[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 216 ] =
UG(ATD[384,354]).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {158, 159}, {254, 255}, {1, 2}, {88, 91}, {17, 18}, {339, 343},
{2, 7}, {264, 269}, {97, 100}, {96, 102}, {1, 6}, {98, 101}, {41, 46}, {168,
175}, {169, 174}, {234, 237}, {336, 344}, {164, 173}, {3, 8}, {4, 15}, {87, 91},
{324, 328}, {259, 271}, {4, 9}, {369, 380}, {167, 170}, {39, 41}, {369, 383},
{263, 265}, {258, 268}, {5, 10}, {368, 383}, {38, 41}, {5, 21}, {365, 381}, {14,
30}, {13, 29}, {12, 28}, {11, 27}, {10, 26}, {9, 25}, {8, 24}, {7, 23}, {6, 22},
{2, 19}, {139, 153}, {11, 31}, {332, 344}, {261, 273}, {260, 272}, {357, 368},
{366, 379}, {70, 80}, {360, 382}, {356, 370}, {3, 20}, {289, 310}, {172, 181},
{334, 343}, {270, 279}, {12, 16}, {70, 91}, {46, 48}, {171, 180}, {22, 55}, {30,
63}, {28, 61}, {26, 59}, {24, 57}, {264, 298}, {21, 54}, {261, 294}, {29, 62},
{25, 58}, {15, 43}, {195, 231}, {24, 61}, {285, 312}, {18, 52}, {19, 53}, {8,
47}, {90, 125}, {27, 60}, {337, 377}, {339, 379}, {7, 46}, {336, 377}, {328,
353}, {66, 107}, {14, 36}, {6, 45}, {337, 378}, {25, 53}, {82, 127}, {95, 113},
{203, 229}, {15, 32}, {23, 56}, {17, 33}, {332, 380}, {18, 34}, {20, 37}, {192,
242}, {321, 371}, {320, 370}, {329, 378}, {194, 246}, {287, 297}, {334, 376},
{72, 127}, {335, 376}, {321, 374}, {13, 53}, {69, 125}, {68, 124}, {67, 123},
{66, 122}, {65, 121}, {64, 120}, {9, 48}, {71, 126}, {10, 49}, {258, 313}, {16,
44}, {329, 372}, {330, 375}, {12, 50}, {13, 51}, {330, 373}, {62, 126}, {297,
361}, {63, 127}, {60, 125}, {13, 79}, {40, 106}, {37, 103}, {184, 251}, {309,
374}, {288, 355}, {279, 340}, {32, 100}, {303, 363}, {302, 362}, {301, 361},
{300, 360}, {34, 102}, {33, 101}, {35, 102}, {290, 359}, {288, 357}, {256, 325},
{47, 106}, {151, 210}, {42, 108}, {130, 197}, {296, 367}, {289, 358}, {35, 107},
{278, 350}, {260, 332}, {63, 119}, {62, 118}, {61, 117}, {60, 116}, {59, 115},
{58, 114}, {57, 113}, {56, 112}, {42, 98}, {161, 233}, {256, 329}, {258, 331},
{20, 94}, {283, 337}, {148, 222}, {29, 86}, {295, 364}, {276, 351}, {19, 95},
{316, 368}, {299, 359}, {162, 239}, {296, 357}, {262, 331}, {183, 250}, {38,
104}, {319, 369}, {39, 105}, {144, 222}, {145, 223}, {160, 239}, {182, 249},
{128, 208}, {303, 383}, {287, 335}, {262, 342}, {134, 214}, {133, 213}, {132,
212}, {131, 211}, {130, 210}, {129, 209}, {135, 215}, {136, 216}, {137, 217},
{138, 218}, {161, 241}, {136, 217}, {259, 338}, {160, 241}, {142, 220}, {277,
327}, {263, 341}, {143, 221}, {165, 247}, {187, 233}, {132, 215}, {299, 376},
{284, 335}, {274, 326}, {301, 377}, {278, 322}, {27, 78}, {305, 356}, {280,
333}, {162, 247}, {185, 236}, {188, 233}, {141, 219}, {22, 65}, {31, 72}, {30,
73}, {50, 106}, {303, 375}, {301, 373}, {299, 371}, {290, 378}, {55, 111}, {54,
110}, {53, 109}, {52, 108}, {49, 107}, {309, 367}, {308, 366}, {305, 363}, {304,
362}, {302, 372}, {129, 219}, {54, 108}, {163, 248}, {176, 235}, {179, 232},
{161, 252}, {130, 220}, {307, 365}, {306, 364}, {275, 333}, {131, 221}, {166,
248}, {31, 64}, {289, 382}, {157, 253}, {285, 381}, {257, 353}, {164, 196},
{165, 197}, {166, 198}, {167, 199}, {168, 200}, {32, 65}, {265, 360}, {38, 71},
{36, 69}, {34, 67}, {45, 79}, {319, 349}, {304, 338}, {271, 365}, {150, 244},
{33, 66}, {273, 370}, {40, 75}, {37, 70}, {43, 79}, {181, 209}, {50, 84}, {61,
91}, {51, 85}, {148, 242}, {35, 68}, {42, 77}, {41, 65}, {308, 348}, {307, 347},
{306, 346}, {143, 230}, {144, 250}, {39, 74}, {134, 232}, {275, 381}, {35, 76},
{154, 245}, {145, 225}, {149, 229}, {40, 89}, {275, 354}, {44, 93}, {157, 236},
{159, 238}, {146, 224}, {295, 341}, {274, 352}, {147, 225}, {150, 228}, {154,
232}, {155, 233}, {158, 237}, {264, 379}, {21, 96}, {300, 345}, {36, 81}, {23,
97}, {276, 354}, {146, 228}, {148, 226}, {149, 227}, {156, 234}, {43, 92}, {135,
240}, {26, 98}, {286, 358}, {163, 219}, {42, 83}, {261, 380}, {138, 243}, {286,
356}, {29, 97}, {44, 80}, {154, 231}, {269, 368}, {136, 246}, {285, 355}, {280,
358}, {149, 235}, {1, 126}, {28, 99}, {169, 214}, {45, 164}, {118, 255}, {47,
166}, {38, 173}, {46, 165}, {1, 140}, {56, 171}, {120, 235}, {57, 172}, {59,
174}, {48, 167}, {105, 254}, {58, 173}, {49, 168}, {51, 170}, {4, 159}, {85,
201}, {101, 249}, {52, 169}, {119, 234}, {55, 170}, {88, 248}, {92, 248}, {124,
218}, {119, 222}, {67, 232}, {51, 158}, {116, 217}, {111, 192}, {39, 151}, {127,
207}, {126, 206}, {125, 205}, {124, 204}, {123, 203}, {122, 202}, {121, 201},
{120, 200}, {119, 199}, {118, 198}, {117, 197}, {116, 196}, {115, 195}, {114,
194}, {40, 152}, {112, 193}, {309, 384}, {23, 172}, {114, 201}, {4, 184}, {97,
223}, {64, 128}, {90, 154}, {73, 137}, {83, 146}, {77, 143}, {89, 157}, {93,
152}, {17, 215}, {94, 152}, {57, 255}, {82, 149}, {94, 153}, {95, 151}, {62,
247}, {112, 185}, {88, 145}, {77, 132}, {75, 130}, {73, 128}, {89, 147}, {74,
129}, {92, 151}, {78, 133}, {76, 135}, {90, 148}, {76, 131}, {59, 235}, {104,
184}, {106, 187}, {111, 190}, {110, 191}, {108, 189}, {68, 150}, {109, 190},
{81, 133}, {110, 186}, {74, 159}, {104, 190}, {81, 134}, {107, 188}, {82, 133},
{5, 221}, {2, 219}, {99, 186}, {87, 142}, {85, 140}, {83, 138}, {82, 136}, {90,
128}, {86, 141}, {87, 139}, {103, 186}, {78, 144}, {3, 220}, {84, 139}, {5,
218}, {16, 241}, {88, 185}, {74, 171}, {76, 174}, {85, 183}, {84, 182}, {89,
186}, {58, 222}, {80, 181}, {105, 140}, {75, 172}, {75, 160}, {6, 234}, {67,
175}, {55, 217}, {366, 384}, {86, 184}, {3, 236}, {15, 255}, {16, 225}, {122,
139}, {370, 384}, {104, 156}, {17, 228}, {71, 178}, {69, 176}, {87, 161}, {70,
177}, {72, 179}, {79, 180}, {83, 175}, {103, 155}, {92, 162}, {93, 163}, {94,
346}, {43, 292}, {71, 341}, {114, 352}, {101, 375}, {9, 282}, {33, 311}, {96,
374}, {69, 355}, {44, 267}, {78, 356}, {80, 378}, {21, 318}, {66, 361}, {73,
357}, {72, 358}, {113, 351}, {81, 383}, {18, 317}, {47, 287}, {10, 315}, {115,
322}, {111, 350}, {8, 314}, {11, 312}, {56, 270}, {11, 316}, {93, 362}, {14,
310}, {123, 326}, {7, 313}, {27, 347}, {52, 373}, {31, 349}, {63, 381}, {60,
382}, {49, 371}, {32, 354}, {120, 317}, {30, 345}, {109, 293}, {34, 363}, {99,
297}, {12, 327}, {50, 377}, {45, 353}, {14, 320}, {68, 266}, {103, 311}, {20,
325}, {117, 292}, {54, 359}, {25, 333}, {22, 323}, {19, 324}, {86, 271}, {121,
291}, {95, 259}, {37, 376}, {77, 272}, {105, 265}, {124, 284}, {100, 263}, {96,
260}, {110, 266}, {109, 265}, {99, 262}, {100, 257}, {98, 261}, {28, 372}, {84,
318}, {123, 273}, {122, 272}, {102, 264}, {116, 282}, {48, 351}, {24, 364}, {26,
367}, {121, 271}, {36, 348}, {112, 267}, {117, 270}, {113, 268}, {118, 267},
{115, 269}, {205, 333}, {173, 300}, {176, 305}, {238, 364}, {243, 369}, {199,
324}, {156, 280}, {157, 281}, {171, 302}, {251, 382}, {237, 360}, {144, 278},
{231, 352}, {204, 327}, {209, 346}, {207, 323}, {153, 279}, {211, 348}, {238,
353}, {137, 280}, {174, 319}, {206, 351}, {212, 325}, {131, 273}, {208, 322},
{147, 256}, {205, 350}, {213, 326}, {203, 349}, {141, 276}, {250, 355}, {170,
307}, {192, 345}, {194, 347}, {152, 258}, {137, 274}, {142, 277}, {175, 308},
{179, 296}, {193, 346}, {202, 342}, {145, 268}, {147, 270}, {240, 366}, {132,
283}, {140, 275}, {146, 269}, {155, 260}, {195, 348}, {167, 263}, {214, 374},
{189, 284}, {163, 257}, {176, 274}, {190, 285}, {189, 281}, {191, 283}, {206,
362}, {179, 278}, {196, 354}, {239, 329}, {164, 259}, {188, 283}, {230, 321},
{177, 281}, {178, 282}, {141, 295}, {249, 339}, {191, 277}, {252, 336}, {183,
282}, {182, 281}, {207, 352}, {166, 279}, {198, 372}, {243, 321}, {181, 262},
{253, 334}, {242, 326}, {246, 322}, {245, 320}, {230, 336}, {254, 328}, {246,
320}, {180, 268}, {251, 323}, {250, 323}, {252, 325}, {213, 367}, {253, 327},
{244, 334}, {240, 330}, {129, 314}, {153, 290}, {208, 363}, {229, 350}, {134,
315}, {224, 349}, {236, 337}, {241, 335}, {244, 330}, {200, 375}, {251, 324},
{64, 384}, {197, 257}, {142, 331}, {247, 306}, {182, 371}, {227, 294}, {156,
347}, {226, 293}, {202, 256}, {245, 319}, {244, 318}, {240, 315}, {158, 338},
{242, 316}, {254, 304}, {243, 317}, {224, 305}, {226, 307}, {228, 309}, {230,
311}, {225, 306}, {229, 310}, {193, 277}, {226, 310}, {239, 314}, {202, 284},
{227, 308}, {238, 313}, {177, 361}, {210, 267}, {224, 315}, {187, 359}, {138,
343}, {195, 286}, {192, 286}, {193, 287}, {135, 344}, {245, 298}, {178, 365},
{227, 316}, {231, 312}, {216, 312}, {180, 341}, {196, 293}, {194, 288}, {200,
298}, {168, 332}, {199, 291}, {177, 340}, {189, 344}, {223, 314}, {201, 289},
{162, 331}, {150, 380}, {206, 292}, {207, 293}, {212, 318}, {188, 343}, {191,
340}, {203, 288}, {187, 342}, {253, 272}, {155, 373}, {183, 345}, {204, 290},
{205, 291}, {211, 317}, {185, 342}, {223, 304}, {214, 294}, {220, 302}, {221,
303}, {249, 266}, {143, 379}, {160, 340}, {216, 300}, {209, 292}, {210, 295},
{208, 294}, {252, 266}, {165, 338}, {218, 301}, {237, 276}, {169, 339}, {178,
328}, {204, 311}, {211, 296}, {216, 291}, {215, 299}, {212, 297}, {198, 313},
{213, 298} }>;
(II) A more general form is to represent the graph as the orbit of {158, 159}
under the group generated by the following permutations:
a: (2, 6)(3, 11)(7, 22)(8, 27)(9, 15)(10, 21)(12, 36)(14, 16)(18, 33)(19,
45)(20, 31)(23, 55)(24, 60)(25, 43)(26, 54)(28, 69)(29, 51)(30, 44)(32, 48)(34,
66)(37, 64)(38, 39)(40, 82)(46, 65)(47, 78)(49, 96)(50, 81)(52, 101)(53, 79)(56,
111)(57, 116)(58, 92)(59, 110)(61, 125)(62, 85)(63, 93)(67, 122)(68, 76)(70,
128)(71, 105)(72, 94)(73, 80)(74, 104)(75, 136)(77, 83)(84, 134)(86, 158)(87,
154)(88, 148)(89, 149)(90, 91)(95, 164)(97, 170)(98, 108)(99, 176)(100,
167)(102, 107)(103, 120)(106, 133)(109, 180)(112, 192)(113, 196)(114, 162)(115,
191)(117, 205)(118, 183)(119, 163)(121, 165)(123, 202)(124, 131)(126, 140)(127,
152)(129, 156)(130, 216)(132, 146)(135, 150)(137, 181)(138, 143)(139, 232)(141,
237)(142, 231)(144, 166)(145, 226)(147, 229)(151, 173)(153, 179)(155, 200)(157,
227)(159, 184)(160, 246)(161, 245)(168, 260)(169, 249)(171, 190)(172, 217)(174,
266)(175, 272)(177, 208)(178, 254)(182, 214)(185, 242)(186, 235)(187, 213)(188,
264)(189, 261)(193, 286)(194, 239)(195, 277)(197, 291)(198, 250)(199, 257)(201,
247)(203, 256)(204, 211)(206, 275)(207, 258)(209, 280)(210, 300)(212, 224)(215,
228)(218, 221)(219, 234)(220, 312)(222, 248)(223, 307)(225, 310)(230, 243)(233,
298)(236, 316)(238, 251)(240, 244)(241, 320)(252, 319)(253, 308)(255, 282)(262,
274)(265, 341)(267, 345)(268, 293)(269, 283)(270, 350)(271, 338)(273, 284)(278,
279)(281, 294)(285, 302)(287, 356)(288, 329)(289, 306)(290, 296)(292, 333)(295,
360)(297, 305)(299, 309)(301, 303)(304, 365)(311, 317)(313, 323)(314, 347)(315,
318)(322, 340)(324, 353)(325, 349)(326, 342)(327, 348)(331, 352)(334, 366)(335,
370)(336, 369)(337, 368)(343, 379)(344, 380)(346, 358)(351, 354)(355, 372)(357,
378)(359, 367)(361, 363)(362, 381)(364, 382)(371, 374)(373, 375)(376, 384)(377,
383) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 140)(3, 90)(6, 126)(7, 85)(8, 125)(9, 159)(10, 218)(11, 91)(12, 133)(13,
41)(14, 40)(15, 184)(16, 82)(18, 215)(19, 105)(20, 128)(21, 221)(22, 62)(23,
201)(24, 60)(25, 74)(26, 124)(27, 61)(28, 78)(29, 65)(30, 152)(31, 70)(32,
86)(33, 228)(34, 132)(35, 42)(36, 106)(37, 64)(38, 79)(39, 53)(43, 104)(44,
127)(45, 71)(46, 51)(47, 69)(48, 158)(49, 138)(50, 81)(52, 135)(54, 131)(55,
247)(56, 114)(57, 382)(58, 171)(59, 284)(63, 93)(66, 146)(67, 283)(68, 98)(72,
80)(73, 94)(75, 310)(76, 108)(77, 102)(83, 107)(84, 383)(87, 316)(88, 312)(89,
320)(92, 190)(95, 265)(96, 143)(97, 121)(99, 356)(100, 271)(101, 150)(103,
384)(109, 151)(110, 273)(111, 162)(112, 352)(113, 360)(115, 202)(116, 364)(117,
347)(118, 323)(119, 362)(120, 376)(122, 269)(123, 191)(129, 333)(130, 226)(134,
377)(136, 225)(137, 346)(139, 368)(141, 354)(142, 242)(144, 372)(145, 216)(147,
246)(148, 220)(149, 241)(153, 357)(154, 236)(155, 366)(156, 292)(157, 245)(160,
229)(161, 227)(163, 381)(164, 341)(165, 170)(166, 355)(167, 338)(168, 343)(169,
344)(172, 289)(173, 180)(174, 189)(175, 188)(176, 287)(177, 349)(178, 353)(179,
378)(181, 358)(182, 369)(183, 313)(185, 231)(186, 370)(187, 348)(192, 331)(193,
274)(194, 270)(195, 342)(196, 295)(197, 307)(198, 250)(199, 304)(200, 334)(203,
340)(204, 367)(205, 314)(206, 234)(207, 267)(208, 325)(209, 280)(210, 293)(211,
359)(212, 363)(213, 327)(214, 336)(217, 306)(219, 275)(222, 302)(223, 291)(224,
361)(230, 374)(232, 337)(233, 308)(235, 335)(237, 351)(238, 282)(239, 350)(240,
373)(243, 371)(244, 375)(248, 285)(249, 380)(251, 255)(252, 294)(253, 298)(254,
324)(256, 322)(257, 365)(258, 345)(259, 263)(260, 379)(261, 266)(262, 286)(264,
272)(268, 300)(277, 326)(278, 329)(279, 288)(281, 319)(290, 296)(297, 305)(299,
317)(301, 315)(303, 318)(309, 311)(332, 339)
c: (1, 2)(3, 136)(4, 15)(5, 18)(6, 219)(7, 140)(8, 217)(9, 255)(10, 17)(11,
87)(12, 90)(13, 29)(14, 89)(16, 148)(19, 126)(20, 82)(21, 317)(22, 129)(23,
85)(24, 116)(25, 118)(26, 215)(27, 91)(28, 125)(30, 40)(31, 139)(32, 159)(33,
315)(34, 218)(35, 83)(36, 186)(37, 133)(38, 151)(39, 41)(42, 76)(43, 184)(44,
222)(45, 141)(46, 105)(47, 137)(48, 254)(49, 228)(50, 128)(51, 97)(52, 221)(53,
62)(54, 211)(55, 314)(56, 201)(57, 282)(58, 267)(59, 132)(60, 61)(63, 152)(64,
84)(65, 74)(66, 224)(67, 124)(68, 175)(69, 99)(70, 78)(71, 95)(72, 153)(73,
106)(75, 345)(77, 174)(79, 86)(80, 144)(81, 103)(88, 347)(92, 104)(93, 119)(94,
127)(96, 243)(98, 135)(100, 158)(101, 240)(102, 138)(107, 146)(108, 131)(109,
247)(110, 348)(111, 239)(112, 114)(113, 178)(115, 283)(117, 382)(120, 318)(121,
171)(122, 349)(123, 284)(130, 300)(134, 311)(142, 312)(143, 169)(145, 307)(147,
310)(149, 325)(150, 168)(154, 327)(155, 383)(156, 248)(157, 320)(160, 192)(161,
316)(162, 190)(163, 234)(164, 295)(165, 265)(166, 280)(167, 304)(170, 223)(172,
183)(173, 210)(176, 297)(177, 356)(179, 290)(180, 271)(181, 250)(182, 384)(185,
194)(187, 357)(188, 269)(189, 273)(191, 195)(193, 352)(196, 364)(197, 360)(198,
333)(199, 362)(200, 244)(202, 203)(204, 232)(205, 372)(206, 324)(207, 346)(208,
377)(209, 323)(212, 235)(213, 376)(214, 230)(216, 220)(225, 226)(227, 252)(229,
256)(231, 277)(233, 368)(236, 246)(237, 257)(238, 354)(241, 242)(245, 253)(249,
366)(251, 292)(258, 381)(259, 341)(260, 369)(261, 344)(262, 355)(263, 338)(264,
343)(266, 308)(268, 365)(270, 289)(272, 319)(274, 287)(275, 313)(276, 353)(278,
378)(279, 358)(281, 370)(285, 331)(286, 340)(288, 342)(291, 302)(293, 306)(294,
336)(296, 359)(298, 334)(299, 367)(301, 363)(303, 373)(305, 361)(309, 371)(321,
374)(322, 337)(326, 335)(328, 351)(329, 350)(330, 375)(332, 380)(339, 379)
C4[ 384, 216 ]
384
-1 2 126 6 140
-2 1 7 19 219
-3 220 236 8 20
-4 15 159 184 9
-5 221 218 10 21
-6 22 1 45 234
-7 23 2 46 313
-8 24 3 47 314
-9 25 4 48 282
-10 26 5 49 315
-11 312 27 316 31
-12 16 28 50 327
-13 79 29 51 53
-14 320 310 36 30
-15 255 4 32 43
-16 44 12 225 241
-17 33 215 18 228
-18 34 17 52 317
-19 2 324 95 53
-20 3 37 94 325
-21 5 96 54 318
-22 55 323 6 65
-23 56 7 172 97
-24 364 57 61 8
-25 58 333 9 53
-26 59 367 10 98
-27 11 78 60 347
-28 99 12 61 372
-29 13 62 86 97
-30 14 345 73 63
-31 11 72 349 64
-32 100 354 15 65
-33 66 101 311 17
-34 363 67 102 18
-35 68 102 107 76
-36 14 69 81 348
-37 376 70 103 20
-38 71 104 41 173
-39 105 41 74 151
-40 89 106 75 152
-41 46 38 39 65
-42 77 83 108 98
-43 79 15 92 292
-44 80 267 16 93
-45 353 79 6 164
-46 165 48 7 41
-47 166 287 106 8
-48 46 167 9 351
-49 168 107 371 10
-50 12 377 84 106
-51 13 158 170 85
-52 169 18 108 373
-53 13 25 19 109
-54 110 359 108 21
-55 22 111 170 217
-56 23 112 171 270
-57 24 255 113 172
-58 222 25 114 173
-59 26 235 115 174
-60 125 27 116 382
-61 24 91 28 117
-62 126 247 29 118
-63 127 381 30 119
-64 128 31 120 384
-65 22 121 41 32
-66 33 122 107 361
-67 34 232 123 175
-68 35 266 124 150
-69 176 36 355 125
-70 177 80 91 37
-71 341 178 38 126
-72 179 127 358 31
-73 137 357 128 30
-74 159 39 171 129
-75 160 40 172 130
-76 35 135 174 131
-77 132 143 272 42
-78 133 144 356 27
-79 45 13 180 43
-80 44 70 378 181
-81 133 134 36 383
-82 133 136 127 149
-83 146 138 42 175
-84 50 182 139 318
-85 201 51 183 140
-86 29 271 184 141
-87 91 139 161 142
-88 145 91 248 185
-89 157 147 40 186
-90 154 125 148 128
-91 88 70 61 87
-92 248 151 162 43
-93 44 152 163 362
-94 346 20 152 153
-95 113 259 19 151
-96 374 102 260 21
-97 23 100 223 29
-98 101 26 261 42
-99 297 28 262 186
-100 257 97 32 263
-101 33 375 249 98
-102 264 34 35 96
-103 155 311 37 186
-104 156 190 38 184
-105 254 265 39 140
-106 187 47 50 40
-107 66 188 35 49
-108 189 52 42 54
-109 265 190 293 53
-110 266 191 54 186
-111 55 190 192 350
-112 56 267 193 185
-113 57 268 95 351
-114 352 58 201 194
-115 322 59 269 195
-116 60 282 217 196
-117 61 270 292 197
-118 198 255 267 62
-119 199 222 234 63
-120 200 235 64 317
-121 201 291 271 65
-122 66 202 139 272
-123 67 203 326 273
-124 68 204 218 284
-125 90 69 60 205
-126 1 71 62 206
-127 82 72 63 207
-128 90 73 64 208
-129 209 314 74 219
-130 220 210 75 197
-131 221 211 273 76
-132 77 212 215 283
-133 78 81 213 82
-134 232 81 214 315
-135 344 215 240 76
-136 246 82 216 217
-137 280 73 217 274
-138 243 343 83 218
-139 122 84 87 153
-140 275 1 105 85
-141 276 86 295 219
-142 220 331 277 87
-143 77 221 379 230
-144 78 222 278 250
-145 88 223 268 225
-146 224 269 83 228
-147 89 256 225 270
-148 242 90 222 226
-149 235 82 227 229
-150 68 244 380 228
-151 210 92 39 95
-152 93 258 94 40
-153 279 290 94 139
-154 231 232 90 245
-155 233 103 260 373
-156 234 104 280 347
-157 253 89 236 281
-158 159 237 51 338
-159 4 158 238 74
-160 239 75 241 340
-161 233 87 241 252
-162 331 92 247 239
-163 257 93 248 219
-164 45 259 173 196
-165 46 247 338 197
-166 198 47 279 248
-167 199 48 170 263
-168 200 332 49 175
-169 214 52 174 339
-170 55 167 51 307
-171 56 180 302 74
-172 23 57 181 75
-173 58 300 38 164
-174 319 59 169 76
-175 308 67 168 83
-176 69 235 305 274
-177 70 281 361 340
-178 365 71 282 328
-179 232 278 72 296
-180 341 79 268 171
-181 209 80 172 262
-182 281 84 249 371
-183 345 282 85 250
-184 4 104 86 251
-185 88 342 112 236
-186 99 110 89 103
-187 342 233 106 359
-188 233 343 107 283
-189 344 281 108 284
-190 111 104 109 285
-191 110 277 283 340
-192 242 286 111 345
-193 287 112 277 346
-194 288 114 246 347
-195 231 286 115 348
-196 354 116 293 164
-197 165 257 117 130
-198 166 313 118 372
-199 167 291 324 119
-200 298 375 168 120
-201 121 289 114 85
-202 122 342 256 284
-203 123 288 349 229
-204 124 311 290 327
-205 333 125 291 350
-206 126 292 351 362
-207 352 323 127 293
-208 363 322 128 294
-209 181 346 292 129
-210 267 151 130 295
-211 348 317 131 296
-212 132 297 325 318
-213 133 298 367 326
-214 374 134 169 294
-215 132 299 135 17
-216 300 136 312 291
-217 55 136 137 116
-218 124 301 5 138
-219 2 129 141 163
-220 3 302 130 142
-221 143 5 303 131
-222 144 58 148 119
-223 145 314 304 97
-224 146 315 305 349
-225 145 147 16 306
-226 310 148 293 307
-227 308 149 294 316
-228 309 146 17 150
-229 310 203 149 350
-230 143 321 311 336
-231 154 352 312 195
-232 154 67 134 179
-233 187 155 188 161
-234 156 6 237 119
-235 176 59 149 120
-236 3 157 337 185
-237 276 234 158 360
-238 353 364 159 313
-239 160 314 162 329
-240 330 135 366 315
-241 16 335 160 161
-242 148 192 326 316
-243 321 138 369 317
-244 330 334 150 318
-245 154 319 298 320
-246 320 322 136 194
-247 165 62 162 306
-248 88 166 92 163
-249 101 266 182 339
-250 144 355 323 183
-251 323 324 184 382
-252 266 325 336 161
-253 157 334 272 327
-254 255 105 304 328
-255 254 57 15 118
-256 147 202 325 329
-257 100 353 163 197
-258 331 268 313 152
-259 95 271 338 164
-260 155 332 96 272
-261 380 294 273 98
-262 99 331 342 181
-263 341 100 265 167
-264 298 102 269 379
-265 105 360 109 263
-266 110 68 249 252
-267 44 210 112 118
-268 145 113 180 258
-269 264 146 115 368
-270 56 147 279 117
-271 121 365 259 86
-272 77 253 122 260
-273 123 370 261 131
-274 176 352 137 326
-275 354 333 381 140
-276 354 237 141 351
-277 191 193 327 142
-278 144 179 322 350
-279 166 270 153 340
-280 156 333 137 358
-281 177 189 157 182
-282 178 116 183 9
-283 132 188 191 337
-284 189 124 202 335
-285 190 355 312 381
-286 356 192 358 195
-287 297 47 335 193
-288 355 203 357 194
-289 310 201 358 382
-290 378 204 359 153
-291 121 199 205 216
-292 209 117 206 43
-293 226 196 207 109
-294 214 227 261 208
-295 341 210 364 141
-296 211 179 367 357
-297 99 287 212 361
-298 264 200 245 213
-299 376 215 359 371
-300 345 216 173 360
-301 377 218 361 373
-302 220 171 372 362
-303 363 221 375 383
-304 254 223 338 362
-305 176 363 224 356
-306 364 225 247 346
-307 365 170 226 347
-308 366 227 348 175
-309 374 367 228 384
-310 14 289 226 229
-311 33 103 204 230
-312 11 231 216 285
-313 198 258 7 238
-314 223 8 129 239
-315 134 224 240 10
-316 11 242 368 227
-317 243 211 18 120
-318 244 212 84 21
-319 245 369 349 174
-320 14 245 246 370
-321 374 243 371 230
-322 278 246 115 208
-323 22 250 207 251
-324 199 19 251 328
-325 212 256 20 252
-326 242 123 213 274
-327 253 12 277 204
-328 254 353 178 324
-329 256 378 239 372
-330 375 244 240 373
-331 258 162 262 142
-332 168 344 380 260
-333 275 25 280 205
-334 253 244 343 376
-335 287 376 284 241
-336 344 377 230 252
-337 377 378 236 283
-338 165 158 259 304
-339 343 169 379 249
-340 177 191 279 160
-341 180 71 295 263
-342 187 202 185 262
-343 188 334 138 339
-344 189 332 135 336
-345 300 192 183 30
-346 209 94 193 306
-347 156 27 194 307
-348 308 211 36 195
-349 319 224 203 31
-350 111 278 205 229
-351 276 113 48 206
-352 231 114 207 274
-353 45 257 238 328
-354 275 276 196 32
-355 288 69 250 285
-356 286 78 370 305
-357 288 368 73 296
-358 286 289 280 72
-359 187 299 290 54
-360 265 300 237 382
-361 66 297 177 301
-362 93 302 304 206
-363 34 303 305 208
-364 24 238 295 306
-365 178 271 381 307
-366 308 379 240 384
-367 309 26 213 296
-368 269 357 316 383
-369 319 243 380 383
-370 320 356 273 384
-371 299 321 49 182
-372 198 302 28 329
-373 330 155 301 52
-374 309 321 214 96
-375 330 101 200 303
-376 299 37 334 335
-377 301 50 336 337
-378 80 290 337 329
-379 143 264 366 339
-380 332 369 150 261
-381 275 365 63 285
-382 289 60 360 251
-383 81 368 303 369
-384 309 366 370 64
0