341 144 73 32
-15 33 74 152 340
-16 34 356 75 21
-17 122 35 104 76
-18 77 36 357 339
-19 143 78 37 302
-20 2 79 170 120
-21 121 3 16 171
-22 122 80 4 172
-23 123 81 5 173
-24 82 6 174 229
-25 378 83 7 175
-26 176 78 84 8
-27 177 237 85 9
-28 178 333 86 10
-29 11 179 228 87
-30 88 12 180 351
-31 89 364 13 181
-32 90 14 182 284
-33 319 91 15 183
-34 92 16 184 217
-35 363 93 17 185
-36 374 94 18 186
-37 187 267 59 19
-38 49 6 183 271
-39 188 309 312 95
-40 189 324 96 307
-41 190 302 97 54
-42 146 345 49 98
-43 99 155 191 127
-44 100 353 192 73
-45 101 58 269 72
-46 102 268 193 164
-47 265 48 103 93
-48 47 104 194 373
-49 38 105 195 42
-50 199 211 106 196
-51 210 170 61 107
-52 220 171 162 108
-53 209 180 109 197
-54 281 95 41 252
-55 110 198 355 70
-56 111 199 71 359
-57 112 200 74 208
-58 45 113 201 249
-59 37 114 202 285
-60 376 367 115 203
-61 116 204 51 340
-62 331 117 205 107
-63 79 255 381 206
-64 287 204 118 274
-65 6 207 218 240
-66 278 160 7 208
-67 209 123 279 8
-68 210 280 326 9
-69 211 281 239 10
-70 11 55 133 241
-71 12 56 119 329
-72 330 45 13 282
-73 44 331 14 283
-74 57 332 15 184
-75 212 311 16 284
-76 199 333 213 17
-77 334 214 18 285
-78 26 225 19 164
-79 215 150 63 20
-80 22 256 92 216
-81 23 368 271 217
-82 176 24 112 384
-83 133 25 157 335
-84 26 218 87 120
-85 288 27 336 219
-86 110 28 296 318
-87 204 29 84 175
-88 312 205 30 140
-89 220 311 206 31
-90 221 204 337 32
-91 33 222 159 194
-92 34 80 325 316
-93 35 47 173 329
-94 36 223 335 327
-95 224 236 39 54
-96 225 313 40 252
-97 354 226 270 41
-98 287 289 227 42
-99 188 228 338 43
-100 44 229 339 361
-101 45 200 230 340
-102 231 341 46 192
-103 232 342 288 47
-104 377 48 17 250
-105 233 267 49 379
-106 342 234 50 384
-107 343 51 62 293
-108 13 344 52 186
-109 297 235 338 53
-110 55 275 237 86
-111 176 56 302 116
-112 121 57 82 238
-113 58 268 239 272
-114 59 345 305 240
-115 265 290 60 241
-116 111 212 61 161
-117 346 314 62 151
-118 125 148 64 185
-119 2 178 71 270
-120 147 224 84 20
-121 1 112 343 21
-122 22 297 168 17
-123 23 67 148 174
-124 154 242 245 381
-125 243 324 118 349
-126 244 344 347 306
-127 300 149 162 43
-128 246 357 303 130
-129 157 301 247 250
-130 155 287 248 128
-131 331 223 261 153
-132 147 248 249 360
-133 1 70 83 317
-134 209 203 347 251
-135 233 146 291 260
-136 253 203 348 307
-137 254 189 349 208
-138 264 255 171 350
-139 355 257 197 351
-140 88 258 160 195
-141 144 221 347 172
-142 145 234 191 259
-143 19 261 240 295
-144 14 300 183 141
-145 331 211 312 142
-146 330 135 324 42
-147 11 132 245 120
-148 123 118 163 262
-149 127 259 358 263
-150 264 79 326 164
-151 210 310 332 117
-152 242 266 15 182
-153 198 232 243 131
-154 244 124 346 227
-155 179 130 328 43
-156 188 266 238 273
-157 353 190 83 129
-158 213 269 193 326
-159 277 91 269 217
-160 66 363 271 140
-161 352 374 258 116
-162 127 52 360 230
-163 148 170 237 272
-164 78 46 180 150
-165 247 261 273 372
-166 352 172 262 274
-167 286 309 246 207
-168 122 322 214 208
-169 209 334 315 362
-170 258 51 20 163
-171 138 52 21 296
-172 22 166 141 295
-173 23 266 93 291
-174 353 24 123 321
-175 354 25 267 87
-176 319 111 26 82
-177 374 322 355 27
-178 321 356 28 119
-179 155 278 323 29
-180 30 53 185 164
-181 357 260 184 31
-182 259 152 32 285
-183 33 144 38 346
-184 34 5 181 74
-185 35 180 336 118
-186 199 36 108 328
-187 198 37 358 373
-188 99 298 156 39
-189 299 137 40 372
-190 275 157 41 371
-191 276 280 43 142
-192 44 277 102 383
-193 46 278 158 325
-194 365 91 48 196
-195 49 335 140 239
-196 341 12 50 194
-197 139 206 53 339
-198 55 187 313 153
-199 56 50 76 186
-200 57 101 205 338
-201 233 58 368 292
-202 276 59 326 359
-203 134 310 136 60
-204 90 61 64 87
-205 88 364 200 62
-206 89 288 63 197
-207 167 346 65 274
-208 66 57 168 137
-209 67 134 169 53
-210 68 51 151 360
-211 145 69 323 50
-212 116 282 370 75
-213 322 158 76 230
-214 77 168 238 361
-215 79 312 270 273
-216 364 80 257 337
-217 34 81 159 380
-218 298 84 316 65
-219 299 333 303 85
-220 89 224 279 52
-221 90 225 280 141
-222 266 91 226 281
-223 254 366 94 131
-224 220 237 95 120
-225 78 221 336 96
-226 330 222 97 318
-227 154 247 305 98
-228 99 29 349 318
-229 352 100 24 347
-230 101 213 162 350
-231 102 311 381 272
-232 103 246 290 153
-233 135 201 334 105
-234 332 106 383 142
-235 330 320 109 362
-236 319 300 313 95
-237 110 224 27 163
-238 112 156 214 329
-239 13 69 113 195
-240 143 114 325 65
-241 70 115 380 304
-242 253 124 316 152
-243 363 309 125 153
-244 154 126 291 372
-245 124 147 314 251
-246 232 364 167 128
-247 165 288 227 129
-248 132 365 301 130
-249 132 58 327 9
-250 367 104 302 129
-251 134 277 245 301
-252 374 344 96 54
-253 242 354 136 284
-254 276 223 137 357
-255 376 138 348 63
-256 80 356 382 285
-257 368 139 216 283
-258 170 369 161 140
-259 265 149 182 142
-260 135 378 181 306
-261 143 165 317 131
-262 166 377 148 292
-263 149 371 273 295
-264 138 380 150 317
-265 47 334 115 259
-266 156 222 173 152
-267 37 105 175 340
-268 287 46 113 337
-269 45 158 159 373
-270 215 97 119 307
-271 355 81 38 160
-272 231 321 113 163
-273 165 156 215 263
-274 166 294 64 207
-275 110 342 190 5
-276 254 191 202 7
-277 159 192 8 251
-278 66 179 193 10
-279 220 67 309 291
-280 221 68 191 307
-281 222 69 314 54
-282 3 212 377 72
-283 4 257 73 317
-284 253 320 75 32
-285 77 256 59 182
-286 167 304 315 360
-287 268 64 130 98
-288 103 247 85 206
-289 375 354 303 98
-290 232 323 115 316
-291 244 135 279 173
-292 201 367 382 262
-293 311 107 361 372
-294 343 304 274 296
-295 143 376 172 263
-296 308 171 294 86
-297 122 298 376 109
-298 297 188 3 218
-299 189 343 4 219
-300 144 236 127 315
-301 248 336 129 251
-302 111 19 41 250
-303 289 356 128 219
-304 286 375 294 241
-305 321 114 227 329
-306 308 126 260 371
-307 136 280 270 40
-308 358 349 306 296
-309 243 167 279 39
-310 344 203 370 151
-311 231 89 293 75
-312 88 145 39 215
-313 198 366 236 96
-314 245 335 281 117
-315 286 300 169 368
-316 242 92 290 218
-317 264 133 261 283
-318 377 226 228 86
-319 33 176 236 351
-320 235 369 284 361
-321 178 272 305 174
-322 177 168 213 379
-323 211 179 290 381
-324 146 125 369 40
-325 363 92 193 240
-326 68 158 202 150
-327 353 94 249 382
-328 155 348 186 362
-329 71 93 238 305
-330 146 235 72 226
-331 145 62 73 131
-332 234 378 74 151
-333 28 348 76 219
-334 77 265 233 169
-335 83 94 314 195
-336 301 225 85 185
-337 90 268 216 338
-338 99 200 337 109
-339 100 342 18 197
-340 101 267 15 61
-341 14 102 345 196
-342 275 103 106 339
-343 121 299 107 294
-344 310 126 108 252
-345 341 366 114 42
-346 154 117 183 207
-347 134 126 141 229
-348 255 333 136 328
-349 308 125 137 228
-350 138 230 351 384
-351 319 139 30 350
-352 166 379 161 229
-353 44 157 327 174
-354 253 289 97 175
-355 55 177 139 271
-356 178 256 16 303
-357 254 181 18 128
-358 187 308 379 149
-359 56 202 370 382
-360 132 286 210 162
-361 100 320 214 293
-362 365 169 235 328
-363 243 35 160 325
-364 246 205 216 31
-365 366 248 194 362
-366 365 223 345 313
-367 375 60 292 250
-368 201 81 257 315
-369 12 320 258 324
-370 310 212 359 383
-371 190 306 263 384
-372 165 189 244 293
-373 11 187 48 269
-374 177 36 161 252
-375 289 367 378 304
-376 297 255 60 295
-377 104 282 262 318
-378 375 332 25 260
-379 352 322 105 358
-380 264 217 383 241
-381 231 124 323 63
-382 256 292 359 327
-383 234 192 380 370
-384 82 106 371 350
0

**************