C4graphGraph forms for C4 [ 384, 197 ] = UG(ATD[384,218])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 197 ] = UG(ATD[384,218]).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {312, 313}, {329, 331}, {184, 187}, {308, 311}, {147, 151}, {275, 279}, {1, 4}, {1, 7}, {146, 148}, {98, 101}, {213, 221}, {306, 314}, {4, 13}, {20, 29}, {167, 174}, {160, 170}, {1, 10}, {65, 74}, {163, 168}, {71, 75}, {146, 158}, {182, 186}, {227, 239}, {247, 251}, {225, 236}, {130, 141}, {339, 348}, {305, 318}, {226, 237}, {3, 19}, {104, 120}, {261, 276}, {2, 16}, {361, 379}, {66, 80}, {228, 246}, {237, 255}, {161, 178}, {259, 272}, {15, 27}, {355, 375}, {353, 372}, {362, 383}, {140, 154}, {358, 368}, {352, 374}, {269, 283}, {1, 22}, {33, 54}, {168, 176}, {354, 378}, {2, 25}, {361, 370}, {7, 28}, {3, 31}, {357, 377}, {328, 340}, {260, 280}, {199, 219}, {68, 89}, {134, 155}, {100, 122}, {327, 345}, {258, 284}, {142, 145}, {196, 219}, {74, 107}, {330, 363}, {273, 304}, {193, 224}, {196, 231}, {10, 46}, {331, 367}, {285, 313}, {19, 55}, {16, 52}, {200, 236}, {25, 60}, {324, 353}, {4, 34}, {341, 371}, {135, 161}, {138, 172}, {2, 37}, {205, 234}, {3, 43}, {340, 380}, {155, 179}, {89, 112}, {151, 190}, {280, 306}, {329, 355}, {20, 63}, {79, 99}, {136, 164}, {192, 236}, {207, 227}, {141, 160}, {202, 231}, {7, 40}, {328, 359}, {9, 57}, {284, 300}, {209, 224}, {139, 185}, {350, 365}, {82, 102}, {8, 61}, {283, 301}, {137, 190}, {266, 317}, {156, 171}, {270, 310}, {277, 301}, {88, 98}, {201, 243}, {132, 191}, {150, 173}, {13, 49}, {269, 305}, {68, 120}, {25, 36}, {20, 42}, {339, 365}, {214, 232}, {222, 224}, {5, 58}, {177, 241}, {185, 249}, {279, 342}, {4, 70}, {260, 326}, {132, 198}, {22, 85}, {138, 201}, {174, 237}, {27, 95}, {31, 91}, {28, 88}, {144, 213}, {177, 244}, {6, 64}, {318, 376}, {44, 106}, {166, 225}, {188, 251}, {145, 217}, {316, 372}, {278, 350}, {8, 65}, {315, 370}, {308, 381}, {26, 83}, {9, 67}, {2, 73}, {317, 374}, {7, 76}, {3, 79}, {284, 336}, {12, 65}, {41, 100}, {17, 92}, {165, 235}, {181, 250}, {276, 347}, {21, 69}, {306, 354}, {154, 202}, {296, 377}, {128, 210}, {318, 364}, {295, 373}, {18, 65}, {311, 356}, {38, 114}, {297, 381}, {290, 374}, {267, 351}, {34, 119}, {138, 223}, {179, 230}, {140, 218}, {5, 82}, {296, 383}, {275, 324}, {23, 64}, {21, 66}, {6, 94}, {278, 334}, {265, 337}, {26, 66}, {260, 349}, {306, 363}, {291, 378}, {141, 214}, {27, 71}, {144, 204}, {147, 207}, {256, 348}, {19, 77}, {290, 380}, {158, 192}, {176, 239}, {289, 382}, {32, 64}, {48, 81}, {261, 356}, {157, 255}, {43, 72}, {178, 209}, {319, 347}, {8, 109}, {39, 66}, {27, 126}, {22, 112}, {300, 330}, {281, 383}, {31, 121}, {152, 254}, {24, 127}, {305, 342}, {282, 381}, {51, 84}, {165, 194}, {13, 100}, {17, 123}, {28, 118}, {25, 115}, {176, 218}, {187, 209}, {10, 97}, {53, 89}, {272, 380}, {136, 228}, {45, 64}, {161, 204}, {51, 93}, {282, 372}, {5, 106}, {273, 382}, {5, 117}, {38, 86}, {140, 252}, {297, 344}, {166, 212}, {175, 221}, {173, 222}, {298, 345}, {164, 208}, {9, 127}, {309, 323}, {281, 367}, {257, 375}, {31, 105}, {26, 108}, {136, 254}, {16, 103}, {164, 220}, {258, 378}, {293, 348}, {6, 124}, {291, 345}, {257, 379}, {21, 111}, {130, 254}, {271, 371}, {129, 252}, {278, 363}, {270, 371}, {179, 205}, {256, 382}, {271, 368}, {67, 194}, {29, 155}, {115, 245}, {94, 216}, {50, 180}, {125, 250}, {30, 150}, {115, 251}, {84, 220}, {87, 222}, {125, 244}, {111, 230}, {32, 172}, {85, 217}, {38, 171}, {123, 246}, {93, 210}, {97, 240}, {19, 129}, {48, 162}, {33, 178}, {124, 239}, {126, 237}, {91, 207}, {122, 238}, {113, 229}, {39, 177}, {99, 245}, {70, 208}, {33, 182}, {63, 166}, {37, 191}, {116, 238}, {101, 255}, {76, 214}, {73, 211}, {59, 161}, {38, 188}, {80, 203}, {53, 168}, {83, 206}, {24, 135}, {118, 233}, {116, 235}, {56, 167}, {34, 130}, {61, 157}, {58, 154}, {55, 151}, {52, 148}, {49, 145}, {46, 142}, {43, 139}, {40, 136}, {37, 133}, {102, 199}, {59, 153}, {87, 245}, {60, 158}, {37, 128}, {86, 243}, {79, 234}, {18, 180}, {16, 183}, {112, 215}, {62, 153}, {56, 159}, {11, 163}, {22, 190}, {20, 188}, {14, 166}, {80, 249}, {23, 189}, {77, 231}, {73, 228}, {94, 243}, {83, 252}, {81, 224}, {98, 208}, {8, 187}, {113, 194}, {47, 156}, {13, 184}, {309, 384}, {24, 175}, {100, 211}, {110, 215}, {104, 210}, {107, 209}, {85, 238}, {122, 193}, {30, 162}, {120, 196}, {57, 132}, {62, 131}, {23, 169}, {105, 215}, {91, 229}, {10, 181}, {54, 137}, {17, 174}, {92, 156}, {11, 202}, {6, 196}, {41, 235}, {14, 205}, {35, 230}, {127, 186}, {75, 141}, {124, 186}, {94, 152}, {43, 226}, {88, 145}, {61, 244}, {46, 229}, {58, 241}, {116, 185}, {9, 199}, {57, 246}, {63, 240}, {69, 149}, {15, 222}, {12, 223}, {49, 228}, {342, 384}, {32, 248}, {42, 242}, {39, 255}, {49, 232}, {102, 191}, {55, 238}, {119, 171}, {21, 200}, {28, 193}, {68, 154}, {26, 197}, {52, 235}, {11, 232}, {67, 160}, {62, 221}, {57, 220}, {17, 247}, {114, 148}, {81, 182}, {105, 142}, {23, 253}, {79, 165}, {54, 221}, {59, 215}, {124, 144}, {84, 185}, {86, 167}, {40, 218}, {118, 133}, {14, 250}, {90, 172}, {99, 148}, {125, 138}, {44, 212}, {35, 217}, {82, 168}, {117, 142}, {11, 247}, {117, 137}, {96, 156}, {93, 160}, {95, 162}, {96, 159}, {30, 286}, {90, 346}, {60, 316}, {42, 299}, {46, 303}, {75, 328}, {50, 310}, {70, 334}, {80, 344}, {74, 322}, {18, 283}, {40, 292}, {93, 337}, {72, 325}, {104, 357}, {90, 343}, {91, 340}, {115, 355}, {41, 316}, {15, 280}, {125, 362}, {54, 289}, {36, 307}, {18, 261}, {61, 293}, {12, 277}, {92, 325}, {42, 307}, {153, 384}, {52, 302}, {126, 356}, {29, 262}, {119, 364}, {69, 350}, {117, 361}, {29, 256}, {76, 337}, {53, 296}, {56, 294}, {14, 273}, {103, 327}, {116, 340}, {114, 338}, {32, 259}, {15, 299}, {106, 335}, {51, 277}, {44, 267}, {97, 326}, {75, 364}, {126, 342}, {48, 281}, {107, 321}, {89, 370}, {108, 327}, {96, 332}, {101, 329}, {60, 274}, {102, 343}, {113, 320}, {105, 351}, {121, 335}, {92, 363}, {95, 359}, {74, 368}, {33, 285}, {47, 273}, {109, 338}, {70, 262}, {97, 289}, {76, 268}, {73, 265}, {24, 346}, {121, 315}, {108, 302}, {30, 349}, {45, 366}, {35, 352}, {195, 384}, {35, 358}, {98, 295}, {81, 279}, {50, 373}, {69, 258}, {87, 287}, {99, 299}, {77, 263}, {109, 295}, {51, 376}, {47, 355}, {108, 288}, {68, 264}, {84, 282}, {106, 292}, {110, 289}, {78, 286}, {86, 262}, {127, 301}, {121, 298}, {112, 292}, {122, 303}, {72, 286}, {111, 313}, {56, 354}, {78, 276}, {12, 343}, {45, 369}, {50, 367}, {82, 271}, {59, 358}, {63, 352}, {110, 270}, {47, 334}, {48, 338}, {95, 317}, {90, 312}, {87, 309}, {67, 288}, {113, 274}, {107, 264}, {53, 336}, {110, 264}, {45, 330}, {104, 271}, {78, 297}, {41, 321}, {88, 304}, {85, 317}, {44, 324}, {34, 331}, {71, 301}, {120, 277}, {72, 294}, {77, 291}, {109, 287}, {119, 261}, {114, 257}, {78, 314}, {103, 275}, {96, 276}, {36, 338}, {55, 320}, {123, 268}, {58, 333}, {71, 319}, {36, 349}, {123, 257}, {39, 347}, {118, 266}, {111, 275}, {101, 283}, {103, 281}, {62, 321}, {83, 300}, {242, 370}, {232, 361}, {240, 369}, {173, 303}, {216, 348}, {177, 308}, {242, 375}, {211, 341}, {174, 297}, {170, 290}, {230, 366}, {241, 377}, {133, 268}, {182, 319}, {198, 332}, {210, 344}, {143, 260}, {227, 360}, {171, 295}, {169, 294}, {173, 290}, {175, 288}, {169, 313}, {252, 365}, {183, 293}, {189, 303}, {175, 316}, {190, 298}, {220, 328}, {159, 265}, {198, 337}, {203, 339}, {139, 274}, {195, 346}, {212, 333}, {219, 322}, {197, 351}, {216, 322}, {245, 367}, {203, 336}, {151, 267}, {241, 365}, {236, 369}, {253, 352}, {146, 268}, {165, 314}, {248, 359}, {147, 307}, {152, 312}, {163, 258}, {192, 353}, {218, 379}, {149, 311}, {134, 293}, {135, 291}, {197, 353}, {234, 335}, {225, 327}, {150, 305}, {170, 269}, {217, 382}, {183, 287}, {147, 314}, {164, 269}, {157, 310}, {197, 360}, {134, 296}, {226, 332}, {246, 344}, {203, 356}, {130, 304}, {184, 266}, {181, 262}, {193, 373}, {207, 378}, {249, 332}, {211, 357}, {143, 312}, {176, 263}, {191, 264}, {234, 349}, {139, 307}, {239, 343}, {248, 320}, {250, 322}, {205, 375}, {195, 376}, {233, 341}, {134, 315}, {213, 360}, {231, 346}, {212, 362}, {194, 381}, {206, 369}, {131, 323}, {243, 304}, {129, 325}, {133, 321}, {143, 330}, {233, 302}, {149, 345}, {128, 333}, {150, 347}, {216, 278}, {128, 336}, {223, 270}, {181, 358}, {208, 259}, {247, 292}, {186, 366}, {214, 259}, {204, 282}, {253, 299}, {135, 351}, {206, 279}, {249, 288}, {189, 359}, {202, 272}, {225, 315}, {180, 362}, {195, 285}, {155, 324}, {192, 287}, {223, 256}, {149, 372}, {158, 383}, {162, 323}, {172, 334}, {204, 302}, {253, 286}, {152, 380}, {159, 379}, {201, 300}, {163, 325}, {178, 341}, {180, 339}, {144, 376}, {244, 284}, {129, 360}, {170, 320}, {219, 310}, {240, 285}, {140, 354}, {167, 329}, {201, 294}, {229, 266}, {131, 371}, {187, 331}, {157, 364}, {198, 308}, {251, 265}, {188, 335}, {227, 272}, {179, 326}, {131, 373}, {146, 357}, {153, 366}, {169, 350}, {200, 319}, {137, 368}, {143, 374}, {199, 318}, {206, 311}, {242, 267}, {254, 263}, {183, 333}, {226, 280}, {184, 323}, {189, 326}, {233, 274}, {132, 377}, {200, 309}, {213, 298}, {248, 263} }>;

(II) A more general form is to represent the graph as the orbit of {312, 313} under the group generated by the following permutations:

a: (2, 109)(3, 253)(4, 7)(5, 256)(6, 231)(8, 37)(9, 301)(10, 22)(11, 243)(12, 102)(13, 28)(14, 370)(15, 165)(16, 287)(17, 167)(18, 132)(19, 23)(20, 335)(21, 26)(24, 186)(25, 338)(27, 194)(29, 106)(30, 139)(31, 352)(32, 263)(33, 221)(34, 76)(35, 105)(38, 251)(39, 80)(40, 70)(41, 224)(42, 234)(43, 286)(44, 155)(45, 291)(46, 85)(47, 379)(48, 60)(49, 88)(50, 357)(51, 318)(52, 87)(53, 125)(55, 189)(56, 92)(57, 283)(58, 348)(61, 128)(62, 178)(63, 121)(64, 77)(65, 191)(67, 71)(68, 322)(69, 83)(73, 295)(74, 264)(75, 160)(78, 226)(79, 299)(81, 316)(82, 223)(84, 305)(86, 247)(89, 250)(90, 239)(91, 374)(93, 364)(94, 202)(95, 113)(97, 190)(98, 228)(100, 193)(101, 246)(103, 192)(104, 310)(108, 200)(110, 368)(111, 197)(112, 181)(114, 115)(116, 173)(117, 382)(118, 184)(119, 337)(120, 219)(123, 329)(124, 346)(126, 381)(129, 169)(130, 214)(131, 341)(133, 187)(134, 212)(135, 366)(136, 208)(137, 289)(138, 168)(140, 278)(142, 217)(143, 207)(144, 195)(146, 367)(147, 260)(148, 245)(149, 206)(150, 185)(151, 326)(152, 272)(153, 161)(154, 216)(156, 159)(157, 210)(158, 281)(162, 274)(163, 201)(166, 315)(170, 328)(171, 265)(172, 176)(175, 182)(177, 203)(179, 267)(180, 377)(198, 261)(199, 277)(204, 384)(205, 242)(209, 321)(211, 373)(213, 285)(215, 358)(218, 334)(220, 269)(222, 235)(227, 312)(229, 317)(230, 351)(232, 304)(233, 323)(236, 327)(237, 297)(238, 303)(240, 298)(241, 339)(244, 336)(249, 347)(252, 350)(254, 259)(255, 344)(257, 355)(258, 300)(262, 292)(268, 331)(270, 271)(273, 361)(275, 353)(276, 332)(279, 372)(280, 314)(282, 342)(288, 319)(290, 340)(293, 333)(294, 325)(296, 362)(302, 309)(307, 349)(308, 356)(313, 360)(320, 359)(330, 378)(345, 369)(354, 363)
b: (1, 2)(4, 37)(5, 38)(6, 39)(7, 73)(8, 74)(9, 75)(10, 16)(11, 17)(12, 18)(13, 133)(14, 134)(15, 135)(19, 43)(20, 44)(21, 45)(22, 25)(23, 26)(24, 27)(28, 211)(29, 212)(30, 213)(31, 79)(32, 80)(33, 81)(34, 191)(35, 192)(36, 190)(40, 265)(41, 266)(42, 267)(46, 52)(47, 53)(48, 54)(49, 268)(50, 270)(51, 269)(55, 139)(56, 140)(57, 141)(58, 86)(59, 87)(60, 85)(61, 322)(62, 323)(63, 324)(64, 66)(67, 328)(68, 329)(69, 330)(70, 128)(71, 127)(72, 129)(76, 228)(77, 226)(78, 227)(82, 171)(83, 169)(84, 170)(88, 357)(89, 355)(90, 356)(91, 165)(92, 163)(93, 164)(94, 177)(95, 175)(96, 176)(97, 103)(98, 104)(99, 105)(100, 118)(101, 120)(102, 119)(106, 188)(107, 187)(108, 189)(109, 368)(110, 367)(111, 369)(112, 115)(113, 116)(114, 117)(121, 234)(122, 233)(123, 232)(124, 347)(125, 348)(126, 346)(130, 132)(136, 337)(137, 338)(138, 339)(142, 148)(143, 149)(144, 150)(145, 146)(151, 307)(152, 308)(153, 309)(154, 167)(155, 166)(156, 168)(157, 219)(158, 217)(159, 218)(160, 220)(161, 222)(162, 221)(172, 203)(173, 204)(174, 202)(178, 224)(179, 225)(180, 223)(181, 183)(184, 321)(185, 320)(186, 319)(193, 341)(194, 340)(195, 342)(196, 255)(197, 253)(198, 254)(199, 364)(200, 366)(201, 365)(205, 315)(206, 313)(207, 314)(208, 210)(214, 246)(215, 245)(216, 244)(229, 235)(230, 236)(231, 237)(238, 274)(239, 276)(240, 275)(241, 243)(248, 249)(250, 293)(251, 292)(252, 294)(256, 362)(257, 361)(258, 363)(259, 344)(260, 345)(261, 343)(262, 333)(263, 332)(264, 331)(271, 295)(272, 297)(273, 296)(277, 283)(278, 284)(279, 285)(280, 291)(281, 289)(282, 290)(286, 360)(287, 358)(288, 359)(298, 349)(299, 351)(300, 350)(302, 303)(304, 377)(305, 376)(306, 378)(311, 312)(316, 317)(326, 327)(334, 336)(352, 353)(370, 375)(371, 373)(372, 374)(380, 381)(382, 383)
c: (1, 4)(2, 37)(3, 301)(5, 109)(6, 253)(7, 13)(8, 106)(9, 139)(10, 70)(11, 224)(12, 234)(14, 256)(15, 231)(16, 128)(17, 178)(18, 121)(19, 71)(20, 322)(21, 83)(22, 34)(23, 64)(24, 226)(25, 191)(26, 66)(27, 77)(28, 49)(29, 250)(30, 239)(31, 283)(32, 189)(33, 92)(35, 243)(36, 102)(38, 368)(39, 197)(40, 184)(41, 337)(42, 219)(43, 127)(44, 61)(45, 169)(46, 208)(47, 289)(48, 168)(50, 370)(51, 165)(52, 210)(53, 281)(54, 156)(55, 75)(56, 153)(57, 274)(58, 287)(59, 167)(60, 132)(62, 159)(63, 216)(65, 335)(67, 185)(68, 245)(69, 206)(72, 186)(73, 133)(74, 188)(76, 100)(78, 144)(79, 277)(80, 108)(81, 163)(82, 338)(84, 194)(85, 130)(86, 358)(87, 154)(88, 145)(89, 367)(90, 260)(91, 269)(93, 235)(94, 352)(95, 263)(96, 221)(97, 334)(98, 142)(99, 120)(101, 105)(103, 336)(104, 148)(107, 251)(110, 355)(111, 300)(112, 331)(113, 220)(114, 271)(115, 264)(116, 160)(117, 295)(118, 228)(119, 190)(122, 214)(123, 341)(124, 286)(125, 155)(126, 291)(129, 319)(131, 379)(134, 362)(135, 237)(136, 266)(137, 171)(138, 179)(140, 309)(141, 238)(143, 312)(146, 357)(147, 318)(149, 311)(150, 227)(151, 364)(152, 374)(157, 267)(158, 377)(161, 174)(162, 176)(164, 229)(166, 348)(170, 340)(172, 326)(173, 272)(175, 332)(177, 353)(180, 315)(181, 262)(182, 325)(183, 333)(187, 292)(192, 241)(193, 232)(195, 306)(196, 299)(198, 316)(199, 307)(200, 252)(201, 230)(202, 222)(203, 327)(204, 297)(205, 223)(207, 305)(209, 247)(211, 268)(212, 293)(213, 276)(215, 329)(217, 304)(218, 323)(225, 339)(233, 246)(236, 365)(240, 278)(242, 310)(244, 324)(248, 359)(249, 288)(254, 317)(255, 351)(257, 371)(258, 279)(259, 303)(261, 298)(265, 321)(270, 375)(273, 382)(275, 284)(280, 346)(282, 381)(285, 363)(290, 380)(294, 366)(296, 383)(302, 344)(308, 372)(313, 330)(314, 376)(320, 328)(342, 378)(343, 349)(345, 356)(347, 360)(350, 369)(354, 384)(361, 373)
d: (2, 3)(4, 10)(5, 11)(6, 12)(7, 22)(8, 23)(9, 24)(13, 46)(14, 47)(15, 48)(16, 43)(17, 44)(18, 45)(19, 37)(20, 38)(21, 39)(25, 79)(26, 80)(27, 81)(28, 85)(29, 86)(30, 87)(31, 73)(32, 74)(33, 75)(34, 97)(35, 98)(36, 99)(40, 112)(41, 113)(42, 114)(49, 142)(50, 143)(51, 144)(52, 139)(53, 140)(54, 141)(55, 133)(56, 134)(57, 135)(58, 163)(59, 164)(60, 165)(61, 169)(62, 170)(63, 171)(64, 65)(67, 175)(68, 176)(69, 177)(70, 181)(71, 182)(72, 183)(76, 190)(77, 191)(78, 192)(82, 202)(83, 203)(84, 204)(88, 217)(89, 218)(90, 219)(91, 211)(92, 212)(93, 213)(94, 223)(95, 224)(96, 225)(100, 229)(101, 230)(102, 231)(103, 226)(104, 227)(105, 228)(106, 247)(107, 248)(108, 249)(109, 253)(110, 254)(111, 255)(115, 234)(116, 233)(117, 232)(118, 238)(119, 240)(120, 239)(121, 265)(122, 266)(123, 267)(124, 277)(125, 278)(126, 279)(128, 129)(130, 289)(131, 290)(132, 291)(136, 215)(137, 214)(138, 216)(146, 147)(148, 307)(149, 308)(150, 309)(151, 268)(152, 270)(153, 269)(154, 168)(155, 167)(156, 166)(157, 313)(158, 314)(159, 315)(160, 221)(161, 220)(162, 222)(172, 322)(173, 323)(174, 324)(178, 328)(179, 329)(180, 330)(184, 303)(185, 302)(186, 301)(187, 189)(193, 317)(194, 316)(195, 318)(196, 343)(197, 344)(198, 345)(199, 346)(200, 347)(201, 348)(205, 355)(206, 356)(207, 357)(208, 358)(209, 359)(210, 360)(235, 274)(236, 276)(237, 275)(241, 258)(242, 257)(243, 256)(244, 350)(245, 349)(246, 351)(250, 334)(251, 335)(252, 336)(259, 368)(260, 367)(261, 369)(263, 264)(271, 272)(280, 281)(283, 366)(284, 365)(285, 364)(286, 287)(293, 294)(295, 352)(296, 354)(297, 353)(298, 337)(299, 338)(300, 339)(304, 382)(305, 384)(306, 383)(310, 312)(320, 321)(325, 333)(326, 331)(327, 332)(340, 341)(362, 363)(370, 379)(371, 380)(372, 381)(373, 374)(377, 378)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 197 ]
384
-1 22 4 7 10
-2 25 37 16 73
-3 79 19 31 43
-4 1 34 13 70
-5 58 82 106 117
-6 124 94 64 196
-7 1 28 40 76
-8 187 61 65 109
-9 67 199 57 127
-10 1 46 181 97
-11 232 202 247 163
-12 277 343 223 65
-13 100 4 49 184
-14 166 205 250 273
-15 222 299 27 280
-16 2 103 183 52
-17 123 92 247 174
-18 180 261 283 65
-19 55 77 3 129
-20 188 29 63 42
-21 66 111 200 69
-22 1 112 190 85
-23 253 189 169 64
-24 135 346 127 175
-25 2 36 60 115
-26 66 83 108 197
-27 15 71 126 95
-28 88 193 7 118
-29 155 256 20 262
-30 286 150 162 349
-31 121 3 91 105
-32 248 259 172 64
-33 178 182 54 285
-34 331 4 119 130
-35 352 358 217 230
-36 25 338 349 307
-37 133 2 191 128
-38 188 114 171 86
-39 66 177 255 347
-40 136 292 7 218
-41 100 321 235 316
-42 242 299 20 307
-43 3 72 226 139
-44 212 267 324 106
-45 330 366 369 64
-46 303 229 10 142
-47 156 355 334 273
-48 81 281 162 338
-49 232 13 145 228
-50 310 180 367 373
-51 277 376 93 84
-52 235 16 148 302
-53 89 168 336 296
-54 33 221 289 137
-55 320 238 19 151
-56 167 354 159 294
-57 132 220 246 9
-58 154 333 5 241
-59 215 358 161 153
-60 25 158 316 274
-61 244 157 293 8
-62 221 321 131 153
-63 352 166 20 240
-64 23 45 6 32
-65 12 18 8 74
-66 80 26 39 21
-67 288 160 194 9
-68 154 264 89 120
-69 258 149 350 21
-70 4 334 262 208
-71 319 301 27 75
-72 286 325 294 43
-73 265 2 211 228
-74 322 368 107 65
-75 364 71 141 328
-76 268 214 7 337
-77 231 291 19 263
-78 286 297 276 314
-79 99 165 3 234
-80 66 344 203 249
-81 48 224 279 182
-82 102 168 5 271
-83 300 26 206 252
-84 220 51 282 185
-85 22 238 217 317
-86 243 167 38 262
-87 287 309 222 245
-88 145 28 304 98
-89 68 112 370 53
-90 343 312 346 172
-91 31 207 229 340
-92 363 156 17 325
-93 210 160 51 337
-94 243 6 216 152
-95 27 359 162 317
-96 276 156 332 159
-97 289 326 240 10
-98 88 101 295 208
-99 79 299 245 148
-100 122 13 211 41
-101 255 283 98 329
-102 199 343 191 82
-103 275 16 281 327
-104 210 357 271 120
-105 215 31 142 351
-106 44 5 335 292
-107 209 264 321 74
-108 288 26 302 327
-109 287 8 338 295
-110 264 289 215 270
-111 275 313 21 230
-112 22 89 215 292
-113 320 194 229 274
-114 257 38 148 338
-115 25 245 355 251
-116 235 238 185 340
-117 5 137 361 142
-118 133 233 266 28
-119 34 364 171 261
-120 68 277 104 196
-121 298 335 315 31
-122 100 193 303 238
-123 246 257 268 17
-124 144 6 239 186
-125 244 138 250 362
-126 342 356 27 237
-127 24 301 9 186
-128 210 333 37 336
-129 325 19 360 252
-130 34 254 304 141
-131 323 62 371 373
-132 198 57 377 191
-133 321 37 268 118
-134 155 293 315 296
-135 24 291 161 351
-136 254 40 228 164
-137 190 368 117 54
-138 201 223 125 172
-139 185 43 274 307
-140 154 354 218 252
-141 214 160 75 130
-142 46 145 105 117
-143 330 374 312 260
-144 376 124 213 204
-145 88 49 217 142
-146 158 268 148 357
-147 314 151 207 307
-148 99 146 114 52
-149 69 311 345 372
-150 347 30 173 305
-151 55 190 267 147
-152 254 312 94 380
-153 366 59 62 384
-154 68 58 202 140
-155 134 179 324 29
-156 47 92 171 96
-157 364 255 310 61
-158 146 60 192 383
-159 56 265 379 96
-160 67 93 170 141
-161 178 135 59 204
-162 48 323 95 30
-163 11 168 258 325
-164 220 136 269 208
-165 79 235 314 194
-166 14 212 225 63
-167 56 86 174 329
-168 176 82 53 163
-169 23 313 294 350
-170 320 290 269 160
-171 156 38 119 295
-172 90 334 138 32
-173 222 290 303 150
-174 297 167 17 237
-175 221 24 288 316
-176 168 239 218 263
-177 308 244 39 241
-178 33 209 341 161
-179 155 205 326 230
-180 50 18 339 362
-181 358 250 262 10
-182 33 319 81 186
-183 287 333 16 293
-184 187 13 266 323
-185 116 84 139 249
-186 124 366 127 182
-187 209 331 8 184
-188 38 335 20 251
-189 23 303 326 359
-190 22 298 137 151
-191 132 264 102 37
-192 287 353 158 236
-193 122 224 28 373
-194 165 67 113 381
-195 376 346 285 384
-196 231 6 120 219
-197 353 26 360 351
-198 132 308 332 337
-199 102 9 219 318
-200 319 309 236 21
-201 243 300 138 294
-202 11 154 231 272
-203 80 356 336 339
-204 144 302 161 282
-205 375 14 179 234
-206 311 279 83 369
-207 91 147 378 227
-208 70 259 98 164
-209 187 178 224 107
-210 344 93 104 128
-211 341 100 357 73
-212 44 166 333 362
-213 144 221 298 360
-214 232 259 141 76
-215 110 112 59 105
-216 278 322 94 348
-217 35 145 85 382
-218 176 379 40 140
-219 199 310 322 196
-220 57 84 328 164
-221 213 62 54 175
-222 15 224 173 87
-223 12 256 138 270
-224 209 222 81 193
-225 166 236 315 327
-226 332 280 237 43
-227 239 272 360 207
-228 136 246 49 73
-229 46 266 91 113
-230 111 35 179 366
-231 77 202 346 196
-232 11 49 214 361
-233 341 302 118 274
-234 79 335 205 349
-235 165 116 41 52
-236 200 192 225 369
-237 255 126 226 174
-238 55 122 116 85
-239 176 343 124 227
-240 369 63 97 285
-241 177 365 58 377
-242 375 267 370 42
-243 201 94 304 86
-244 177 125 61 284
-245 99 367 115 87
-246 57 123 344 228
-247 11 17 292 251
-248 320 359 32 263
-249 288 332 80 185
-250 14 322 125 181
-251 188 265 115 247
-252 365 83 129 140
-253 286 352 23 299
-254 136 130 152 263
-255 101 157 39 237
-256 223 29 348 382
-257 375 123 114 379
-258 69 378 163 284
-259 214 272 32 208
-260 143 280 326 349
-261 276 356 18 119
-262 70 181 29 86
-263 77 176 254 248
-264 110 68 191 107
-265 159 73 337 251
-266 118 184 229 317
-267 44 242 151 351
-268 133 123 146 76
-269 170 283 305 164
-270 110 310 223 371
-271 82 104 368 371
-272 202 259 380 227
-273 14 47 304 382
-274 233 113 60 139
-275 111 103 279 324
-276 78 347 96 261
-277 12 301 51 120
-278 363 334 216 350
-279 275 342 81 206
-280 15 226 260 306
-281 48 103 367 383
-282 204 84 381 372
-283 101 301 269 18
-284 244 300 258 336
-285 33 313 195 240
-286 253 78 72 30
-287 192 183 87 109
-288 67 249 108 175
-289 110 382 97 54
-290 374 170 380 173
-291 77 135 345 378
-292 112 247 40 106
-293 134 61 183 348
-294 56 201 169 72
-295 171 98 109 373
-296 134 377 53 383
-297 78 344 381 174
-298 121 190 213 345
-299 99 253 15 42
-300 330 201 83 284
-301 277 71 127 283
-302 233 204 52 108
-303 122 46 189 173
-304 88 243 130 273
-305 342 269 150 318
-306 363 354 280 314
-307 36 147 139 42
-308 198 177 311 381
-309 200 323 87 384
-310 157 50 270 219
-311 308 356 149 206
-312 143 90 313 152
-313 111 169 312 285
-314 165 78 147 306
-315 121 134 225 370
-316 60 41 372 175
-317 374 266 95 85
-318 199 364 376 305
-319 200 71 182 347
-320 55 113 170 248
-321 133 62 41 107
-322 216 74 250 219
-323 309 162 184 131
-324 44 275 155 353
-325 92 72 129 163
-326 189 179 260 97
-327 103 345 225 108
-328 220 359 75 340
-329 331 101 167 355
-330 143 363 45 300
-331 187 34 367 329
-332 198 226 249 96
-333 58 212 128 183
-334 47 278 70 172
-335 121 188 234 106
-336 203 128 53 284
-337 198 265 93 76
-338 36 48 114 109
-339 365 180 203 348
-340 91 116 380 328
-341 178 211 233 371
-342 279 126 305 384
-343 12 90 102 239
-344 297 210 80 246
-345 298 291 149 327
-346 231 24 90 195
-347 319 276 39 150
-348 256 216 293 339
-349 36 234 260 30
-350 365 69 278 169
-351 135 267 105 197
-352 253 374 35 63
-353 192 324 372 197
-354 56 378 140 306
-355 375 47 115 329
-356 311 126 203 261
-357 211 146 377 104
-358 35 59 181 368
-359 189 248 95 328
-360 213 227 129 197
-361 232 379 117 370
-362 212 125 180 383
-363 330 278 92 306
-364 157 75 119 318
-365 339 350 241 252
-366 45 153 186 230
-367 331 245 50 281
-368 137 358 271 74
-369 45 236 206 240
-370 242 89 315 361
-371 341 270 271 131
-372 353 149 282 316
-373 50 193 295 131
-374 143 352 290 317
-375 242 355 257 205
-376 144 51 195 318
-377 132 357 241 296
-378 354 258 291 207
-379 257 159 218 361
-380 290 272 152 340
-381 297 308 194 282
-382 256 289 217 273
-383 158 281 296 362
-384 309 342 195 153
0

**************