C4graphGraph forms for C4 [ 384, 290 ] = UG(ATD[384,579])

[Home] [Table] [Glossary] [Families]

On this page are computer-accessible forms for the graph C4[ 384, 290 ] = UG(ATD[384,579]).

(I) Following is a form readable by MAGMA:

g:=Graph<384|{ {38, 39}, {370, 371}, {346, 347}, {188, 189}, {190, 191}, {218, 219}, {76, 78}, {340, 342}, {321, 323}, {96, 98}, {93, 95}, {1, 2}, {360, 363}, {301, 302}, {8, 11}, {40, 44}, {362, 366}, {313, 317}, {42, 46}, {2, 7}, {264, 270}, {361, 367}, {272, 278}, {1, 6}, {376, 383}, {42, 45}, {235, 236}, {96, 104}, {372, 380}, {263, 271}, {100, 109}, {357, 364}, {3, 8}, {373, 382}, {274, 281}, {167, 172}, {181, 190}, {341, 345}, {4, 9}, {375, 378}, {356, 361}, {352, 366}, {371, 381}, {5, 10}, {369, 382}, {145, 158}, {80, 95}, {16, 31}, {240, 255}, {12, 28}, {290, 306}, {78, 94}, {33, 49}, {14, 30}, {13, 29}, {164, 181}, {166, 183}, {4, 22}, {362, 376}, {322, 336}, {32, 50}, {9, 27}, {8, 26}, {5, 23}, {39, 52}, {324, 343}, {33, 53}, {12, 25}, {137, 156}, {76, 89}, {2, 20}, {77, 91}, {3, 21}, {175, 185}, {36, 51}, {331, 348}, {328, 351}, {136, 159}, {42, 50}, {71, 95}, {192, 216}, {357, 380}, {363, 370}, {10, 16}, {355, 377}, {72, 82}, {46, 53}, {193, 218}, {15, 19}, {358, 378}, {75, 87}, {74, 86}, {73, 85}, {1, 28}, {356, 377}, {6, 24}, {354, 380}, {7, 25}, {195, 221}, {13, 18}, {44, 51}, {34, 61}, {199, 216}, {75, 107}, {273, 305}, {218, 250}, {14, 47}, {346, 379}, {343, 374}, {342, 375}, {326, 359}, {153, 187}, {323, 353}, {68, 103}, {341, 374}, {129, 162}, {205, 238}, {82, 118}, {351, 379}, {259, 295}, {147, 183}, {211, 247}, {67, 102}, {344, 381}, {285, 312}, {23, 48}, {206, 230}, {345, 368}, {66, 104}, {271, 293}, {270, 292}, {267, 289}, {29, 54}, {332, 359}, {81, 124}, {333, 352}, {74, 100}, {337, 383}, {268, 290}, {83, 125}, {151, 185}, {79, 96}, {346, 373}, {320, 367}, {334, 382}, {6, 55}, {131, 178}, {17, 32}, {14, 63}, {12, 61}, {10, 59}, {8, 57}, {19, 33}, {282, 296}, {146, 160}, {89, 107}, {88, 106}, {147, 161}, {148, 166}, {9, 58}, {13, 62}, {196, 247}, {201, 250}, {198, 242}, {324, 368}, {30, 43}, {258, 311}, {132, 177}, {31, 41}, {286, 296}, {133, 179}, {155, 173}, {3, 52}, {84, 99}, {27, 44}, {11, 60}, {198, 241}, {26, 34}, {323, 379}, {29, 36}, {30, 37}, {325, 382}, {194, 249}, {134, 186}, {80, 109}, {329, 372}, {327, 378}, {258, 319}, {146, 175}, {281, 295}, {339, 365}, {7, 56}, {287, 288}, {266, 309}, {28, 35}, {24, 39}, {149, 170}, {159, 160}, {203, 244}, {37, 101}, {7, 70}, {154, 216}, {183, 245}, {257, 325}, {261, 320}, {318, 379}, {189, 251}, {277, 339}, {182, 241}, {273, 342}, {185, 254}, {1, 73}, {297, 353}, {33, 105}, {171, 226}, {41, 99}, {308, 383}, {153, 213}, {278, 346}, {168, 228}, {18, 95}, {272, 349}, {188, 241}, {4, 74}, {312, 374}, {278, 344}, {260, 330}, {257, 335}, {5, 75}, {15, 64}, {318, 369}, {301, 354}, {152, 215}, {182, 249}, {172, 252}, {317, 365}, {316, 364}, {16, 65}, {22, 71}, {20, 69}, {18, 67}, {26, 72}, {256, 338}, {45, 127}, {159, 205}, {17, 66}, {132, 215}, {21, 70}, {169, 253}, {315, 367}, {308, 352}, {40, 125}, {303, 378}, {280, 333}, {50, 103}, {43, 126}, {19, 68}, {32, 119}, {156, 203}, {170, 253}, {167, 255}, {315, 355}, {292, 380}, {268, 340}, {261, 348}, {34, 120}, {38, 124}, {35, 121}, {49, 106}, {171, 240}, {17, 77}, {128, 220}, {36, 122}, {37, 123}, {184, 230}, {189, 226}, {311, 360}, {45, 77}, {309, 341}, {281, 377}, {47, 78}, {40, 74}, {41, 75}, {190, 220}, {274, 374}, {313, 349}, {307, 343}, {285, 377}, {284, 376}, {275, 375}, {21, 112}, {54, 83}, {23, 114}, {177, 212}, {54, 80}, {11, 108}, {43, 76}, {22, 113}, {52, 92}, {310, 350}, {57, 81}, {266, 355}, {310, 351}, {28, 118}, {294, 332}, {283, 369}, {24, 115}, {314, 337}, {304, 347}, {130, 239}, {171, 198}, {26, 116}, {314, 340}, {128, 238}, {27, 117}, {9, 102}, {288, 335}, {39, 72}, {38, 73}, {15, 96}, {52, 69}, {317, 332}, {40, 90}, {29, 110}, {134, 242}, {25, 108}, {318, 331}, {316, 329}, {45, 88}, {292, 339}, {186, 194}, {269, 373}, {31, 101}, {291, 345}, {265, 371}, {168, 210}, {20, 111}, {48, 78}, {280, 358}, {133, 251}, {49, 79}, {30, 97}, {282, 357}, {267, 372}, {43, 84}, {73, 203}, {122, 248}, {56, 187}, {68, 199}, {64, 195}, {60, 191}, {17, 149}, {57, 188}, {93, 216}, {87, 210}, {85, 208}, {67, 198}, {65, 196}, {59, 190}, {125, 251}, {58, 189}, {127, 248}, {86, 209}, {66, 197}, {88, 208}, {104, 224}, {107, 226}, {110, 228}, {111, 229}, {3, 136}, {111, 228}, {106, 225}, {92, 215}, {88, 211}, {31, 148}, {41, 165}, {55, 186}, {126, 243}, {101, 232}, {91, 214}, {89, 212}, {71, 202}, {69, 200}, {81, 223}, {109, 227}, {70, 201}, {90, 213}, {25, 137}, {112, 225}, {100, 246}, {121, 235}, {120, 234}, {2, 145}, {114, 225}, {105, 250}, {24, 140}, {4, 146}, {123, 237}, {122, 236}, {113, 231}, {112, 230}, {27, 141}, {5, 147}, {18, 138}, {114, 232}, {115, 233}, {35, 184}, {84, 207}, {107, 247}, {81, 204}, {83, 206}, {14, 144}, {123, 229}, {16, 142}, {82, 205}, {19, 178}, {47, 139}, {12, 169}, {22, 177}, {10, 162}, {92, 245}, {71, 236}, {15, 163}, {82, 254}, {66, 238}, {49, 157}, {70, 235}, {46, 128}, {47, 129}, {32, 143}, {69, 234}, {53, 133}, {60, 140}, {59, 139}, {58, 138}, {57, 137}, {56, 136}, {55, 135}, {54, 134}, {50, 131}, {63, 142}, {48, 130}, {62, 141}, {310, 384}, {51, 132}, {97, 217}, {103, 223}, {102, 222}, {101, 221}, {100, 220}, {99, 219}, {98, 218}, {13, 180}, {44, 151}, {42, 150}, {124, 194}, {117, 180}, {98, 164}, {108, 171}, {114, 187}, {37, 239}, {92, 145}, {94, 147}, {64, 143}, {93, 146}, {65, 144}, {51, 231}, {119, 163}, {61, 229}, {104, 179}, {126, 165}, {90, 134}, {105, 181}, {99, 191}, {48, 237}, {121, 164}, {116, 169}, {112, 173}, {77, 172}, {353, 384}, {87, 182}, {11, 233}, {127, 157}, {79, 167}, {360, 384}, {91, 176}, {108, 135}, {116, 152}, {118, 153}, {72, 184}, {55, 196}, {94, 173}, {110, 154}, {93, 168}, {97, 148}, {6, 240}, {98, 149}, {86, 174}, {110, 151}, {76, 182}, {97, 155}, {61, 192}, {381, 384}, {63, 194}, {80, 174}, {62, 193}, {105, 150}, {79, 176}, {36, 288}, {89, 349}, {115, 372}, {91, 338}, {84, 350}, {59, 299}, {121, 361}, {120, 366}, {90, 322}, {122, 352}, {67, 344}, {68, 351}, {23, 265}, {46, 266}, {117, 337}, {20, 307}, {106, 333}, {53, 286}, {63, 274}, {109, 348}, {62, 268}, {38, 275}, {103, 336}, {123, 315}, {21, 339}, {111, 297}, {124, 304}, {125, 304}, {127, 305}, {60, 364}, {94, 269}, {86, 258}, {85, 259}, {120, 303}, {115, 299}, {117, 300}, {119, 302}, {56, 354}, {113, 298}, {118, 301}, {64, 284}, {65, 285}, {83, 270}, {116, 298}, {126, 289}, {58, 347}, {102, 256}, {119, 273}, {113, 279}, {34, 330}, {35, 335}, {85, 294}, {87, 296}, {154, 282}, {232, 360}, {174, 303}, {207, 334}, {230, 359}, {161, 291}, {200, 330}, {231, 357}, {149, 278}, {172, 297}, {150, 272}, {201, 335}, {214, 336}, {238, 361}, {142, 262}, {255, 375}, {199, 334}, {249, 368}, {205, 324}, {129, 267}, {251, 369}, {187, 305}, {174, 290}, {138, 263}, {150, 283}, {220, 337}, {223, 338}, {158, 272}, {252, 370}, {195, 333}, {151, 280}, {245, 356}, {212, 326}, {131, 279}, {144, 260}, {142, 282}, {139, 287}, {227, 373}, {178, 293}, {181, 290}, {140, 276}, {247, 367}, {246, 366}, {204, 340}, {141, 276}, {242, 363}, {244, 365}, {240, 362}, {210, 329}, {173, 305}, {222, 322}, {224, 381}, {248, 358}, {215, 328}, {243, 364}, {135, 293}, {209, 371}, {152, 315}, {156, 319}, {162, 257}, {211, 368}, {232, 331}, {153, 316}, {155, 318}, {163, 261}, {166, 256}, {154, 317}, {167, 271}, {144, 313}, {161, 264}, {166, 271}, {201, 355}, {204, 358}, {235, 321}, {140, 295}, {145, 314}, {155, 311}, {228, 328}, {132, 297}, {184, 277}, {138, 292}, {170, 260}, {137, 294}, {250, 341}, {188, 275}, {143, 319}, {130, 307}, {246, 327}, {170, 283}, {128, 306}, {202, 376}, {213, 359}, {236, 350}, {244, 326}, {129, 306}, {135, 308}, {175, 284}, {222, 365}, {179, 262}, {158, 296}, {143, 312}, {148, 291}, {180, 259}, {200, 383}, {234, 349}, {160, 280}, {185, 257}, {249, 320}, {252, 325}, {141, 311}, {157, 295}, {163, 281}, {178, 264}, {152, 291}, {224, 347}, {214, 362}, {222, 354}, {229, 345}, {136, 309}, {139, 310}, {207, 370}, {237, 336}, {239, 338}, {156, 348}, {203, 267}, {159, 350}, {243, 306}, {200, 268}, {208, 276}, {209, 276}, {214, 275}, {253, 314}, {206, 263}, {254, 309}, {217, 277}, {197, 266}, {207, 287}, {212, 260}, {210, 262}, {217, 269}, {221, 265}, {213, 256}, {243, 294}, {195, 277}, {248, 302}, {192, 279}, {158, 327}, {246, 300}, {202, 273}, {209, 269}, {157, 320}, {231, 313}, {244, 299}, {245, 298}, {164, 324}, {165, 325}, {183, 343}, {193, 289}, {227, 259}, {160, 321}, {254, 287}, {162, 323}, {131, 353}, {186, 344}, {161, 322}, {237, 270}, {241, 274}, {165, 321}, {197, 289}, {130, 356}, {208, 312}, {239, 263}, {197, 300}, {204, 293}, {242, 283}, {202, 288}, {227, 265}, {223, 308}, {252, 279}, {233, 258}, {211, 319}, {233, 261}, {199, 298}, {133, 363}, {168, 326}, {169, 327}, {193, 303}, {219, 299}, {221, 301}, {206, 316}, {191, 332}, {192, 307}, {196, 304}, {234, 286}, {217, 302}, {255, 264}, {219, 300}, {176, 328}, {177, 329}, {175, 342}, {179, 330}, {253, 262}, {225, 284}, {176, 334}, {224, 286}, {180, 331}, {226, 285} }>;

(II) A more general form is to represent the graph as the orbit of {38, 39} under the group generated by the following permutations:

a: (1, 2)(3, 72)(4, 15)(5, 10)(6, 145)(7, 28)(8, 26)(9, 96)(11, 116)(12, 25)(13, 77)(14, 76)(16, 75)(17, 18)(19, 74)(20, 73)(21, 82)(22, 163)(23, 162)(24, 92)(27, 79)(29, 45)(30, 43)(31, 41)(32, 95)(33, 40)(34, 57)(35, 56)(36, 127)(37, 126)(38, 69)(39, 52)(42, 54)(44, 49)(46, 83)(47, 78)(48, 129)(50, 80)(51, 157)(53, 125)(55, 158)(58, 104)(59, 147)(60, 152)(61, 137)(62, 91)(63, 89)(64, 146)(65, 87)(66, 138)(67, 149)(68, 86)(70, 118)(71, 119)(81, 120)(84, 97)(85, 111)(88, 110)(90, 105)(93, 143)(94, 139)(98, 102)(99, 148)(100, 178)(101, 165)(103, 174)(106, 151)(107, 142)(108, 169)(109, 131)(112, 254)(113, 261)(114, 257)(115, 245)(117, 167)(121, 354)(122, 248)(123, 243)(124, 234)(128, 270)(130, 267)(132, 295)(133, 251)(134, 150)(135, 327)(136, 184)(140, 215)(141, 176)(144, 182)(153, 201)(154, 211)(155, 207)(156, 192)(159, 277)(160, 195)(161, 190)(164, 222)(166, 219)(168, 312)(170, 198)(171, 253)(172, 180)(173, 287)(175, 284)(177, 281)(179, 189)(181, 322)(183, 299)(185, 225)(186, 272)(187, 335)(188, 330)(191, 291)(193, 338)(194, 349)(196, 296)(197, 263)(199, 258)(200, 275)(202, 273)(203, 307)(204, 366)(205, 339)(206, 266)(208, 228)(209, 351)(210, 285)(212, 274)(213, 250)(214, 268)(216, 319)(217, 350)(218, 256)(220, 264)(221, 321)(223, 303)(224, 347)(226, 262)(227, 353)(229, 294)(230, 309)(231, 320)(232, 325)(233, 298)(235, 301)(236, 302)(237, 306)(238, 292)(239, 289)(240, 314)(241, 260)(242, 283)(244, 343)(246, 293)(247, 282)(249, 313)(252, 331)(255, 337)(259, 297)(265, 323)(269, 310)(271, 300)(276, 328)(278, 344)(279, 348)(280, 333)(286, 304)(288, 305)(290, 336)(308, 378)(311, 334)(315, 364)(316, 355)(317, 368)(318, 370)(324, 365)(326, 374)(329, 377)(332, 345)(340, 362)(341, 359)(342, 376)(346, 381)(352, 358)(356, 372)(357, 367)(360, 382)(361, 380)(363, 369)(371, 379)(373, 384)(375, 383)
b: (2, 28)(3, 26)(5, 17)(6, 73)(7, 12)(9, 74)(10, 77)(11, 57)(13, 54)(14, 49)(15, 76)(16, 45)(18, 80)(19, 43)(20, 35)(21, 34)(22, 146)(23, 149)(24, 38)(27, 40)(30, 33)(31, 42)(32, 75)(36, 110)(37, 105)(41, 50)(46, 148)(47, 79)(48, 98)(51, 151)(52, 72)(53, 97)(55, 85)(56, 169)(58, 86)(59, 91)(60, 81)(61, 70)(62, 83)(63, 157)(64, 89)(65, 88)(66, 147)(67, 109)(68, 84)(69, 184)(71, 93)(78, 96)(82, 92)(87, 119)(90, 117)(94, 104)(99, 103)(100, 102)(101, 150)(106, 144)(107, 143)(108, 137)(111, 335)(112, 330)(113, 160)(114, 170)(115, 275)(116, 136)(118, 145)(120, 339)(121, 307)(122, 154)(123, 250)(124, 140)(125, 141)(126, 178)(127, 142)(128, 166)(129, 167)(130, 164)(131, 165)(132, 185)(133, 155)(134, 180)(135, 294)(138, 174)(139, 176)(152, 309)(153, 314)(156, 171)(158, 301)(159, 298)(161, 197)(162, 172)(163, 182)(168, 202)(173, 179)(175, 177)(181, 239)(183, 238)(186, 259)(187, 253)(188, 233)(189, 258)(190, 338)(191, 223)(192, 235)(193, 270)(194, 295)(195, 349)(196, 208)(198, 348)(199, 350)(200, 230)(201, 229)(203, 240)(204, 364)(205, 245)(206, 268)(207, 351)(209, 347)(210, 273)(211, 285)(212, 284)(213, 337)(214, 299)(215, 254)(216, 236)(217, 286)(218, 237)(219, 336)(220, 256)(221, 272)(222, 246)(224, 269)(225, 260)(226, 319)(227, 344)(228, 288)(231, 280)(232, 283)(234, 277)(241, 261)(242, 331)(243, 293)(244, 362)(247, 312)(248, 282)(249, 281)(251, 311)(252, 323)(255, 267)(257, 297)(262, 305)(263, 290)(264, 289)(265, 278)(266, 291)(271, 306)(274, 320)(276, 304)(279, 321)(287, 328)(292, 303)(296, 302)(300, 322)(308, 332)(310, 334)(313, 333)(315, 341)(316, 340)(317, 352)(318, 363)(324, 356)(325, 353)(326, 376)(327, 354)(329, 342)(343, 361)(345, 355)(346, 371)(357, 358)(359, 383)(360, 369)(365, 366)(367, 374)(368, 377)(370, 379)(372, 375)(373, 381)(378, 380)(382, 384)
c: (2, 6)(3, 11)(7, 24)(9, 22)(10, 23)(12, 38)(13, 36)(14, 37)(15, 46)(16, 48)(18, 51)(19, 53)(20, 55)(21, 60)(25, 39)(26, 57)(27, 71)(28, 73)(31, 78)(32, 66)(34, 81)(35, 85)(40, 93)(41, 94)(42, 96)(43, 97)(44, 95)(45, 98)(47, 101)(49, 105)(50, 104)(52, 108)(54, 110)(56, 115)(58, 113)(59, 114)(61, 124)(62, 122)(63, 123)(64, 128)(65, 130)(67, 132)(68, 133)(69, 135)(70, 140)(72, 137)(74, 146)(75, 147)(76, 148)(77, 149)(79, 150)(80, 151)(82, 156)(83, 154)(84, 155)(86, 160)(87, 161)(88, 164)(89, 166)(90, 168)(91, 170)(92, 171)(99, 173)(100, 175)(102, 177)(103, 179)(106, 181)(107, 183)(109, 185)(111, 186)(112, 191)(116, 188)(117, 202)(118, 203)(119, 197)(120, 204)(121, 208)(125, 216)(126, 217)(127, 218)(129, 221)(131, 224)(134, 228)(136, 233)(138, 231)(139, 232)(141, 236)(142, 237)(143, 238)(144, 239)(145, 240)(152, 241)(153, 244)(157, 250)(158, 255)(159, 258)(162, 265)(163, 266)(165, 269)(167, 272)(169, 275)(172, 278)(174, 280)(176, 283)(178, 286)(180, 288)(182, 291)(184, 294)(187, 299)(189, 298)(190, 225)(192, 304)(193, 248)(194, 229)(195, 306)(196, 307)(198, 215)(199, 251)(200, 308)(201, 295)(205, 319)(206, 317)(207, 318)(209, 321)(210, 322)(211, 324)(212, 256)(213, 326)(214, 253)(219, 305)(220, 284)(222, 329)(223, 330)(226, 245)(227, 257)(230, 332)(234, 293)(235, 276)(242, 328)(243, 277)(246, 342)(247, 343)(249, 345)(252, 346)(254, 348)(259, 335)(260, 338)(261, 309)(262, 336)(263, 313)(264, 296)(267, 301)(268, 352)(270, 282)(271, 349)(273, 300)(274, 315)(279, 347)(281, 355)(285, 356)(287, 331)(289, 302)(290, 333)(292, 357)(297, 344)(303, 358)(310, 360)(311, 350)(312, 361)(314, 362)(316, 365)(320, 341)(323, 371)(325, 373)(327, 375)(334, 369)(337, 376)(339, 364)(340, 366)(351, 363)(353, 381)(354, 372)(367, 374)(370, 379)

(III) Last is Groups&Graphs. Copy everything between (not including) the lines of asterisks into a plain text file and save it as "graph.txt". Then launch G&G (Groups&Graphs) and select Read Text from the File menu.

**************

&Graph
C4[ 384, 290 ]
384
-1 2 6 28 73
-2 1 145 7 20
-3 136 8 52 21
-4 22 146 74 9
-5 23 147 75 10
-6 55 1 24 240
-7 56 2 25 70
-8 11 57 3 26
-9 58 102 4 27
-10 59 5 16 162
-11 233 60 8 108
-12 25 169 28 61
-13 180 18 29 62
-14 144 47 30 63
-15 19 96 64 163
-16 31 10 65 142
-17 66 77 149 32
-18 67 13 138 95
-19 33 68 178 15
-20 111 2 69 307
-21 112 3 70 339
-22 177 113 4 71
-23 265 48 114 5
-24 115 6 39 140
-25 12 137 7 108
-26 34 72 116 8
-27 44 117 9 141
-28 1 12 35 118
-29 110 13 36 54
-30 14 37 97 43
-31 101 16 148 41
-32 143 17 50 119
-33 49 105 19 53
-34 330 26 61 120
-35 121 335 28 184
-36 122 288 29 51
-37 101 123 30 239
-38 275 124 39 73
-39 24 38 72 52
-40 44 90 125 74
-41 99 165 31 75
-42 45 46 50 150
-43 126 84 30 76
-44 27 40 51 151
-45 77 88 127 42
-46 266 128 42 53
-47 78 14 139 129
-48 23 78 237 130
-49 33 79 157 106
-50 103 42 32 131
-51 44 132 231 36
-52 3 69 92 39
-53 33 286 133 46
-54 134 80 83 29
-55 135 6 196 186
-56 187 354 136 7
-57 188 81 137 8
-58 189 138 347 9
-59 299 190 139 10
-60 11 364 191 140
-61 12 34 192 229
-62 13 268 193 141
-63 14 194 142 274
-64 143 15 195 284
-65 144 16 196 285
-66 104 17 238 197
-67 198 102 344 18
-68 199 103 19 351
-69 200 234 52 20
-70 201 235 7 21
-71 22 202 236 95
-72 26 82 39 184
-73 1 38 203 85
-74 100 4 40 86
-75 5 41 107 87
-76 78 89 182 43
-77 45 91 17 172
-78 47 48 94 76
-79 176 167 49 96
-80 95 174 54 109
-81 57 124 223 204
-82 254 72 205 118
-83 125 270 206 54
-84 99 207 350 43
-85 259 73 294 208
-86 209 258 74 174
-87 210 182 75 296
-88 45 211 106 208
-89 212 107 349 76
-90 134 322 213 40
-91 77 176 214 338
-92 145 245 215 52
-93 146 168 95 216
-94 78 147 269 173
-95 80 71 93 18
-96 79 15 104 98
-97 155 148 30 217
-98 149 96 218 164
-99 191 84 41 219
-100 220 246 74 109
-101 221 232 37 31
-102 67 222 256 9
-103 68 223 50 336
-104 66 179 224 96
-105 33 181 150 250
-106 88 333 49 225
-107 89 247 226 75
-108 11 25 135 171
-109 100 80 227 348
-110 154 29 151 228
-111 297 228 20 229
-112 225 173 21 230
-113 22 231 298 279
-114 187 23 232 225
-115 24 233 299 372
-116 298 26 169 152
-117 300 180 27 337
-118 301 82 28 153
-119 302 163 273 32
-120 34 234 366 303
-121 35 235 361 164
-122 352 36 236 248
-123 37 237 315 229
-124 81 38 194 304
-125 83 40 304 251
-126 165 243 289 43
-127 45 157 248 305
-128 220 46 238 306
-129 47 267 162 306
-130 48 356 239 307
-131 353 178 279 50
-132 297 177 215 51
-133 363 179 53 251
-134 242 90 54 186
-135 55 308 293 108
-136 56 309 3 159
-137 57 156 25 294
-138 58 292 18 263
-139 287 310 47 59
-140 276 24 60 295
-141 276 311 27 62
-142 16 282 63 262
-143 319 312 64 32
-144 14 313 260 65
-145 2 92 158 314
-146 4 93 160 175
-147 5 94 161 183
-148 166 291 31 97
-149 278 170 17 98
-150 105 272 283 42
-151 44 110 280 185
-152 291 116 215 315
-153 187 213 118 316
-154 110 216 282 317
-155 311 173 97 318
-156 319 137 203 348
-157 320 49 127 295
-158 145 272 327 296
-159 136 160 205 350
-160 321 146 159 280
-161 264 322 147 291
-162 257 323 129 10
-163 15 281 261 119
-164 121 181 324 98
-165 321 126 325 41
-166 256 148 183 271
-167 79 255 172 271
-168 210 93 326 228
-169 253 12 116 327
-170 253 149 260 283
-171 198 226 108 240
-172 77 297 167 252
-173 155 112 94 305
-174 80 290 303 86
-175 342 146 185 284
-176 79 91 334 328
-177 22 132 212 329
-178 264 293 19 131
-179 330 133 104 262
-180 331 13 259 117
-181 190 290 105 164
-182 249 76 87 241
-183 166 343 245 147
-184 35 277 72 230
-185 254 257 151 175
-186 55 134 344 194
-187 56 114 305 153
-188 275 57 189 241
-189 188 58 226 251
-190 220 59 191 181
-191 99 332 190 60
-192 279 61 216 307
-193 289 303 62 218
-194 124 249 63 186
-195 221 277 333 64
-196 55 247 304 65
-197 66 266 289 300
-198 242 67 171 241
-199 298 68 334 216
-200 330 69 268 383
-201 355 70 335 250
-202 288 376 71 273
-203 156 244 267 73
-204 81 358 293 340
-205 82 159 324 238
-206 83 316 230 263
-207 287 334 84 370
-208 88 276 312 85
-209 276 269 371 86
-210 168 262 87 329
-211 88 319 247 368
-212 89 177 260 326
-213 90 256 359 153
-214 275 91 336 362
-215 132 92 152 328
-216 154 199 93 192
-217 277 269 302 97
-218 193 250 98 219
-219 99 299 300 218
-220 100 190 128 337
-221 265 101 301 195
-222 354 365 102 322
-223 308 81 103 338
-224 286 104 347 381
-225 112 114 106 284
-226 189 171 107 285
-227 265 259 109 373
-228 110 111 168 328
-229 111 123 345 61
-230 112 359 184 206
-231 113 313 357 51
-232 331 101 114 360
-233 11 115 258 261
-234 286 69 349 120
-235 121 321 70 236
-236 122 235 71 350
-237 123 48 270 336
-238 66 128 205 361
-239 37 338 130 263
-240 255 6 171 362
-241 198 188 182 274
-242 198 363 134 283
-243 364 126 294 306
-244 299 365 203 326
-245 298 92 356 183
-246 100 300 366 327
-247 211 367 107 196
-248 122 302 127 358
-249 320 368 182 194
-250 341 201 105 218
-251 133 189 125 369
-252 279 325 172 370
-253 169 170 314 262
-254 287 309 82 185
-255 264 375 167 240
-256 166 102 213 338
-257 335 325 162 185
-258 319 233 311 86
-259 180 227 85 295
-260 330 144 212 170
-261 320 233 348 163
-262 253 210 179 142
-263 138 271 206 239
-264 178 255 270 161
-265 23 221 227 371
-266 309 46 355 197
-267 289 203 129 372
-268 200 290 62 340
-269 209 94 217 373
-270 264 83 237 292
-271 166 167 293 263
-272 278 158 150 349
-273 342 202 305 119
-274 374 281 63 241
-275 188 375 38 214
-276 209 140 141 208
-277 184 195 217 339
-278 344 346 149 272
-279 113 192 131 252
-280 333 160 358 151
-281 377 163 295 274
-282 154 357 142 296
-283 242 170 369 150
-284 376 225 64 175
-285 377 312 226 65
-286 234 224 53 296
-287 254 288 139 207
-288 287 36 202 335
-289 267 126 193 197
-290 268 181 174 306
-291 345 148 161 152
-292 138 270 380 339
-293 178 135 204 271
-294 243 332 137 85
-295 157 259 281 140
-296 286 158 282 87
-297 132 111 353 172
-298 199 113 245 116
-299 244 59 115 219
-300 246 117 197 219
-301 221 354 302 118
-302 301 248 217 119
-303 378 193 174 120
-304 124 125 347 196
-305 187 127 173 273
-306 243 290 128 129
-307 343 192 20 130
-308 352 135 223 383
-309 341 254 266 136
-310 139 350 351 384
-311 155 258 360 141
-312 143 374 208 285
-313 231 144 349 317
-314 253 145 337 340
-315 123 355 367 152
-316 364 206 153 329
-317 154 332 365 313
-318 155 331 379 369
-319 143 156 211 258
-320 157 367 249 261
-321 165 235 323 160
-322 90 222 336 161
-323 353 321 379 162
-324 343 368 205 164
-325 165 257 382 252
-326 244 168 212 359
-327 378 158 246 169
-328 176 215 228 351
-329 177 210 316 372
-330 34 200 179 260
-331 232 180 348 318
-332 191 359 294 317
-333 352 280 106 195
-334 176 199 382 207
-335 35 288 201 257
-336 322 103 214 237
-337 220 314 117 383
-338 91 223 256 239
-339 277 365 292 21
-340 342 268 204 314
-341 374 309 345 250
-342 375 273 175 340
-343 374 324 183 307
-344 67 278 381 186
-345 341 291 368 229
-346 278 379 347 373
-347 58 224 346 304
-348 331 156 261 109
-349 89 234 313 272
-350 310 159 236 84
-351 68 310 379 328
-352 308 122 333 366
-353 297 323 131 384
-354 56 222 301 380
-355 266 201 377 315
-356 245 377 130 361
-357 231 364 380 282
-358 378 280 204 248
-359 332 213 326 230
-360 363 232 311 384
-361 121 356 367 238
-362 376 366 214 240
-363 242 133 370 360
-364 243 60 357 316
-365 222 244 317 339
-366 352 246 120 362
-367 320 247 315 361
-368 211 345 324 249
-369 283 382 251 318
-370 363 371 207 252
-371 209 265 370 381
-372 267 115 380 329
-373 269 346 227 382
-374 341 343 312 274
-375 275 342 255 378
-376 202 284 383 362
-377 355 356 281 285
-378 375 303 358 327
-379 323 346 318 351
-380 354 357 292 372
-381 344 224 371 384
-382 334 325 369 373
-383 308 200 376 337
-384 353 310 381 360
0

**************