[Home] [Table] [Glossary]
[Families]
On this page are computer-accessible forms for the graph C4[ 384, 298 ] =
UG(ATD[384,603]).
(I) Following is a form readable by MAGMA:
g:=Graph<384|{ {12, 13}, {66, 67}, {64, 65}, {162, 163}, {234, 235}, {128, 130},
{133, 135}, {236, 238}, {1, 2}, {377, 378}, {369, 370}, {353, 354}, {329, 330},
{276, 279}, {37, 38}, {36, 39}, {4, 7}, {129, 133}, {234, 238}, {2, 7}, {75,
78}, {32, 37}, {25, 28}, {233, 236}, {64, 70}, {379, 381}, {65, 71}, {235, 237},
{1, 6}, {368, 375}, {331, 332}, {131, 132}, {74, 77}, {24, 31}, {54, 62}, {372,
380}, {3, 10}, {370, 379}, {354, 363}, {65, 72}, {150, 156}, {373, 383}, {325,
335}, {151, 157}, {3, 8}, {263, 268}, {260, 271}, {132, 143}, {128, 139}, {71,
76}, {67, 72}, {5, 14}, {193, 202}, {130, 142}, {339, 351}, {337, 349}, {292,
296}, {4, 9}, {129, 140}, {64, 78}, {295, 297}, {289, 303}, {66, 76}, {148,
154}, {149, 155}, {4, 11}, {371, 380}, {5, 10}, {227, 236}, {15, 31}, {334,
350}, {332, 348}, {128, 144}, {3, 18}, {8, 25}, {5, 20}, {108, 126}, {330, 344},
{322, 336}, {200, 218}, {2, 17}, {139, 152}, {38, 53}, {9, 26}, {6, 21}, {165,
182}, {227, 247}, {13, 24}, {320, 341}, {263, 274}, {261, 272}, {132, 145}, {33,
52}, {14, 27}, {1, 23}, {361, 383}, {360, 382}, {265, 287}, {135, 145}, {134,
144}, {109, 123}, {143, 153}, {205, 219}, {4, 19}, {262, 273}, {46, 57}, {42,
61}, {34, 53}, {201, 222}, {232, 255}, {14, 22}, {358, 382}, {35, 59}, {233,
241}, {169, 176}, {329, 336}, {192, 217}, {198, 223}, {64, 90}, {199, 221},
{235, 241}, {228, 255}, {367, 372}, {12, 16}, {133, 153}, {130, 158}, {228,
248}, {232, 244}, {233, 245}, {234, 246}, {1, 28}, {366, 371}, {357, 376}, {335,
338}, {295, 314}, {129, 156}, {8, 21}, {8, 22}, {360, 374}, {104, 118}, {9, 23},
{166, 184}, {168, 182}, {238, 240}, {11, 20}, {15, 16}, {144, 176}, {10, 43},
{346, 379}, {331, 362}, {18, 51}, {16, 49}, {14, 47}, {12, 45}, {150, 183}, {9,
42}, {256, 291}, {31, 60}, {17, 50}, {13, 46}, {345, 381}, {335, 362}, {340,
369}, {338, 375}, {5, 35}, {324, 354}, {203, 237}, {214, 240}, {11, 44}, {333,
362}, {257, 294}, {85, 125}, {137, 161}, {91, 115}, {137, 160}, {261, 300},
{260, 301}, {148, 189}, {26, 48}, {264, 290}, {86, 124}, {27, 49}, {24, 51},
{339, 376}, {337, 378}, {95, 116}, {94, 117}, {22, 58}, {70, 107}, {148, 185},
{6, 40}, {273, 319}, {260, 298}, {84, 122}, {25, 55}, {24, 54}, {7, 41}, {207,
225}, {23, 56}, {274, 317}, {69, 106}, {140, 163}, {19, 35}, {340, 356}, {349,
364}, {15, 61}, {259, 304}, {281, 298}, {323, 375}, {343, 355}, {341, 353},
{130, 180}, {347, 365}, {283, 301}, {208, 231}, {334, 377}, {261, 306}, {342,
366}, {342, 367}, {29, 39}, {2, 57}, {336, 363}, {285, 294}, {29, 33}, {30, 34},
{205, 241}, {206, 242}, {3, 62}, {333, 368}, {287, 290}, {286, 291}, {68, 121},
{30, 32}, {73, 119}, {13, 50}, {15, 48}, {159, 160}, {46, 110}, {281, 345},
{140, 204}, {141, 205}, {142, 206}, {165, 229}, {138, 203}, {18, 80}, {280,
346}, {23, 85}, {22, 84}, {19, 81}, {27, 88}, {137, 202}, {39, 100}, {35, 96},
{31, 92}, {33, 101}, {45, 105}, {44, 104}, {34, 102}, {28, 89}, {314, 383},
{309, 368}, {38, 99}, {36, 97}, {30, 91}, {20, 82}, {312, 382}, {293, 355}, {21,
83}, {29, 90}, {315, 380}, {257, 326}, {37, 98}, {174, 230}, {293, 364}, {268,
326}, {61, 118}, {310, 381}, {265, 322}, {43, 103}, {26, 87}, {264, 325}, {40,
101}, {171, 230}, {25, 86}, {296, 359}, {290, 365}, {41, 102}, {146, 221}, {313,
361}, {183, 228}, {269, 344}, {55, 97}, {302, 376}, {273, 327}, {267, 348}, {36,
124}, {289, 377}, {53, 109}, {52, 108}, {37, 125}, {16, 73}, {295, 382}, {289,
376}, {58, 99}, {54, 111}, {56, 98}, {311, 365}, {274, 328}, {157, 199}, {164,
254}, {181, 239}, {162, 249}, {38, 122}, {53, 105}, {52, 104}, {180, 232}, {256,
349}, {296, 373}, {17, 79}, {313, 359}, {59, 100}, {308, 363}, {166, 249}, {36,
68}, {60, 93}, {19, 113}, {310, 340}, {279, 373}, {278, 372}, {272, 371}, {20,
112}, {311, 339}, {185, 220}, {47, 73}, {151, 241}, {141, 229}, {159, 247},
{133, 236}, {318, 343}, {288, 329}, {266, 355}, {267, 353}, {136, 227}, {303,
324}, {176, 219}, {189, 209}, {282, 374}, {21, 120}, {304, 349}, {128, 237},
{172, 193}, {28, 114}, {285, 371}, {184, 214}, {147, 252}, {52, 68}, {263, 375},
{142, 254}, {297, 344}, {63, 77}, {6, 117}, {287, 364}, {129, 242}, {7, 116},
{147, 224}, {11, 126}, {277, 352}, {291, 341}, {12, 123}, {142, 249}, {149,
237}, {292, 348}, {10, 115}, {30, 103}, {188, 197}, {63, 69}, {284, 358}, {266,
368}, {136, 242}, {183, 204}, {32, 93}, {300, 337}, {271, 370}, {34, 95}, {293,
347}, {33, 94}, {283, 356}, {270, 369}, {262, 377}, {140, 243}, {71, 196}, {70,
195}, {76, 201}, {67, 197}, {125, 251}, {123, 253}, {69, 194}, {41, 160}, {115,
250}, {47, 166}, {45, 164}, {43, 162}, {104, 226}, {42, 161}, {63, 180}, {59,
176}, {46, 165}, {60, 177}, {127, 242}, {95, 210}, {79, 194}, {77, 192}, {62,
179}, {72, 198}, {44, 163}, {94, 209}, {91, 212}, {78, 193}, {61, 178}, {87,
199}, {89, 201}, {88, 200}, {83, 194}, {80, 195}, {56, 173}, {83, 198}, {81,
196}, {58, 175}, {48, 167}, {82, 197}, {57, 174}, {29, 132}, {51, 170}, {49,
168}, {50, 169}, {55, 172}, {284, 384}, {54, 171}, {101, 251}, {286, 384}, {125,
221}, {113, 208}, {81, 243}, {107, 200}, {106, 207}, {122, 223}, {66, 228}, {88,
254}, {82, 244}, {80, 246}, {109, 202}, {75, 230}, {106, 199}, {74, 229}, {100,
212}, {32, 147}, {98, 209}, {39, 146}, {118, 192}, {126, 200}, {119, 193}, {40,
159}, {108, 213}, {79, 245}, {107, 208}, {119, 201}, {108, 211}, {65, 131}, {90,
152}, {75, 136}, {120, 187}, {97, 167}, {112, 182}, {17, 214}, {74, 131}, {97,
171}, {113, 186}, {121, 181}, {114, 191}, {18, 220}, {92, 147}, {51, 226}, {111,
190}, {110, 191}, {110, 189}, {63, 235}, {124, 170}, {90, 134}, {352, 384},
{127, 158}, {121, 155}, {48, 211}, {107, 136}, {57, 218}, {105, 141}, {62, 219},
{127, 154}, {49, 215}, {106, 131}, {50, 222}, {86, 184}, {81, 190}, {79, 190},
{42, 216}, {96, 146}, {68, 183}, {121, 138}, {76, 191}, {72, 187}, {105, 157},
{67, 182}, {75, 190}, {73, 188}, {47, 217}, {374, 384}, {127, 137}, {66, 181},
{74, 189}, {109, 148}, {26, 225}, {27, 231}, {69, 184}, {71, 186}, {70, 185},
{40, 299}, {85, 339}, {112, 353}, {92, 325}, {93, 324}, {98, 323}, {116, 341},
{89, 380}, {45, 266}, {83, 379}, {87, 381}, {60, 273}, {99, 334}, {102, 343},
{114, 321}, {96, 340}, {100, 338}, {84, 276}, {117, 309}, {85, 277}, {82, 275},
{87, 278}, {80, 275}, {91, 280}, {88, 284}, {120, 317}, {94, 280}, {95, 281},
{119, 319}, {78, 259}, {89, 279}, {77, 258}, {111, 288}, {116, 292}, {118, 294},
{117, 293}, {112, 289}, {114, 291}, {113, 290}, {124, 296}, {103, 304}, {126,
297}, {92, 261}, {93, 260}, {122, 295}, {56, 344}, {115, 274}, {59, 348}, {86,
305}, {84, 307}, {111, 263}, {43, 322}, {110, 287}, {58, 332}, {41, 337}, {99,
283}, {101, 284}, {103, 286}, {44, 342}, {123, 257}, {120, 258}, {96, 282},
{102, 285}, {55, 330}, {203, 330}, {205, 332}, {202, 329}, {214, 338}, {204,
331}, {211, 347}, {230, 366}, {165, 300}, {252, 373}, {161, 299}, {239, 356},
{253, 374}, {207, 323}, {206, 320}, {250, 372}, {173, 317}, {174, 318}, {175,
319}, {135, 278}, {254, 367}, {139, 282}, {169, 312}, {198, 343}, {155, 264},
{162, 305}, {251, 367}, {216, 333}, {240, 357}, {170, 316}, {158, 265}, {139,
275}, {248, 352}, {160, 312}, {222, 327}, {253, 356}, {163, 313}, {168, 306},
{166, 314}, {255, 355}, {167, 315}, {170, 310}, {215, 331}, {157, 259}, {208,
335}, {225, 321}, {175, 270}, {185, 280}, {186, 283}, {225, 320}, {143, 301},
{146, 304}, {173, 271}, {179, 272}, {250, 345}, {186, 281}, {149, 305}, {150,
306}, {151, 307}, {194, 358}, {195, 359}, {226, 326}, {138, 300}, {152, 318},
{248, 351}, {156, 311}, {134, 298}, {135, 299}, {152, 308}, {153, 309}, {154,
310}, {159, 307}, {196, 360}, {197, 361}, {145, 316}, {231, 328}, {178, 258},
{212, 357}, {220, 365}, {239, 350}, {243, 322}, {245, 324}, {138, 312}, {229,
342}, {246, 325}, {141, 313}, {252, 328}, {143, 314}, {156, 297}, {217, 364},
{213, 354}, {244, 323}, {210, 362}, {181, 268}, {192, 378}, {161, 282}, {215,
363}, {251, 327}, {250, 326}, {134, 315}, {144, 302}, {145, 303}, {154, 292},
{168, 278}, {180, 267}, {188, 259}, {175, 366}, {173, 361}, {252, 315}, {206,
262}, {172, 357}, {216, 275}, {149, 345}, {150, 346}, {151, 347}, {226, 303},
{188, 370}, {178, 352}, {178, 359}, {221, 264}, {158, 328}, {169, 383}, {172,
378}, {177, 358}, {218, 269}, {153, 321}, {196, 285}, {255, 294}, {179, 360},
{155, 327}, {224, 316}, {195, 286}, {216, 262}, {224, 318}, {174, 369}, {209,
270}, {244, 276}, {245, 277}, {247, 279}, {246, 276}, {210, 305}, {223, 316},
{227, 256}, {238, 269}, {231, 258}, {210, 308}, {212, 306}, {213, 307}, {232,
270}, {233, 271}, {243, 277}, {223, 311}, {224, 265}, {177, 346}, {218, 308},
{219, 309}, {191, 336}, {207, 288}, {239, 256}, {222, 302}, {253, 269}, {177,
320}, {240, 257}, {179, 321}, {220, 302}, {204, 319}, {249, 266}, {248, 267},
{217, 301}, {171, 350}, {187, 334}, {213, 288}, {187, 333}, {203, 317}, {167,
351}, {211, 298}, {164, 350}, {234, 272}, {164, 351}, {247, 268}, {215, 299}
}>;
(II) A more general form is to represent the graph as the orbit of {12, 13}
under the group generated by the following permutations:
a: (2, 23)(3, 22)(6, 28)(7, 9)(10, 14)(11, 19)(12, 32)(13, 37)(15, 34)(16,
30)(17, 56)(18, 58)(20, 35)(21, 25)(24, 38)(26, 41)(27, 43)(29, 66)(31, 53)(33,
76)(36, 72)(39, 67)(40, 114)(42, 116)(44, 113)(45, 147)(46, 125)(47, 115)(48,
102)(49, 103)(50, 98)(51, 99)(52, 71)(54, 122)(55, 83)(57, 85)(59, 82)(60,
109)(61, 95)(62, 84)(63, 237)(64, 183)(65, 68)(69, 203)(70, 204)(73, 91)(74,
155)(75, 156)(77, 149)(78, 150)(79, 344)(80, 332)(81, 126)(86, 120)(87, 337)(88,
322)(89, 117)(90, 228)(92, 105)(93, 123)(94, 201)(96, 112)(97, 198)(100,
197)(101, 191)(104, 186)(106, 138)(107, 140)(108, 196)(110, 251)(111, 295)(118,
281)(119, 280)(121, 131)(124, 187)(127, 206)(128, 180)(129, 136)(132, 181)(133,
227)(134, 255)(135, 256)(137, 320)(139, 267)(141, 325)(142, 158)(143, 268)(144,
232)(145, 239)(146, 182)(148, 273)(151, 272)(152, 248)(153, 247)(154, 262)(157,
261)(159, 321)(160, 225)(161, 341)(162, 231)(163, 208)(164, 224)(165, 221)(166,
274)(167, 343)(168, 304)(169, 323)(170, 334)(171, 223)(172, 379)(173, 214)(174,
339)(175, 220)(176, 244)(177, 202)(178, 210)(179, 307)(184, 317)(185, 319)(188,
212)(189, 327)(190, 297)(192, 345)(193, 346)(194, 330)(195, 331)(199, 300)(200,
243)(205, 246)(207, 312)(209, 222)(211, 285)(213, 360)(215, 286)(216, 292)(217,
250)(218, 277)(219, 276)(226, 283)(229, 264)(230, 311)(233, 238)(234, 241)(240,
271)(245, 269)(249, 328)(252, 266)(253, 324)(254, 265)(257, 260)(258, 305)(259,
306)(263, 314)(270, 302)(275, 348)(278, 349)(279, 309)(282, 353)(284, 336)(287,
367)(288, 382)(289, 340)(290, 342)(291, 299)(293, 380)(294, 298)(296, 333)(301,
326)(303, 356)(308, 352)(310, 377)(313, 335)(315, 355)(316, 350)(318, 351)(329,
358)(338, 361)(347, 371)(354, 374)(357, 370)(359, 362)(363, 384)(364, 372)(365,
366)(368, 373)(369, 376)(375, 383)(378, 381) (III) Last is Groups&Graphs. Copy everything between (not including)
the lines of asterisks into a plain text file and save it as "graph.txt". Then
launch G&G (Groups&Graphs) and select Read Text from the File menu.
**************
&Graph **************
b: (2, 28)(3, 19)(4, 8)(6, 23)(7, 25)(9, 21)(10, 35)(11, 22)(12, 66)(13, 76)(14,
20)(15, 72)(16, 67)(17, 114)(18, 113)(24, 71)(26, 83)(27, 82)(29, 32)(30,
39)(31, 65)(33, 37)(34, 36)(38, 52)(40, 56)(41, 55)(42, 120)(43, 59)(44, 58)(45,
228)(46, 201)(47, 112)(48, 198)(49, 197)(50, 191)(51, 186)(53, 68)(54, 196)(57,
89)(60, 131)(61, 187)(62, 81)(63, 206)(64, 92)(69, 320)(70, 325)(73, 182)(74,
273)(75, 272)(77, 262)(78, 261)(79, 321)(80, 208)(84, 126)(85, 117)(86, 116)(87,
379)(88, 244)(90, 147)(91, 146)(93, 132)(94, 125)(95, 124)(96, 115)(97, 102)(98,
101)(99, 104)(100, 103)(105, 183)(106, 177)(107, 246)(108, 122)(109, 121)(110,
222)(111, 360)(118, 334)(119, 165)(123, 181)(127, 237)(128, 158)(129, 241)(133,
233)(134, 224)(135, 271)(136, 234)(137, 203)(138, 202)(139, 328)(140, 205)(141,
204)(142, 180)(143, 324)(144, 265)(145, 260)(148, 155)(149, 154)(150, 157)(151,
156)(152, 252)(153, 245)(159, 344)(160, 330)(161, 317)(162, 348)(163, 332)(164,
255)(166, 353)(167, 343)(168, 188)(169, 336)(170, 281)(171, 285)(172, 337)(173,
299)(174, 380)(175, 342)(176, 322)(178, 333)(179, 190)(184, 341)(185, 264)(189,
327)(192, 377)(193, 300)(194, 225)(195, 335)(199, 346)(200, 276)(207, 358)(209,
251)(210, 296)(211, 223)(212, 304)(213, 295)(214, 291)(215, 361)(216, 258)(217,
289)(218, 279)(219, 243)(220, 290)(221, 280)(226, 283)(227, 238)(229, 319)(230,
371)(231, 275)(232, 254)(235, 242)(239, 257)(240, 256)(247, 269)(248, 266)(249,
267)(250, 340)(253, 268)(259, 306)(263, 374)(270, 367)(274, 282)(277, 309)(278,
370)(284, 323)(286, 338)(287, 302)(288, 382)(292, 305)(293, 339)(294, 350)(297,
307)(298, 316)(301, 303)(308, 373)(310, 345)(311, 347)(312, 329)(313, 331)(314,
354)(315, 318)(326, 356)(349, 357)(351, 355)(352, 368)(359, 362)(363, 383)(364,
376)(369, 372)(375, 384)
c: (1, 2)(3, 24)(4, 9)(5, 15)(6, 57)(7, 23)(8, 13)(10, 31)(11, 42)(12, 22)(14,
16)(17, 28)(18, 51)(19, 26)(20, 61)(21, 46)(25, 50)(27, 49)(29, 90)(30, 32)(33,
152)(34, 37)(35, 48)(36, 144)(38, 53)(39, 134)(40, 218)(41, 56)(43, 60)(44,
216)(45, 58)(47, 73)(52, 139)(54, 62)(55, 169)(59, 167)(63, 66)(64, 132)(65,
131)(67, 77)(68, 128)(69, 76)(70, 145)(71, 106)(72, 74)(75, 153)(78, 143)(79,
114)(80, 226)(81, 225)(82, 118)(83, 110)(84, 123)(85, 116)(86, 222)(87, 113)(88,
215)(89, 214)(91, 147)(92, 115)(93, 103)(94, 318)(95, 125)(96, 211)(97, 176)(98,
102)(99, 105)(100, 315)(101, 308)(104, 275)(107, 135)(108, 282)(109, 122)(111,
179)(112, 178)(117, 174)(119, 166)(120, 165)(121, 237)(124, 302)(126, 161)(127,
156)(129, 242)(130, 183)(133, 136)(137, 297)(138, 203)(140, 206)(141, 334)(142,
204)(146, 298)(148, 223)(149, 155)(150, 158)(151, 356)(154, 311)(157, 283)(159,
269)(160, 344)(162, 273)(163, 262)(164, 332)(168, 231)(170, 220)(171, 219)(172,
383)(173, 337)(175, 266)(177, 322)(180, 228)(181, 235)(182, 258)(184, 201)(185,
316)(186, 199)(187, 229)(188, 217)(189, 198)(190, 321)(191, 194)(192, 197)(193,
314)(195, 303)(196, 207)(200, 299)(202, 295)(205, 350)(208, 278)(209, 343)(210,
251)(212, 252)(213, 374)(221, 281)(224, 280)(227, 236)(230, 309)(232, 255)(233,
256)(234, 268)(238, 247)(239, 241)(240, 279)(243, 320)(244, 294)(245, 291)(246,
326)(248, 267)(249, 319)(250, 325)(253, 307)(254, 331)(257, 276)(259, 301)(260,
304)(261, 274)(263, 272)(264, 345)(265, 346)(270, 355)(271, 349)(277, 341)(284,
363)(285, 323)(286, 324)(287, 379)(288, 360)(289, 359)(290, 381)(292, 339)(293,
369)(296, 376)(300, 317)(305, 327)(306, 328)(310, 365)(312, 330)(313, 377)(329,
382)(333, 342)(335, 372)(336, 358)(338, 380)(340, 347)(348, 351)(352, 353)(354,
384)(357, 373)(361, 378)(362, 367)(364, 370)(366, 368)(371, 375)
C4[ 384, 298 ]
384
-1 23 2 6 28
-2 1 57 17 7
-3 18 62 8 10
-4 11 7 19 9
-5 35 14 20 10
-6 1 40 117 21
-7 2 4 116 41
-8 22 3 25 21
-9 23 4 26 42
-10 3 5 115 43
-11 44 4 126 20
-12 45 13 123 16
-13 12 24 46 50
-14 22 47 5 27
-15 48 16 61 31
-16 12 15 49 73
-17 2 79 214 50
-18 220 3 80 51
-19 35 113 4 81
-20 11 112 5 82
-21 6 83 8 120
-22 14 58 84 8
-23 1 56 85 9
-24 13 51 31 54
-25 55 28 8 86
-26 48 225 9 87
-27 88 231 14 49
-28 1 89 25 114
-29 33 132 90 39
-30 34 91 103 32
-31 24 15 92 60
-32 37 147 93 30
-33 101 94 29 52
-34 102 95 30 53
-35 59 5 19 96
-36 68 124 39 97
-37 125 38 32 98
-38 99 122 37 53
-39 100 36 146 29
-40 101 299 159 6
-41 102 160 7 337
-42 61 161 216 9
-43 322 103 162 10
-44 11 342 104 163
-45 12 266 105 164
-46 110 165 13 57
-47 166 14 73 217
-48 167 211 15 26
-49 168 16 27 215
-50 13 222 169 17
-51 24 170 226 18
-52 33 68 104 108
-53 34 38 105 109
-54 111 24 171 62
-55 330 25 172 97
-56 23 344 173 98
-57 2 46 174 218
-58 22 99 332 175
-59 176 100 35 348
-60 177 93 31 273
-61 178 15 118 42
-62 3 179 54 219
-63 77 69 180 235
-64 78 90 70 65
-65 71 72 64 131
-66 67 181 228 76
-67 66 72 182 197
-68 121 36 183 52
-69 106 194 63 184
-70 107 195 64 185
-71 196 65 76 186
-72 187 198 67 65
-73 188 47 16 119
-74 77 189 229 131
-75 78 190 136 230
-76 66 201 191 71
-77 192 258 63 74
-78 193 259 64 75
-79 190 245 17 194
-80 275 246 18 195
-81 243 190 19 196
-82 275 244 20 197
-83 198 379 194 21
-84 22 122 276 307
-85 23 277 125 339
-86 25 124 184 305
-87 199 278 26 381
-88 254 200 27 284
-89 201 279 28 380
-90 134 29 64 152
-91 212 115 280 30
-92 147 325 261 31
-93 60 324 260 32
-94 33 209 280 117
-95 34 210 116 281
-96 35 146 282 340
-97 55 167 36 171
-98 209 56 37 323
-99 58 334 38 283
-100 212 59 39 338
-101 33 40 251 284
-102 34 343 41 285
-103 286 304 30 43
-104 44 226 52 118
-105 45 157 53 141
-106 199 69 207 131
-107 200 70 136 208
-108 211 213 126 52
-109 123 202 148 53
-110 287 46 189 191
-111 288 190 54 263
-112 353 289 182 20
-113 290 19 186 208
-114 321 191 291 28
-115 91 250 10 274
-116 341 292 7 95
-117 309 6 94 293
-118 104 192 61 294
-119 319 201 193 73
-120 187 258 317 21
-121 155 68 181 138
-122 223 38 84 295
-123 253 12 257 109
-124 36 170 86 296
-125 221 37 85 251
-126 11 297 200 108
-127 154 242 158 137
-128 144 237 139 130
-129 242 133 156 140
-130 158 180 128 142
-131 132 106 74 65
-132 143 145 29 131
-133 135 236 129 153
-134 144 298 90 315
-135 133 145 299 278
-136 242 227 107 75
-137 202 127 160 161
-138 121 300 312 203
-139 275 128 282 152
-140 243 204 129 163
-141 313 105 205 229
-142 254 249 206 130
-143 132 301 314 153
-144 176 134 302 128
-145 132 135 303 316
-146 221 39 304 96
-147 92 224 32 252
-148 154 189 185 109
-149 155 345 237 305
-150 156 346 183 306
-151 157 347 241 307
-152 308 90 139 318
-153 143 133 309 321
-154 310 148 127 292
-155 121 264 149 327
-156 297 311 150 129
-157 199 105 259 151
-158 265 127 130 328
-159 247 160 40 307
-160 312 137 159 41
-161 299 137 282 42
-162 249 305 163 43
-163 44 313 140 162
-164 45 254 350 351
-165 46 300 182 229
-166 47 314 249 184
-167 48 315 97 351
-168 278 49 182 306
-169 176 312 50 383
-170 310 124 51 316
-171 97 350 54 230
-172 55 378 357 193
-173 56 271 317 361
-174 57 369 230 318
-175 319 58 366 270
-176 144 59 169 219
-177 320 60 346 358
-178 352 258 61 359
-179 321 62 272 360
-180 232 267 63 130
-181 66 121 268 239
-182 165 67 112 168
-183 68 204 150 228
-184 166 69 214 86
-185 220 70 148 280
-186 113 71 281 283
-187 333 334 72 120
-188 259 73 370 197
-189 110 209 148 74
-190 111 79 81 75
-191 110 114 336 76
-192 77 378 118 217
-193 78 202 172 119
-194 79 69 83 358
-195 286 80 70 359
-196 81 71 360 285
-197 67 188 82 361
-198 343 223 72 83
-199 221 157 106 87
-200 88 126 107 218
-201 89 222 119 76
-202 137 193 109 329
-203 330 138 237 317
-204 319 331 183 140
-205 332 141 219 241
-206 242 320 262 142
-207 288 323 225 106
-208 231 113 335 107
-209 189 94 270 98
-210 308 95 305 362
-211 298 48 347 108
-212 100 91 357 306
-213 288 354 108 307
-214 17 184 338 240
-215 363 331 299 49
-216 275 333 42 262
-217 364 47 301 192
-218 308 57 200 269
-219 176 309 62 205
-220 365 302 18 185
-221 264 199 146 125
-222 201 302 50 327
-223 198 122 311 316
-224 265 147 316 318
-225 320 321 26 207
-226 104 303 51 326
-227 256 136 236 247
-228 66 255 248 183
-229 165 342 74 141
-230 366 171 75 174
-231 27 258 328 208
-232 244 255 180 270
-233 245 236 271 241
-234 235 246 238 272
-235 234 237 63 241
-236 133 233 227 238
-237 235 203 149 128
-238 234 236 269 240
-239 256 356 181 350
-240 257 214 357 238
-241 233 235 205 151
-242 136 127 129 206
-243 277 322 81 140
-244 232 276 323 82
-245 79 233 277 324
-246 276 80 234 325
-247 268 279 159 227
-248 352 267 228 351
-249 166 266 162 142
-250 345 115 326 372
-251 101 125 367 327
-252 147 315 328 373
-253 374 123 356 269
-254 88 367 142 164
-255 232 355 228 294
-256 291 227 239 349
-257 123 326 294 240
-258 77 231 178 120
-259 78 188 157 304
-260 298 301 93 271
-261 300 92 272 306
-262 377 216 206 273
-263 111 375 268 274
-264 155 221 290 325
-265 287 322 158 224
-266 45 355 368 249
-267 353 180 248 348
-268 181 247 326 263
-269 253 344 238 218
-270 209 232 369 175
-271 233 260 370 173
-272 179 234 261 371
-273 319 60 327 262
-274 115 317 328 263
-275 80 82 139 216
-276 244 246 279 84
-277 352 243 245 85
-278 135 168 372 87
-279 89 276 247 373
-280 91 346 94 185
-281 298 345 95 186
-282 374 139 161 96
-283 99 301 356 186
-284 88 101 358 384
-285 102 294 371 196
-286 103 291 195 384
-287 110 265 364 290
-288 111 213 207 329
-289 112 376 377 303
-290 264 287 365 113
-291 286 341 256 114
-292 154 116 348 296
-293 364 355 347 117
-294 255 257 118 285
-295 297 122 314 382
-296 124 292 359 373
-297 156 344 126 295
-298 134 211 281 260
-299 135 215 40 161
-300 165 138 337 261
-301 143 260 217 283
-302 220 144 222 376
-303 145 289 324 226
-304 146 103 259 349
-305 210 149 162 86
-306 168 212 150 261
-307 213 159 84 151
-308 363 210 152 218
-309 368 117 153 219
-310 154 170 381 340
-311 156 365 223 339
-312 169 138 160 382
-313 359 141 163 361
-314 143 166 295 383
-315 134 167 380 252
-316 145 223 224 170
-317 203 173 120 274
-318 343 224 152 174
-319 204 119 273 175
-320 341 177 225 206
-321 179 114 225 153
-322 243 265 336 43
-323 375 244 207 98
-324 354 245 93 303
-325 264 92 246 335
-326 257 268 226 250
-327 155 222 251 273
-328 231 158 252 274
-329 330 288 202 336
-330 55 344 203 329
-331 332 204 215 362
-332 331 58 205 348
-333 187 368 216 362
-334 99 187 377 350
-335 325 338 208 362
-336 363 322 191 329
-337 300 378 41 349
-338 100 375 214 335
-339 376 311 85 351
-340 310 356 369 96
-341 320 353 291 116
-342 44 366 367 229
-343 198 102 355 318
-344 297 330 56 269
-345 149 281 381 250
-346 177 280 379 150
-347 211 365 293 151
-348 332 267 59 292
-349 364 256 304 337
-350 334 171 239 164
-351 167 248 339 164
-352 178 277 248 384
-353 341 112 354 267
-354 363 353 213 324
-355 255 266 343 293
-356 253 239 283 340
-357 376 212 172 240
-358 177 194 382 284
-359 178 313 195 296
-360 374 179 382 196
-361 313 173 383 197
-362 210 331 333 335
-363 308 354 215 336
-364 287 293 217 349
-365 220 311 290 347
-366 342 371 175 230
-367 254 342 251 372
-368 309 375 266 333
-369 270 370 174 340
-370 188 379 369 271
-371 366 380 272 285
-372 278 367 380 250
-373 279 383 252 296
-374 253 282 360 384
-375 323 368 338 263
-376 289 302 357 339
-377 289 334 378 262
-378 377 192 172 337
-379 346 83 370 381
-380 89 315 371 372
-381 310 345 379 87
-382 312 358 360 295
-383 169 314 361 373
-384 286 352 374 284
0